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clinically relevant autistic traits 
predict greater reliance on detail 
for image recognition
Arjen Alink1* & ian charest2

individuals with an autism spectrum disorder (ASD) diagnosis are often described as having an eye 
for detail. But it remains to be shown that a detail-focused processing bias is a ubiquitous property of 
vision in individuals with ASD. to address this question, we investigated whether a greater number 
of autistic traits in neurotypical subjects is associated with an increased reliance on image details 
during a natural image recognition task. to this end, we use a novel reverse correlation-based method 
(feature diagnosticity mapping) for measuring the relative importance of low-level image features 
for object recognition. The main finding of this study is that image recognition in participants with an 
above-median number of autistic traits benefited more from the presence of high-spatial frequency 
image features. Furthermore, we found that this reliance-on-detail effect was best predicted by the 
presence of the most clinically relevant autistic traits. Therefore, our findings suggest that a greater 
number of autistic traits in neurotypical individuals is associated with a more detail-oriented visual 
information processing strategy and that this effect might generalize to a clinical ASD population.

Autism is a developmental disorder, now referred to as autism spectrum disorder (ASD), that manifests itself in 
a variety of forms. Diagnostic criteria for ASD include persistent deficits in social interactions and communica-
tion and repetitive patterns of  behavior1. An intriguing aspect of ASD is that it is also associated with superior 
performance for tasks that involve the processing of visual detail. For example, ASD has been associated with 
superior performance for the embedded figures  test2–4, which involves searching for a simple shape contained 
by a complex figure, and faster identification of the odd-man-out in cluttered  displays5–7. A well-known, albeit 
unrepresentative, case of ASD-related enhanced processing of visual detail is the savant ability of Stephen Wilt-
shire, who is able to draw highly detailed urban landscapes after having seen his subject only briefly (https ://
www.steph enwil tshir e.com).

In short, ASD has been associated with having an eye for detail. This, however, has been argued to come at 
the cost of a reduced ability to ‘see the big picture’ according to the influential weak central coherence (WCC) 
 theory8,9. The original WCC  formulation10 proposed that a bias towards processing details might underlie defi-
cits in social functioning central to  ASD11: a focus on details could cause individuals with ASD to miss socially 
meaningful cues that are global in nature, like facial  expressions12. However, a string of studies finding no 
evidence for a relationship between perceptual measures of weak central coherence and measures of theory of 
mind and social  skills13–17 led to a revised version of WCC 9 suggesting that a bias towards processing details and 
social deficits might be two distinct aspects of ASD. Consequently, Happé and  Frith9 pointed out that the future 
veracity of WCC critically depends on establishing a relationship between a detail-focused processing bias and 
real-life abilities and difficulties in ASD individuals. One way of supporting the feasibility of such a relationship 
would be to demonstrate that this bias is a ubiquitous property of vision in individuals with ASD.

ASD-related detail-focused processing has been initially supported by superior detail-focused abstract visual 
tasks, including the embedded figure  task3 and the Navon  task17. These early findings, however, are highly con-
troversial given the fact that more recent studies have frequently been unable to replicate  them18. An important 
endeavour of ASD research has been to determine if this detail-focused perceptual style is grounded in deviant 
low-level sensory processing in early sensory brain  areas19. Despite the fact that several basic measures of visual 
sensitivity appear to be unaffected by  ASD16,20–23, detail-focused processing has been associated with ASD in 
the context of face and object  perception20,22,24. In addition, mixed evidence has been provided for ASD being 
related to enhanced sensitivity to high vs. low spatial frequency grating stimuli, as earlier studies found no such 
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 relationship25,26 while a more recent study by Kéïta et al.20 did find a relationship between ASD and enhanced 
sensitivity for high-spatial frequency grating stimuli.

Given the restricted and mixed nature of the current literature on ASD-related detail-focused processing, 
further research is needed to resolve whether such a bias represents a ubiquitous property of natural day-to-
day image perception in individuals with ASD. Therefore, we here use a new reverse-correlation based ‘feature 
diagnosticity mapping’ paradigm to determine how the presence of autistic traits affects the relative contribution 
of low-level visual features to natural image recognition. Specifically, we used the 50-item Autism Spectrum 
Quotient (AQ) questionnaire for  adults24 to split our neurotypical participants into a high- and low AQ group 
and assessed if image recognition depended more on high-spatial frequency stimulus features in the high AQ 
group. This approach relies on the notion that the comparison of individuals with many vs. few autistic traits can 
effectively model differences between individuals with and without a clinical ASD  diagnosis4,25–27. In addition to 
testing for a relationship between ASD and detail-based image recognition, this approach is also used to test if 
previous reports of reduced gaze duration towards  eyes28–30 and increased gaze durations for the central area of 
 images31 can be related to image recognition, with individuals with ASD relying more on these aspects of images.

Results
We developed a new experimental paradigm to measure the relative contribution of low-level image features to 
image recognition, using a technique similar to reverse  correlation32,33. During the experiment, 52 participants 
were presented with partial reconstructions of five cat and five dog images. To create these stimuli, we first 
selected 1,000 Gabor wavelets (with varying position, spatial frequency and orientation) which, when summed, 
provided a good estimate of pixel intensity values of the original cat and dog images which one can easily rec-
ognize as a dog or cat image (sums of all features are displayed in the Supplementary figure). Partial reconstruc-
tions contained a random selection of 90 of the 1,000 features (Fig. 1). Via button presses, participants indicated 
whether they recognized a dog, a cat or whether they were not sure.

AQ-scores of the participants were all within the neurotypical range (< 32) and ranged from 5 to 30 (M = 14.3, 
SD = 5.9). This range of AQ scores is somewhat lower than the typically reported AQ score  range34 which can be 
explained by the fact that our participants were predominantly female (41 female, 11 male). In this context, it 
is worth noting the AQ test has been primarily been validated for ASD patient groups that were predominantly 
 male24. Participants were assigned to the high AQ group (n = 25) if they had an autistic-spectrum  quotient24 
(AQ) higher than the median across all participants (AQ > 14) while the others were assigned to the low AQ 
group (n = 27). We opted for this AQ cut-off approach because it enabled us to include all participants in the 
analysis and because the outcome of this analysis type, in contrast to a correlational analysis, depends less on 
hard-to-interpret effects of small AQ-score difference. The AQ-score cut-off used during this study (AQ > 14) 
was comparable to the cut-offs used by previous studies using the same median-split  approach35–38.

On average, participants successfully recognized 49.7% (SD = 15.6%) of the partial reconstructions. During 
these trials they either reported having recognized a cat when a cat was shown or reported having recognized 
a dog when a dog was shown. Note that participants, in addition to reporting that they recognized the image 
as a cat/dog, could also indicate that they were ‘unsure’, which they did during 29.3% of the trials (SD = 22.9%). 
During the remaining 21.0% of trials participants reported seeing a different animal than displayed. As a result, 
recognition performance reported here should not be confused with recognition performance for two-alternative 
forced choice paradigms. A repeated-measure ANOVA revealed that there was no difference in recognition 
performance between cat and dog images (50.9% and 48.4% respectively, F(1, 100) = 0.50, p = 0.48), no effect of 
AQ group on recognition performance (high AQ group: 47.4%; low AQ group: 51.9%; F(1, 100) = 2.49, p = 0.12), 
nor an interaction between these two factors (F(1, 100) = 1.23, p = 0.27).

To quantify the relative importance of visual features we computed a feature diagnosticity index (FDi) for 
all 10,000 features (10 images with 1,000 features each) based on the average recognition accuracy for trials 
containing each feature. This value, however, is affected by variance due to differences in the recognizability 
between images and by overall performance differences between participants (across all images and image 
features). This variance, however, is undesirable because we are only interested in the relative contribution of 
features to image recognition within each image and within each participant. Therefore, we z-scored FDi values 
within each participant and image (across the 1,000 features of each image). If FDi values truly reflect feature 
importance for image recognition, images resulting from the summation of features with the highest FDi values 
should be most recognizable. Visual inspection of images reconstructed from the 200 features with the highest 
FDi values revealed that these images were easier to recognize than images reconstructed from the 200 features 
with the lowest FDi values (shown for one exemplary image in Fig. 1c and for all images in the Supplementary 
figure). This observation, however, does not quantitatively validate the efficacy of our method. Therefore, we have, 
in addition, validated our method by assessing the replicability of the pattern of FDi values (across all 10,000 
features) between participants. This analysis revealed significant replicability of FDi patterns across participants 
(Pearson r = 0.081, p < 0.0001, permutation-based test, Fig. 1c).

After having established that FDi values measure the importance of features for image recognition, we tested 
if FDi values are elevated for high-spatial frequency features in high-AQ individuals. To this end, we grouped 
features into five equally-sized bins (containing 2000 features each) with ascending feature spatial frequencies. 
Spatial frequency ranges for bin 1–5 in cycles per degree visual angle were resp.: 0.24–0.60, 0.60–0.89, 0.89–1.21, 
1.21–1.52 and 1.52–2.07. We tested for an interaction between spatial frequency and AQ group using a repeated-
measure ANOVA with average bin FDi values as the dependent variable. This analysis revealed a main effect of 
spatial frequency (F (4, 250) = 3.97, p < 0.005, Fig. 2), and an interaction between spatial frequency and AQ group 
(F (4, 250) = 4.12, p < 0.005, Fig. 2). The interaction was mostly driven by the high-AQ group having elevated FDi 
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values for the highest spatial frequency bin (0.005 and − 0.013 resp.; t(50) = 3.80, p < 0.001). Therefore, our results 
are consistent with high-AQ individuals relying more on local details for image recognition.

Previous behavioural studies have linked ASD to reduced gaze durations for the eye-region in human 
 faces28–30, and increased gaze durations for the central area of  images31. To assess this, we repeated the analysis 
while grouping features into five ascending bins (containing 2,000 features each) according to feature distance 
from the nearest eye (bin 1–5 resp. ranged from 0° to 2.9°, 2.9°–5.3°, 5.3°–7.3°, 7.3°–9.8° and 9.8°–18.4° visual 
angle) or distance from the image centre (bin 1–5 resp. ranged from 0.1° to 4.6°, 4.6°–6.7°, 6.7°–8.6°, 8.6°–10.6° 
and 10.6°–15.7° visual angle). This analysis revealed two main effects which indicate that FDi decreases as a 
function of the distance from the nearest eye (F (4, 250) = 27.4, p < 0.00001, Fig. 2) and distance from the image 
centre (F (4, 250) = 14.3, p < 0.00001, Fig. 2). Importantly, neither of these effects was modulated by AQ group. 
Therefore, our data does not replicate previously reported ASD effects on image centre and eye-region processing. 
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Figure 1.  Feature diagnosticity mapping. (a) Stimuli were reconstructed using the 1,000 Gabor wavelets that 
best explained the pixel intensity in the original images. A random subset (90) of these features was presented 
during each trial while participants judged whether the image depicted a cat or a dog. A feature diagnosticity 
index (FDi) was computed based on the behavioral responses using an approach similar to reverse correlation. 
(b) Images depicting the sum of the 200 features with highest (best features) and lowest (worst features) FDi 
values. (c) graph showing that FDi value patterns replicate between participants (see “Methods” for more 
details).
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Figure 2.  Effect of the number of autistic-like traits on the use of different types of visual features. The top panel 
depicts how feature diagnosticity is affected by AQ group (high AQ = AQ > 14, low AQ = AQ < 15) and feature 
spatial frequency. A clear interaction was observed between these two factors, which revealed that high-AQ 
individuals rely more on high spatial frequency information when recognizing cat and dog images. We also 
assessed the importance of the distance of features from the eyes (middle panel) and the image center (lower 
panel) but found no interaction between these factors and AQ group. Cycles/dva stands for cycles per degree 
visual angle.
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It is important to note that in contrast to these previous studies, our results are not based on eye movements nor 
on data from clinically diagnosed ASD patients.

Does our finding of an increased reliance-on detail for visual recognition in high AQ individuals generalize to 
individuals with an ASD diagnosis? Our study does not provide direct evidence for this as we measured a neuro-
typical student population. However, we are able to provide indirect evidence by testing if visual-detail-reliance 
depends most on the presence of clinically diagnostic AQ traits (with ‘trait’ we refer to a positive score on one of 
the 50 items of the AQ questionnaire). To this end, we quantified the clinical diagnosticity the 50 autism traits 
as the (natural) log of the trait prevalence ratio between clinically diagnosed ASD individuals and neurotypical 
students, making use of previously published prevalence  data24. For example, the highest log odds ratio (2.04) 
was assigned to the trait measured with the item “I enjoy social occasions”, which ASD individuals disagree 
with 7.7 times more often than neurotypical students. In addition, we quantified the reliance-on-detail for each 
participant as the linear regression coefficient between their average FDi values for each spatial frequency bin 
and the ascending bin numbers (1–5, see Fig. 2). Subsequently, we performed a robust regression analysis that 
confirmed our hypothesis by revealing that our reliance-on-detail measure was best predicted by the presence 
of the most clinical diagnostic autistic traits (slope = 0.0023, t(48) = 3.40, p < 0.005, Fig. 3).

In addition, we assessed how trait-related increases of reliance-on-detail depended on the five different trait 
types (social skill, attention switching, attention to detail, communication and imagination) that the AQ question-
naire was designed to measure (with ten items for each type of ASD trait)24. Note here that the trait types labelled 
as ‘social skill’, ‘attention switching’, ‘communication’ and ‘imagination’ all refer to difficulties in the respective 
domains while ‘attention to detail’ refers to its domain positively. A one-way ANOVA revealed an effect of trait 
type (F(4, 45) = 5.89, p < 0.001). Five post-hoc t-tests (Bonferroni corrected) testing for a difference between 
each trait type versus all others revealed that the presence of ‘social skill’ traits increase reliance-on-detail more 
than all other trait types (t(48) = 3.72, p < 0.005) while ‘attention to detail’ traits give rise to a below-average effect 
(t(48) = − 3.48, p < 0.01). Therefore, our findings suggest that enhanced reliance on detail for image recognition 
is most predictive for autistic traits related to self-reported social difficulties.

Finally, we analysed reaction times (M = 895 ms, SD = 313 ms). We found that high-AQ participants took 
longer to respond than low-AQ participants (993 ms vs 804 ms, t(50) = 2.25, p < 0.05). Unfortunately, reaction 
times were found to carry no information about the relative importance of visual features for image recognition 

Figure 3.  Reliance-on-detail effects scale with the clinical relevance of autistic-like traits. We assessed how 
a positive score on each of the 50 AQ items (referred to as ‘traits’) increased our participants preference for 
high spatial frequency features. Reliance-on-detail was quantified for each participant as the linear regression 
coefficient between their average FDi values for each spatial frequency bin and the ascending bin numbers 
(1–5, see Fig. 2). Clinical diagnosticity of traits were quantified as the (natural) log of the trait prevalence ratio 
between clinically diagnosed ASD individuals and neurotypical  students24. The scatter plot shows that the 
clinical diagnosticity of traits scales positively with how much the presence of traits increases reliance-on-detail 
(left). Furthermore, reliance-on-detail increases were found to depend on the trait type (right), with the presence 
of ‘social skill’ traits leading to above-average increases and ‘attention to details’ traits to below-average increases. 
Note here that the trait types labeled as ‘social skill’, ‘attention switching’, ‘communication’ and ‘imagination’ all 
refer to difficulties in the respective domains while ‘attention to detail’ refers to its domain positively.
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as reaction time based FDi values did not replicate across participants (Pearson r = 0.0077, p = 0.14, permutation-
based test).

Discussion
In summary, we developed a method that measures the relative contribution of low-level visual features to image 
recognition. With this method, we obtained evidence for natural image recognition depending more on high 
spatial frequency features in individuals with an above-median number of autistic traits. Therefore, the pres-
ence of a greater number of autistic traits appears to predict enhanced reliance on fine details for natural image 
recognition. This effect was found to be driven most by the presence of autistic traits with the highest clinical rel-
evance, which increases the likelihood that our main finding generalizes to clinically diagnosed ASD individuals.

Our study sheds new light on the ongoing debate regarding whether a bias towards processing details under-
lies ASD-related social  deficits4,9,10,13–16,39 as we find that reliance on details is best predicted by positive scores 
for AQ items from the AQ subscale measuring self-reported social difficulties. Therefore, in contrast to find-
ings from a fairly large body of  research10,13–16,39, our results suggest that social deficits central to ASD might be 
related to having an eye for detail. Our findings, however do converge with a recent study demonstrating that 
performance for the embedded figure task is positively related to scores for items of the same social skill AQ-
subscale4. In this context, it is important to note that previous research indicates that all AQ-subscales, except for 
the ‘attention to detail’ subscale, reflect a single general ASD attribute, thought to be related to difficulties in social 
 interactions40, rather than specific ASD  symptoms41. Consistent with this, we found that scores for all subscales, 
except for ‘attention to detail’, were positively associated with our measure of detail-focused visual information 
processing. Furthermore, we would like to point out that the ‘attention to detail’ AQ subscale contains items 
measuring attention towards both perceptual and more abstractly defined details (e.g. item 32: “I notice patterns 
in things all the time.”), which could explain why we observed no relationship between scores for this subscale 
and detail-focused visual information processing.

In sum, our findings suggest that original proposal of detail-focused processing underlying the social defi-
cits associated with  ASD8 appears to be worth revisiting. An important limitation of our study, however, is that 
our study is restricted to comparing groups of neurotypical participants with above- and a below median AQ 
scores. Despite the fact that this comparison has proven to be extremely useful for modelling  ASD42, an ultimate 
verification of a relationship between detail-focused visual information processing during natural image rec-
ognition and ASD-related social difficulties would require replication of our findings for a clinically diagnosed 
ASD population.

If ASD is associated with image recognition being driven more by details, what could be the underlying neural 
mechanisms? One possibility is that individuals with ASD process visual information differently already at an 
early stage of cortical visual information processing, e.g. already within the primary visual  cortex19. This would be 
compatible with the finding that ASD individuals appear to have enhanced sensitivity for high-spatial frequency 
 gratings20 and with the finding of early (125 ms post stimulus) enhanced EEG responses to high spatial frequency 
information in 4-year old children with  ASD43. A second possibility—that is compatible with reports suggesting 
that ASD does not affect elementary  vision22,44—would be that the reliance-on-detail effect reported here results 
from higher level brain areas responsible for object recognition, e.g. the inferior temporal cortex, being more 
reliant on lower-level representations of high-spatial frequency features. Differentiating between these two pos-
sible underlying neural mechanisms will require neuroimaging studies aimed at revealing whether ASD enhances 
the extent to which high-spatial frequency information is encoded in the primary visual cortex and/or if ASD is 
associated with enhanced transmission of high-spatial frequency visual information to higher level brain areas.

In contrast to previous eye-tracking  studies29–31, we found no evidence for ASD-related reduced processing 
of the eye-region, nor an increased processing of the central area of images. One possible explanation for this 
discrepancy might be the fact that we investigated ASD by comparing individuals with above- and below-median 
AQ scores instead of comparing clinically diagnosed ASD individuals with healthy controls. Another intriguing 
possible explanation could be that ASD leads to elevated gaze durations to the image centre and eye-region, but 
that this does not translate into object recognition relying more on the features inside these areas. To test the 
latter, future studies will need to combine our novel psychophysical paradigm with eye-tracking.

In conclusion, our results show that natural image recognition is driven more by visual details in neuro-
typical individuals with an elevated number of autistic traits. Given that the most clinically relevant autistic 
traits best predict this effect, this finding is suggestive for a detail-focused information processing bias being 
a ubiquitous property of vision in ASD individuals. In addition, this detail-focused processing bias was found 
to predict increased self-reported social difficulties. Therefore, we propose that the original proposal of WCC 
8 that enhanced local information processing underlies the social deficits associated with ASD might be worth 
revisiting.

Methods
participants. 52 healthy student volunteers (11 male, 41 female: average age = 19.4, SD = 1.05) with normal 
or corrected-to-normal vision took part in this experiment. All participants gave their informed consent after 
being introduced to the experimental procedure in accordance with the Declaration of Helsinki. The experimen-
tal procedure was approved by the ethics committee of the University of Birmingham (ethics reference ERN_15-
1374P). Participants all filled out the 50-item Autism Spectrum Quotient (AQ) questionnaire for  adults24 and 
were assigned to the high- and low AQ groups depending on whether their AQ scores exceeded the median AQ 
score for all participants (AQ > 14).
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Stimuli. Portrait images of five cats and five dogs were converted to 250 × 250 grey-scale images. We then 
used a custom-made algorithm, implemented in Matlab 2016a, to reduce images to 1,000 Gabor wavelets. The 
aim of this algorithm was to find a set of wavelets that is able to describe most of the coarse and fine image details 
(see Fig. 1a for a visualization of the features selected for one of the images). Wavelets considered had 29 (n = [1, 
2, …, 29]) exponentially increasing spatial frequencies (sf) between 0.24 and 2.07 cycles/visual degree angle:

Wavelets were considered with 18 equidistant orientations between 0° and 180° (0°–170° in steps of 10°). 
Features were selected iteratively from the lowest to the highest spatial frequency. During the first iteration, 
wavelets were selected based on the original grey-scale image. For consecutive iterations, the input image was a 
residual image resulting from least-square regression of the input to the previous iteration while using previously 
selected wavelets as regressors. During each iteration, eighteen Gabor wavelet filters (one per orientation) were 
applied to the input image. The output of this analysis enabled us to find the optimally-fitting orientation and 
phase for Gabor wavelets cantered on each pixel of the input image for the current iterations’ spatial frequency. 
From these  2502 wavelets, we considered only 25% with the highest amplitude. From these wavelets, we then 
randomly selected a number of wavelets (nw) increasing as a function of spatial frequency:

The exact parameters of this formula were determined exploratively based on how well the sum of all selected 
wavelets captured all coarse and fine visual details of the original images (based on visual inspection). This 
resulted in 21 features being selected for 0.24 cycles/visual degree angle wavelets and 1,008 features for 2.07 
cycles/visual degree angle wavelets. During each iteration, we computed the covariance of each feature with the 
input image and discarded wavelets with covariances smaller than a fifth of the maximum observed covariance 
value. Finally, we selected 1,000 wavelets from all spatial frequencies (from all iterations) having the highest 
covariance with the original grey-scale image. Amplitudes where set to an equal value for all wavelets. Partial 
reconstructions of the images were created by randomly selecting 90 wavelets from the set of 1,000 and sum-
mating them (see Fig. 1a). The pixel intensity range of the resulting images was kept constant, covering the full 
0–255 range.

experimental procedure. Participants viewed partial reconstructions on an LCD from 70 cm distance 
[visual degree angle (°), horizontal and vertical dimensions of the screen: 51.6° × 30.4°]. Each trial started with 
a grey screen and a central fixation cross which participants were instructed to fixate, which we presented for a 
duration between 250 and 400 ms. Afterwards, a partial reconstruction was presented on a central area of the 
screen (covering 22.5° × 22.5°) and remained on the screen until a button press was made. Participants used 
their right hand to press one of the three available buttons with which they indicated having recognized a cat, 
a dog or that they weren’t sure about the type of animal they were shown. The next trial started as soon as a 
button was pressed. Due to the self-paced nature of the paradigm, participants completed a variable number of 
sessions (6, 5, 4, 3 and 2 sessions were completed by 2, 14, 25, 10 and 1 participants resp.), which each consisted 
of 50 trials per image. Stimuli were presented and behavioural data was recorded using Matlab 2016a and the 
 PsychToolbox45 (version 3).

Data analysis. First, we assessed for each trial whether the image depicted was recognized. Then, we com-
puted the average recognition performance for each participant and image feature by computing the average 
performance for trials containing the respective feature. This provided us with a three-dimensional matrix of 
recognition performances with the dimension number of participants (52), number of images (10) and number 
of features (1,000). Next, we obtained our feature diagnosticity index (FDi) values by z-transforming the per-
formance values within each participant and image. This final step is important because it precludes FDi values 
being higher for features of images that are easier to recognize. Furthermore, it ensures that participants’ relative 
contributions to the following analyses do not depend on their average recognition performance nor the vari-
ability of their responses.

To evaluate the replicability of the observed FDi values, we randomly split the data into two halves (two times 
26 participants) 100 times and computed the Pearson correlation between the average FDi values across splits. 
Replicability was then measured as the average Pearson correlation value across these 100 splits. The probability 
of observing this value by chance was determined by computing a null-distribution by re-computing this value 
10,000 times while permuting the relative feature labels across splits.

To assess effects of spatial frequency, distance from the nearest eye and distance from image centre on FDi 
values, we created five equally sized ascending bins based on each of these parameters. Thereafter, we computed 
the average FDi value within each of these bins separately for each participant. In addition, we assigned each 
participant to the high AQ group and low AQ group depending on whether their AQ was or was not higher than 
the median AQ across all participants. This enabled us to perform three 5 × 2 repeated measure ANOVAs with 
average within-bin FDi values as the dependent variable. Each ANOVAs second factor was AQ group while the 
first factor was the binning feature: spatial frequency, distance from the nearest eye or distance from image centre.

Data availability
Behavioural data and Matlab code for our data analyses can be downloaded from the online public GitHub 
repository: https ://githu b.com/arjen alink /AQ_EyeFo rDeta il_NSR.

sf =
10

45
× 1.08

n

nw = 272× sf 1.8

https://github.com/arjenalink/AQ_EyeForDetail_NSR
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