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An appraisal of whole‑room 
indirect calorimeters 
and a metabolic cart for measuring 
resting and active metabolic rates
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Francesco S. Celi 2*

Whole-room indirect calorimeters (WRICs) have traditionally been used for real-time resting metabolic 
rate (RMR) measurements, while metabolic rate (MR) during short-interval exercises has commonly 
been measured by metabolic carts (MCs). This study aims to investigate the feasibility of incorporating 
short-interval exercises into WRIC study protocols by comparing the performance of WRICs and an 
MC. We assessed the 40-min RMR of 15 subjects with 2-day repeats and the 10–15 min activity MR 
(AMR) of 14 subjects at three intensities, using a large WRIC, a small WRIC, and an MC. We evaluated 
the biases between the instruments and quantified sources of variation using variance component 
analysis. All three instruments showed good agreement for both RMR (maximum bias = 0.07 kcal/
min) and AMR assessment (maximum bias = 0.53 kcal/min). Moreover, the majority of the variability 
was between-subject and between-intensity variation, whereas the types of instrument contributed 
only a small amount to total variation in RMR (2%) and AMR (0.2%) data. In Conclusion, the good 
reproducibility among the instruments indicates that they may be used interchangeably in well-
designed studies. Overall, WRICs can serve as an accurate and versatile means of assessing MR, 
capable of integrating RMR and short-interval AMR assessments into a single protocol.

Whole-room indirect calorimeters (WRICs) have been used to assess various metabolic states in both healthy 
subjects and subjects affected by  pathologies1,2. A WRIC, an isolated room with a known volume and a controlled 
air inflow rate, provides minute-by-minute measurements of the subject’s  O2 consumption and  CO2 production 
from breaths, via the continuous measurement of  O2 and  CO2 concentrations in inflow air and outflow air. These 
data enable precise calculations of metabolic rate (MR, unit: kcal/min) for prolonged periods allowing for activi-
ties of daily  living3, and energy expenditure (EE, unit: kcal), which is the cumulative MR over time. Hence, MR 
and EE in the general sense are used interchangeably in the medical literature and in this paper.

Human EE is comprised of various components and is influenced by many factors. The largest component 
of human EE is resting EE, which is the energy required to carry out fundamental physiological functions, 
contributing 60–80% of the total daily  EE4. RMR is influenced by various physiological characteristics, includ-
ing  gender5,  ethnicity6,  age7, 8, body  composition9,10, various metabolic  syndromes11–16, and gene  variations17. 
Additionally, resting MR (RMR) responds to environmental stimuli, such as cold  temperatures18,19, food intake 
and dietary  composition20–24. Moreover, RMR drops significantly during  sleep25 and varies by circadian  phase26. 
A smaller, yet important component of human MR is activity-induced MR (AMR)27. Activities can be subdivided 
into two categories: non-exercise activity thermogenesis (NEAT) and volitional  exercise28,29. NEAT includes 
occupational and leisure activities and any spontaneous activities, such as fidgeting and maintenance of posture. 
Because of these factors, RMR needs to be assessed under controlled experimental conditions. By providing 
environmental control and real-time measurements over extended periods, WRICs are the perfect tools to isolate 
the various components of MR.
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Due to the cost of building, maintaining, and operating WRICs, most research aimed at assessing MR has 
used less costly metabolic carts (MCs). Instead of placing the subjects in a room, MCs require the volunteer to 
lie under a ventilated hood for RMR measurements, or to wear a mouthpiece and nose clip, or a face mask while 
tethered to the  system30–32. This may cause claustrophobic sensations in some subjects, potentially impacting 
RMR  measurements30 and limiting the recording duration. For researchers who are interested in assessing MR 
over a range of activities, MCs can be difficult to maneuver because of the tethering and may alter normal breath-
ing  patterns30–32. Lastly, to assess both RMR and AMR during a single study visit, MCs would require additional 
time for equipment changes and system re-calibration.

Although WRICs provide researchers with more flexibility to study the effects of sedentary  behavior33 and 
various activity types and intensities on total  MR34–38, the “dilution effect” caused by the room size of the  WRICs3 
limits their temporal resolution, which has traditionally hindered their use in short-interval exercise studies. 
To remedy the long delay imposed by the room size of WRICs, we have recently devised a method to improve 
the temporal resolution of WRICs and validated our system against 22 sessions of 24-h gas infusion studies of 
dynamic metabolic profiles 3. Here, we further evaluate our system using data collected from 29 human subjects 
under both resting and exercising conditions, investigate the biases between instruments, and quantify the 
sources of variation in the MR mesurements.

Methods
Data collection. This study was conducted on 29 healthy, non-smoking subjects. Exclusion criteria included 
age < 18 years, medications affecting metabolism, pregnancy or lactation, reported claustrophobia, and resting 
blood pressure > 140/90 mmHg. RMR and AMR were measured using three instruments: a large WRIC (26  m3), 
a small WRIC (5.5  m3), and an MC. The two WRICs had been previously validated using gas-infusion  methods3. 
The MC used in this study (Parvo Medics TrueOne 2400) was in an adjacent room approximately 20 m away 
from the WRICs. All instruments were calibrated by following the procedures below. Written informed consent 
was obtained prior to the first study visit and all study procedures related to human subjects were approved by 
the Institutional Review Board at Virginia Commonwealth University. All research was performed in accord-
ance with the relevant guidelines and regulations.

Instrument calibration. Calibration of WRICs. To ensure accurate measurements, the indirect calorim-
eters were calibrated prior to each testing session by following two procedures: (1) gas analyzer (manufactured 
by Siemens, model: Ultramat/Oxymat 6.) calibration using mixed gases, and (2) WRIC system calibration us-
ing a gas infusion method. For the first calibration procedure, reference points for calibration were obtained 
by mixing gases  (N2,  O2, and  CO2) onsite to 10 known concentration levels, with  O2 ranging from 20.0–21.0% 
and  CO2 ranging from 0.0–1.0%. Gas mixing was automatically performed by a gas blender comprised of mass 
flow controllers (MFCs). Each MFC was pre-validated against a primary flow standard (ML-800; Mesa Labora-
tories, Butler, NJ). During the calibration stage, three MFCs were used to regulate the flow rates of  N2,  O2, and 
 CO2. These three gases subsequently flowed into a manifold that mixed them at a known combination of flow 
rates, from which reference values for the  O2 and  CO2 concentrations were calculated. For the second calibra-
tion procedure,  N2 and  CO2 were infused into an empty chamber to simulate a human subject’s effect on the 
system and obtain reference values and the in silico performance of the WRICs. Flow rates of  N2 and  CO2 were 
pre-determined to generate reference values for volume of  O2  (VO2) and volume of  CO2  (VCO2), from which 
the reference values of MR were calculated via the Weir  Equation39. The critical parameters for calculating  VO2 
and  VCO2 (e.g. room volume, offsets between the input air analyzer and the room air analyzer) were estimated 
given the measurements and the reference MR. These critical parameters were then used in processing the raw 
data collected in the human studies. All gas samples during the studies were dried below 1,000 ppm using a gas 
sample dryer (manufactured by Perma Pure LLC, Lakewood, NJ). Other operational details of the WRICs have 
previously been  published3.

Calibration of the Parvo metabolic cart. Prior to each RMR visit and AMR visit, the Parvo Medics TrueOne 
2400 was allowed to warm up for a minimum of 30 min. Temperature, barometric pressure, and relative humid-
ity were recorded to ensure accurate calibration of the instrument. Flow calibration was accomplished with a 
3-L syringe with an error of ± 1%. Prior to each trial,  O2 and  CO2 analyzers were calibrated per manufacturer 
specifications with the following known gas mixtures: 1.004%  CO2, 16.01%  O2, balance  N2 (RMR), and 4.000% 
 CO2, 16.00%  O2, balance  N2 (AMR).

Study protocol. To minimize the confounding effects of natural variations in MR, we randomized the 
sequence of measurement instruments (a large WRIC, a small WRIC, or an MC) to be used for each subject. 
For RMR measurements, we repeated the experiment on separate days for each subject to allow the assessment 
of test–retest reliability. For AMR measurements, we devised individualized exercise intensities to ensure that 
subjects reached a steady-state MR.

Resting MR study. The RMR study consisted of two visits. To minimize biological variations in RMR, the two 
visits were scheduled for 2 days within 1 week, and female subjects were scheduled in the early follicular phase 
of their menstrual cycle (days 2–10). During each visit, the subject underwent RMR tests using all three instru-
ments. The subjects were asked to arrive early in the morning (7:30 am—9:00 am) after an overnight fast (i.e. 
no food or caffeine intake) and no strenuous exercise for at least 24 h. A brief physical examination was also 
performed by a study physician to ensure that the inclusion and exclusion criteria were met. Following the physi-
cal examination, the subjects were asked to lie in a supine position for approximately 40 min and refrain from 
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sleeping or moving. Subjects were also observed and kept awake during the trials. The room temperature was 
controlled at 24 ˚C.

Active MR study. The AMR study consisted of three visits. The three visits were scheduled for three days within 
one week, with at least 24 h between each visit. The precautionary steps taken to eliminate biological variation 
in AMR were similar to the RMR tests, except that subjects could choose to arrive either early in the morning 
after overnight fasting (7:30 am–9:00 am) or late afternoon (3:00 pm–4:00 pm) after at least a 4-h fast, and this 
was held constant for each subsequent visit. After a routine examination, the subjects completed a 60-min exer-
cise session on a cycle ergometer (VIAsprint 150P or Monark 928E) using one of the three randomly-assigned 
instruments. The same ergometer was used for all three visits for each participant. The three exercise intensities 
for each visit were determined based on the subject’s weight and gender. The workloads of the three intensities 
were 0.75, 1.5, and 2.25 W/kg for males, and 0.5, 1.0, and 1.5 W/kg for females. Each subject exercised for 15 min 
at each of the first two intensity levels, and 10 min at the highest intensity level, with a 10-min period of rest 
between each level. This exercise protocol was designed to account for the gender difference in power output and 
provide sufficient recovery time between each short-interval exercise in order to minimize fatigue.

Statistical analysis. We performed data analysis in Matlab 2019b (Mathworks Inc, Natick, Massachusetts) 
and R Studio (RStudio Inc., Boston, Massachusetts). The resting MR (RMR) was the average of a 40-min MR 
recording during supine rest, with the initial 10 min before the WRICs reached equilibrium discarded, resulting 
in 30 min of steady-state RMR. For the AMR measurements, we manually selected the steady-state MR, defined 
as the flat region between transition edges after plotting the entire session in Matlab. This resulted in approxi-
mately 12 min of data for the first two intensity levels and approximately 7 min of data for the highest intensity 
level, and we averaged the steady-state MR at each intensity.

In our analysis, we first assessed biases between instruments at each visit or at each exercise intensity level, 
and tested the group differences using two-sided, paired t-tests. To visualize these biases, we also generated 
Bland–Altman plots for all comparisons. Test–retest reliability was assessed using the Pearson correlation coef-
ficient between the RMRs measured on two visits. To check the validity of our exercise protocol, we assessed 
the intensity range using metabolic equivalent of tasks (METs, unit: kcal/h/kg) for each  subject40. Since the true 
AMR is unknown, we assessed the linear response of the three instruments to various workloads as a proxy for 
instrument accuracy. Lastly, to assess the variability in MR between instruments over successive visits or at each 
exercise intensity, we conducted variance component  analyses41 to decompose the total variance in the data 
into the percentage contributions of various factors (i.e. instrument type, subject, visits, and intensity levels).

Results
Of the 29 subjects, 15 participated in the RMR trial and 14 participated in the AMR trial (Table 1). A variability 
plot showing each subject’s measurements and Bland–Altman plots to illustrate the biases are in Supplementary 
Information Figures S1–S3.

Compared with the WRICs, the MC tended to underestimate RMR, showing an average bias of -0.05 kcal/
min compared with the large WRIC and an average bias of − 0.06 kcal/min compared with the small WRIC. 
Measurements from the large WRIC and small WRIC agreed well, but the values obtained from the large WRIC 
were slightly lower than those from the small WRIC, with a bias of − 0.01 kcal/min (Table 2). Moreover, all three 
instruments showed excellent test–retest reliability, assessed by Pearson correlation coefficient, as shown in Fig. 1.

Figure 2 illustrates that our AMR protocol and the previously-validated method for improving the temporal 
resolution of the  WRICs3 were successful in capturing the fast-changing dynamics of exercise MR in the WRICs. 
The steady states at the three intensity levels were clearly delineated by the 10-min rest intervals using our previ-
ously published  methods3. Comparisons of the agreement between instruments at each exercise level are listed in 
Table 3, and illustrated by the Bland–Altman plots in Supplementary Information Figure S5. The intensity range 
of the AMR protocol is shown in Supplementary Information Figure S6. Overall, the highest disagreements were 
between the large WRIC and the MC, with relative errors of about 10% across the three exercise levels. The small 
WRIC and the MC were in closer agreement, with relative errors of about 7.5%.

As we cannot measure AMR using any of the two instruments simultaneously, we modeled the relationship 
between exercise workloads and MR measurements from all three instruments, using the best linear response 
to workloads as a proxy for accuracy (Fig. 3). The MR measurements from the three instruments all show good 
linear correlations with the prescribed workloads, suggesting that the WRICs can be used for exercise tasks with 
various workloads. MRs measured by the MC show the best correlation with workloads, suggesting that an MC 
is a better choice than a WRIC for assessing AMR during a single bout of physical activity. However, the biases 
between them are tolerably small, and the versatility of WRICs can be of great benefit in studies of AMR across 
a range of activities over longer assessment periods.

Table 1.  Subject anthropometric data for the resting energy expenditure study (RMR) and the exercise study 
(AMR).

Gender Age (years) Height (cm) Weight (kg) BMI (kg/m2)

RMR (15 subjects) 9 males, 6 females 31.5 (12.4) 172.0 (10.6) 74.3 (16.2) 24.9 (3.8)

AMR (14 subjects) 9 males, 5 females 37.4 (15.9) 172.6 (7.4) 72.5 (9.8) 24.3 (2.4)
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Table 2.  Biases in RMR measurements between the three instruments. *p-values were obtained using two-
sided, paired t-tests.

Large WRIC vs MC Small WRIC vs MC Large WRIC vs small WRIC

Day 1

Bias ± SE (kcal/min) 0.07 ± 0.00 (p = 0.001) 0.06 ± 0.00 (p = 0.002) 0.01 ± 0.00 (p = 0.545)

Relative error (%) 7.4% 7.2% 4.0%

RMSE (kcal/min) 0.10 0.09 0.06

Day 2

Bias ± SE (kCal/min) 0.04 ± 0.00 (p = 0.019) 0.07 ± 0.01 (p = 0.005) − 0.03 ± 0.00 (p = 0.130)

Relative error (%) 4.8% 7.8% 3.9%

RMSE (kcal/min) 0.07 0.10 0.07

Average Bias ± SE (kcal/min) 0.05 ± 0.02 0.06 ± 0.00 − 0.01 ± 0.03

Relative error (%) 5.8% 6.5% 2.3%

Figure 1.  Test–retest reliability of the three instruments.

Figure 2.  MR levels during one AMR session in the large WRIC. The blue line is the time series of MR for one 
AMR session.
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Table 4 shows that the main source of variation in the RMR data was between subjects (92.7%), with only a 
small variation between instruments (2%). In contrast, when assessing AMR, the variation attributable to the type 
of instrument was only 0.2%, while the majority of the variation was attributable to the intensity levels (56.5%) 
and the between-subject variation (33.5%). As we prescribed individualized workloads for each intensity level, 
this large between-subject variation reduced to 4.5% once workload was considered as the main source of vari-
ation in lieu of intensity levels. In each case, the variation contributed by the types of instrument was equally 
small (0.2%).

Discussion
Our study evaluated the accuracy and consistency of WRICs for assessing RMR and AMR over a wide range of 
exercise intensities. Compared to an MC, our WRICs showed good consistency in both the RMR and AMR trials. 
This finding renders the WRIC a valid tool for recording MR during complex and dynamic protocols involving 
physical activities of various intensities, as well as RMR assessment, in one setting.

The RMR readings from both WRICs in the current study were higher than the values obtained via the MC. 
Similar findings were observed in a study by Rising et al.42, where an MC from a different manufacturer (Vmax 

Table 3.  Biases in exercise MR measurements between the three instruments.

Large WRIC vs MC Small WRIC vs MC Large WRIC vs small WRIC

Intensity 1

Bias ± SE (kCal/min) − 0.20 ± 0.06 0.10 ± 0.03 − 0.30 ± 0.06

Relative error (%) 11.2% 7.6% 7.5%

RMSE (kCal/min) 0.79 0.37 0.84

Intensity 2

Bias ± SE (kCal/min) − 0.42 ± 0.06 − 0.10 ± 0.05 − 0.32 ± 0.03

Relative error (%) 9.9% 7.5% 5.0%

RMSE (kCal/min) 0.88 0.71 0.55

Intensity 3

Bias ± SE (kCal/min) − 0.53 ± 0.08 − 0.37 ± 0.07 − 0.15 ± 0.04

Relative error (%) 9.9% 7.4% 3.9%

RMSE (kCal/min) 1.25 1.00 0.52

Figure 3.  Regressions between workloads and MR measurements from the AMR study.

Table 4.  Results of the variance component analysis.

RMR study AMR study

Sources of variation Percent (%) Sources of variation Percent (%) Sources of variation Percent (%)

Subject 92.7 Intensity levels 56.5 Workload 94.0

Instrument 2.0 Instrument 0.2 Instrument 0.2

Within-subject, between-visits 0.4 Subject 33.5 Subject 4.5

Residual 4.9 Residual 9.8 Residual 1.3
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Encore 2900, Carefusion Inc) also measured 10% lower RMR than a WRIC (bias = 0.14 kcal/min). The authors 
posited that the finding was due to the lack of adjustment for moisture in the gas samples in the MC system, 
which resulted in underestimation of the  VO2 and  VCO2. Unlike the WRIC, the ventilated hood method assumes 
constant environmental factors (e.g. air composition, presence of study personnel in the room, etc.) using a 
“reference air” canister as the ground truth which, if not tightly controlled, can critically affect the accuracy of 
the  instrument31. In contrast, our WRIC systems actively dry the gas samples, isolate the influence of incom-
ing air and take the gas concentration of the incoming air into account, leading to more accurate and precise 
measurements.

On average, our large WRIC systems measured about 5% lower than the MC across all exercise intensities, in 
contrast to the study by Rising et al.43, where they found that the energy expenditure assessed with their WRIC 
system was 30% greater than with their MC system (Vmax Encore 2900, Carefusion Inc). As we conducted our 
exercise test at much shorter intervals (10–15 min at each intensity level as opposed to 30 min at one intensity 
level), we suspect the response time of the WRICs might be responsible for the slight underestimation of AMR. 
This underestimation is reduced in the small WRIC due to its smaller volume and shorter response time.

Our variance component analyses show that reproducibility across the three instruments was excellent, 
contributing only 2% of the total variation in the RMR data and 0.2% in the AMR data. This suggests that when 
assessing cross-sectional RMR, the variation introduced by interchanging the three instruments could be neg-
ligible in studies investigating factors (e.g. gender, body composition, metabolic syndromes) that play a larger 
role. Moreover, in studies where AMR across activity intensities from low to vigorous activities is of interest, the 
three instruments can be used interchangeably if necessary.

Overall, our study demonstrates that modern WRICs can be used for studies involving both RMR and exer-
cise measurement, by adequately capturing both in a single setting. Using our previously-validated methods for 
recovering dynamic WRIC  signals3, our WRICs can capture short-interval exercises (10–15 min), which greatly 
complement their traditional role as a real-time RMR measurement tool. WRICs could facilitate the recording of 
AMR, since there is no need to fit mouthpieces and noseclips, substantially reducing the discomfort experienced 
by study participants. As assessing and modeling MR in free-living situations becomes increasingly important 
for clinical nutritional research and obesity research, the flexibility provided by accurate WRICs will allow for 
more complex study designs to better characterize near “free-living” conditions. Collectively, our study demon-
strates that modern WRICs can be used as excellent research tools for studying the dynamics of human energy 
expenditure during both rest and exercise.
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