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The reflectance of wheat’s canopy exhibits angular sensitivity, which can influence the accuracy of 
different methods for its leaf area index (LAI) estimation through multi-angular remote sensing. 
The primary objective of this study was to assess and compare the ability of various methods for LAI 
estimation from 13 view zenith angles (VZAs). The four methods included: (1) common hyper-spectral 
vegetation indices (VIs), (2) optimal two-band combination VIs (i.e., VIs: normalized difference index, 
simple ratio index, and difference vegetation index), (3) back-propagation neural network (BPNN), 
and (4) partial least squares regression (PLSR). Our results demonstrated that the red-edge plays a 
key role in estimating LAI, in that the traditional VIs, optimal two-band VIs, and PLSR including the 
red-edge band all showed satisfactory performance, with coefficient of determination  (R2) > 0.72 in the 
nadir direction. However, the estimation accuracy of LAI was not positively related with band number, 
and BPNN gave unsatisfactory results under a larger viewing angle, with  R2 ≤ 0.60 for extreme angles. 
The predictive ability of all four methods declined with an increasing VZA, with reliable LAI estimation 
near the nadir direction. Importantly, by comparing the four methods, PLSR emerged as superior in 
both its estimation accuracy and angular insensitivity, with  R2 = 0.83 in the nadir direction and ≥ 0.65 
for extreme angles. For this reason, we highly recommend it be used with multi-angular remote 
sensing data, especially in agricultural applications.

Leaf area index (LAI) is a key structural parameter and indicator of plants status. Since the LAI of wheat is a 
crucial morphological index for monitoring its current growth context and estimating its future yield, it forms 
an indispensable part of precision agriculture. Remote sensing is increasingly recognized as a reliable technique 
for LAI estimation, mainly because LAI has a strong relationship with spectral reflectance. Thus many studies 
have been carried out LAI estimation using remote sensing technique in recent  years1–4.

Determining the LAI-sensitive band or band combination that most robustly estimates LAI from the vast 
and redundant hyperspectral information is a research “hotspot” in quantitative remote sensing. Early on, Guyot 
et al.5 showed that red-edge information is mainly influenced by plants’ structural parameters (i.e., LAI and leaf 
inclination angle) and pigment content; hence, the red-edge band or position could provide a useful tool for 
LAI  estimation4,6. Common and widely used vegetation indices (VIs) were then developed and compared for 
their respective LAI  estimation7–9. The canopy spectrum of plants is mostly influenced by their phenological 
period, leaf traits and environmental conditions, among other factors, leading to obvious regional characteristics 
and timeliness, thus precluding fixed optimal VIs across different regions. Furthermore, VIs with two or three 
bands are common remote sensing parameters, but they may be limited for exploiting the abundant information 
conveyed in narrow spectral bands of hyperspectral remote sensing data.

Many studies have used a non-parametric (i.e., neural networks) approach for monitoring crop  LAI2, rice 
biophysical  parameters10, maize nitrogen  stress11, chlorophyll  content12, and crop  yield13. By comparing VIs and 
neural network methods for estimating LAI, Walthall et al.14 showed the scaled normalized difference vegetation 
index (NDVI) approach was the most effective method for LAI retrieval. In another investigation, after carrying 

open

1National Engineering Research Centre for Wheat, State Key Laboratory of Wheat and Maize Crop Science, Henan 
Agricultural University, Zhengzhou 450002, People’s Republic of China. 2Present address: National Engineering 
Research Centre for Wheat, #62 Nongye Road, Zhengzhou 450002, Henan, People’s Republic of China. *email: 
fengwei78@126.com; tcguo888@sina.com

http://orcid.org/0000-0002-9874-7545
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-70951-w&domain=pdf


2

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:13943  | https://doi.org/10.1038/s41598-020-70951-w

www.nature.com/scientificreports/

out a continuum-removal analysis, the neural network method generally performed better than modified partial 
least  squares15.

Alternatively, some researchers have concentrated on applying multivariate models for biophysical and bio-
chemistry estimations. Partial least squares regression (PLSR) is full-spectrum technique that has been used to 
estimate  biomass16, grassland LAI and  chlorophyll17, rice nitrogen  status18, and leaf water  content19. When PLSR, 
principal component regression, and stepwise multiple linear regression were compared for assessing canopy 
pigment content in winter wheat, PLSR presented strong multicollinearity and insensitivity to sensor  noise20. 
In a later study, Mirzaie et al.21 compared univariate and multivariate methods to estimate plant water content, 
finding that PLSR also provided the most accurate estimation ability.

All the above studies focused on the nadir direction. Canopy structure and soil background could affect the 
spectral data, which increases the difficulty of accurately identifying objects. The nadir direction mainly focuses 
on the information at the top of the canopy, while the contribution from the lower leaves of the plants is very 
small, so there is not enough information to extract the three-dimensional structure of the canopy. Meanwhile, 
analysis from the nadir direction seldom considers the influence of different proportions of soil background. 
But now, with the development of multi-angular remote sensing, directional information for describing canopy 
stereoscopic structure is  accessible22,23. The proportion of soil background in the canopy can be lessened by 
adjusting the observation angle, and growth information on crops in the upper, middle and lowers layer can 
also be improved by using different observation angles. So, multi-angular remote sensing has been successfully 
used to estimate canopy LAI, forest biomass, and foliage clumping  index3,24,25. In sum, compared with nadir 
direction observations, the retrieval of plant structural parameters using multi-angular hyperspectral remote 
sensing technique is a more powerful tool.

The relationships of VIs to LAI are known to change with the viewing zenith angle (VZA)26. Almost 20 years 
ago, Gemmell and  McDonald27 argued that NDVI from off-nadir viewing angles should improve LAI estima-
tion accuracy. However, work by Pocewicz et al.28 suggested viewing angles mattered little for the relationships 
between NDVI and LAI. Nonetheless, for shrubs, Stagakis et al.29 proposed their LAI estimation was possible 
with large VZAs. In particular, a “hotspot index” from multi-angular remote sensing could be used to improve 
LAI estimation than nadir’s  NDVI3,30. Multi-angle studies do demonstrate that canopy structure information is 
more easily derived from non-vertical angles than a vertical angle of observation, which could thus reduce LAI 
estimation errors caused by crop structure characteristics.

Here, we examined the utility of different methods by applying hyperspectral measurements to estimate LAI 
under multi-angular remote sensing, including common hyperspectral VIs, optimal two-band combination VIs, 
back-propagation neural network (BPNN), and PLSR. We checked the angle sensitivity difference between the 
four methods, and analysed their respective influence of on monitoring capability. The coefficient of determina-
tion  (R2) and root mean square error (RMSE) were used to compare and select the most suitable method for 
wheat. During 2011–2014, spectral recordings and LAI measurements were taken from the elongation through 
mid-filling stage of winter wheat that encompassed different cultivars, N treatments, and planting densities, 
which provided sufficiently high LAI variation for robust model development and testing.

Results
LAI estimation using traditional vegetation indices under 13 VZAs. We comprehensively com-
pared the relationships between selected traditional 2-, 3- and 4- band VIs and LAI under different VZAs. As 
Fig. S1 shows, the  R2 varied strongly with VZA, decreasing from 0° to extreme VZAs (± 60°) and reaching its 
peak value near 0°. Taking this nadir direction as reference, there was a slightly greater decline in  R2-values 
for the forward than the backward scattering directions. The TCARI/OSAVI produced the largest difference 
between extreme angles, with 8.28% at − 60° versus 73.52% at + 60°, whereas EVI-1 had the smallest difference: 
33.21% in − 60° viewing angle and 36.09% in + 60° viewing angle. Generally, the DVI (810, 680), DDn, mSR705, 
DD, and VOG-2 indices all showed good performance and were mainly composed of red-edge bands. Figure 1 
shows the estimated and measured LAI at extreme viewing angles and nadir direction. In this respect, DVI 
(810, 680), DDn, and DD performed best among the 2-, 3-, and 4-band indices, respectively, with correspond-
ing  R2-values of 0.73–0.75 and RMSE-values of 0.97–1.01 in the nadir direction. However, these three models 
provided no advantage under extreme viewing angles  (R2-values ≤ 0.58, RMSE-values ≥ 1.57). These results indi-
cated that the ability of VIs to monitor LAI is affected by viewing angle.

LAI estimation using normalized difference (ND), simple ratio (SR), and difference vegetation 
index (DVI) under 13 VZAs. Selecting optical spectral bands and bandwidths is an important considera-
tion for any spectral index. Here, we compared any two random bands for an index (ND, SR, and DVI indices) 
in the 400–900 nm range to estimate LAI. In Fig. 2 is an example of such two-band combinations, from the nadir 
to extreme VZAs (± 60°), for which differences in spectral bands sensitivity among these three indices is obvious. 
For the ND and SR indices, sensitive bands for the forward directions are mainly in the blue-to-red band region, 
shifting to the red-edge band–red-edge band region for backward directions. For DVI indices, sensitive bands 
for all VZAs focused on the red-edge–red-edge region. These results also revealed several predictable trends: 
ND, SR, and DVI predictably decreased with increasing VZAs; the area of the sensitive region decreased with 
increasing VZAs, thus showing that the bands of the reduced region were sensitive to VZAs; the reserved band 
width, both in the nadir direction and extreme VZAs, was little influenced by VZAs.

The optimized band position and  R2-values for ND, SR, and DVI in 13 VZAs are listed in Table 1. The ND 
(748, 759), SR (770, 684) and DVI (736, 759) under the nadir direction had somewhat higher correlations with 
LAI than did larger VZAs. DVI (736, 759) showed the best performance in these three indices  (R2 = 0.78). To 
predict LAI, linear regression models from extreme angles and nadir direction using optimal indices and LAI 
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were applied (Fig. 3). The greatest accuracies were found for the DVI (736, 759) model under the nadir direction 
 (R2 = 0.78 and RMSE = 0.85), which also outperformed both ND and SR under extreme angles.

LAI estimation using back-propagation neural network (BPNN) under 13 VZAs. When the 
BPNN was run under the 13 VZAs, its performance was similar to traditional VIs (Fig. S2). A comparative 
analysis of BPNN resulting from three representative VZAs is presented in Fig. 4. Evidently, since the prediction 
performance of BPNN depended on VZAs, with the latter increasing the  R2 decreased. Its most accurate estima-
tion of LAI was obtained at the nadir  (R2 = 0.82, RMSE = 0.80), yet the back-scattering direction did show slightly 
higher accuracy than the forward direction. Hence, the monitoring accuracy of extreme angles was not greatly 
improved, with  R2-values ≤ 0.60, RMSE-values ≥ 1.18.

LAI estimation using PLSR under 13 VZAs. For PLSR, the optimal number of latent variables usable 
for LAI estimation can be defined through an analysis of RMSE values of the 13 VZAs (Fig. S3). This optimum 
ranged from 4 to 8; with 8 or more factors the RMSE increased rapidly, and at greater VZAs the RMSE also 
increased. Each band’s contribution to the PLSR latent variables can be expressed by factor loadings, as shown 
Fig. S4 for those values above the wavebands from 13 VZAs. The strong co-variation between LAI and reflec-
tance in the red-edge regions can be discerned from positive peaks in the  R2-values. High loading values were 
observed at waveband > 760 nm in the first latent variable, peaking at 715 nm for second variable and at 737 nm 
for the third variable. The loading weight value of the third latent variable is the highest, and the first latent vari-
able is the lowest. Clearly, the selected narrow bands for the optimal DVI and PLSR showed strong agreement; in 
other words, the same spectral bands were critical in both methods. The estimation accuracy of LAI values was 
reduced as the VZA increased (Fig. S5). Compared with the VIs and BPNN,  R2 of PLSR improved 10.7%, 6.4% 
and 1.2% than DDn, DVI and BPNN in the nadir direction, respectively; improved 17.5%, 11.7% and 28.8% 
than DDn, DVI and BPNN at a + 60° viewing angle, respectively; and improved 8.6%, 3.3% and 5.0% than DDn, 
DVI and BPNN at a − 60° viewing angle, respectively. Nonetheless, PLSR provide the best accuracy in the nadir 

-60 0 60

)086,018(I
V

D
D

D
n

D
D

0

2

4

6

8

10

0 2 4 6 8 10

Es
tim

at
ed

 L
A

I

Measured LAI

Planting density
N rate

0

2

4

6

8

10

12

0 2 4 6 8 10

Es
tim

at
ed

 L
A

I

Measured LAI

Planting density
N rate

0

2

4

6

8

10

0 2 4 6 8 10

I
AL

deta
mitsE

Measured LAI

Planting density
N rate

0

2

4

6

8

10

0 2 4 6 8 10

Es
tim

at
ed

 L
A

I

Measured LAI

Planting density
N rate

0

2

4

6

8

10

12

0 2 4 6 8 10

Es
tim

at
ed

 L
A

I

Measured LAI

Planting density
N rate

0

2

4

6

8

10

0 2 4 6 8 10

I
AL

deta
mitsE

Measured LAI

Planting density
N rate

0

2

4

6

8

10

0 2 4 6 8 10

Es
tim

at
ed

 L
A

I

Measured LAI

Planting density
N rate

R2=0.74
RMSE=1.01

0

2

4

6

8

10

12

0 2 4 6 8 10
Es

tim
at

ed
 L

A
I

Measured LAI

Planting density
N rate

R2=0.56
RMSE=1.65

0

2

4

6

8

10

0 2 4 6 8 10

I
AL

deta
mitsE

Measured LAI

Planting density
N rate

R2=0.47
RMSE=1.89

R2=0.73
RMSE=1.00 R2=0.49

RMSE=1.86

R2=0.58
RMSE=1.57

R2=0.75
RMSE=0.97 R2=0.57

RMSE=1.60

R2=0.57
RMSE=1.61

Figure 1.  Measured vs. estimated LAI for DVI (810, 680), DDn, and DD indices under the nadir direction and 
extreme viewing angles.
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Figure 2.  Contour maps showing the coefficient of determination  (R2) for the relationships between the LAI 
and ND, SR, and DVI with extreme angles and nadir direction data formations.

Table 1.  Selected sensitive wavebands for ND, SR, and DVI combinations using two separate wavelengths (λ1 
and λ2), which had rather high  R2 with LAI (leaf area index) at different VZAs (view zenith angles). Numbers 
in bold represent results for R2 ≥ 0.70. ND normalized difference, SR simple ratio, DVI difference vegetation 
index.

VZA

ND SR DVI

λ1 λ2 R2 λ1 λ2 R2 λ1 λ2 R2

− 60° 745 750 0.50 771 704 0.52 752 756 0.61

− 50° 745 750 0.53 771 699 0.57 752 756 0.63

− 40° 745 759 0.57 771 699 0.61 748 759 0.67

− 30° 745 759 0.60 771 688 0.63 748 759 0.70

− 20° 745 759 0.62 771 689 0.64 740 759 0.73

− 10° 745 759 0.62 771 689 0.65 741 759 0.76

0° 748 759 0.63 770 684 0.65 736 759 0.78

10° 468 648 0.60 487 648 0.65 736 759 0.75

20° 477 648 0.59 462 648 0.63 741 759 0.72

30° 487 648 0.57 462 648 0.61 748 759 0.68

40° 469 648 0.54 469 648 0.58 748 759 0.65

50° 434 640 0.50 468 649 0.54 752 771 0.62

60° 438 625 0.46 438 649 0.50 752 768 0.60
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direction  (R2 = 0.83, RMSE = 0.76), with the monitoring accuracy of extreme angles greatly improved  (R2-values 
≥ 0.65, RMSE-values ≤ 1.11 (Fig. 5).

Discussion
We have attempted to assess the performance of different methods for multi-angular remote sensing LAI data 
in this study. In comparing regression parameters derived from these four methods, we found that the effects of 
band positioning and band numbers were largely related to LAI-monitoring accuracy.

When estimating LAI, it is very important to select optimum bands or regions. Red-edge  bands4,31, similar to 
the red-edge parameter and red-edge  shape1,32, is strongly linked to LAI and strongly influenced by LAI. Consist-
ent with this, all the methods investigated in our study confirm that the red-edge band corresponds most to LAI. 
The DDn, representing the traditional VIs, is composed of three red-edge bands (710, 660, and 760 nm) and was 
the best performer for monitoring LAI. Other VIs that include red-edge bands also showed good performance, 
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Figure 3.  Measured versus estimated LAI for ND, SR, and DVI under the nadir direction and extreme viewing 
angles.

Figure 4.  Measured versus estimated LAI for BPNN under the nadir direction and extreme viewing angles. (a) 
− 60°, (b) 0°, (c) + 60°.
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such as the VOG and CI red-edge-1 (2-bands), mSR705 and MTCI (3-bands), and VOG-2, red-edge position and 
DD (4-bands). Yet sensitive red-edge regions were also detected for ND and SR in the backscattering direction, 
and for DVI under the 13 VZAs. The selected narrow bands in Table 2 and the noted high  R2 values in Fig. 4 
together confirm the red-edge is a crucial spectral region, one harbouring abundant information about LAI in 
wheat. However, this was not the case for the ND and SR in the forward scattering direction, which focused on 
the blue-red region. This emphasizes that traditional VIs are not suitable for all viewing angles, so we need to 
explore using sensitive VIs for multi-angular remote sensing. Fortunately, the high loading values for PLSR still 
rested on the red-edge band under 13 VZAs. These three methods—traditional VIs, optimal two-band VIs and 
PLSR—underscore the paramount important of red-edge bands for estimating LAI.

Yet band number also proved valuable for LAI estimation in wheat, as different band numbers contain dif-
fering spectral information. Our results disagree with the view that more bands provide higher monitoring 
accuracy. Simple narrow-band indices method could serve as good predictors of LAI, especially when using the 
difference type VI. Our results further proved that a reasonable and possible estimation of LAI could be acquired 
from simple traditional VIs. Some, such as DVI (810, 680), DDn, and DD that represent 2 bands, 3 bands, and 
4 bands indices, still achieved respectable predictive ability for LAI under the nadir direction.

Existing airborne sensors or satellite channels rarely employ accurately the same spectral bands as those 
identified and used in this study. Therefore, our work not only revealed optimum bands for the three type 
indices under 13 VZAs, but it also pointed to broad spectral regions highly correlated with LAI. These high-
lighted regions—blue band–red band region and red-edge band–red-edge band region—especially dominated 
the high  R2 region under extreme viewing angles and are positively associated with LAI, which is promising for 
augmenting the use of current airborne sensors and satellite channels. As reported by others, VIs composed of 
blue band–red band and two red-edge bands are strong correlated with pigment content of  vegetation29,33,34. In a 
previous study of ours, we demonstrated positive associations between both the blue band–red band region and 
two red-edge bands with leaf nitrogen content of winter  wheat35. In the current study, we found the optimum 
DVI performed better than ND and SR under the 13 VZAs, which is consistent among traditional difference 

Figure 5.  Measured versus estimated LAI for PLSR under nadir direction and extreme viewing angles. (a) 
− 60°, (b) 0°, (c) + 60°.

Table 2.  Summary of the experimental design used for the collection of field measurements in this study.

Time and site Cultivar Treatment Sampling stages

N rate treatment (kg  ha−1)

2011–2012 Zhengmai 366
0, 120, 240, 360 (Exp. 1) Booting-initial-filling

Zhengzhou Yumai 49-198

2012–2013 Yumai 49-198
0, 120, 240, 360 (Exp. 3) Jointing-initial-filling

Zhengzhou Zhengmai 9694

2013–2014 Yumai 49-198
0, 120, 240, 360 (Exp. 5) Jointing-mid-filling

Zhengzhou Zhengmai 9694

2013–2014
Zhoumai 27 0, 180, 240, 300 (Exp. 7) Booting-mid-filling

Zhoukou

Planting densities treatment (plants  m−2)

2011–2012 Yumai 49-198
90, 180, 270, 360 (Exp. 2) Booting-initial-filling

Zhengzhou Zhengmai 9694

2012–2013 Yumai 49-198
45, 90, 270, 360 (Exp. 4) Jointing-initial-filling

Zhengzhou Zhengmai 9694

2013–2014 Yumai 49-198
45, 90, 270, 360 (Exp. 6) Jointing-mid-filling

Zhengzhou Zhengmai 9694

2013–2014 Zhongmai 1
225, 450 (Exp. 8) Booting-mid-filling

Zhoukou Aikang58
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type VIs (DVI [810, 680], DDn, and DD). The advantage to an optimum DVI is that the sensitive region focuses 
entirely on the red-edge under the 13 VZAs, thus reducing the band setting for multi-angular sensors.

For the sake of contrast, BPNN was also tested in this study. Compared to the VIs methods, BPNN fed with 
full bands improved monitoring accuracy under the nadir direction, but also invited all spectral data into the 
model, which considerably increased its noise, run time, and complexity. Since its superiority was lacking, we 
may tentatively conclude that the estimation accuracy of LAI is not positively related with number of bands used. 
We acknowledge the BPNN method remains promising, especially if combined with another method, such as 
factor analysis and continuum-removal analysis, to improve its monitoring  accuracy15,36.

Compared with the other investigated methods, the PLSR selects a subset of spectral bands related to LAI and 
removes unrelated information, which is at powerful advantage. In contrast to narrow-banded VIs, the PLSR is 
advantaged by its multivariate calibration; for example, similar to us, Hansen and  Schjoerring16 also reported the 
PLSR analysis performed better than NDVI for estimating winter wheat biomass. Meanwhile, the noise of PLSR 
was relatively smaller than that of BPNN, and the first few factors of PLSR were more closely related to LAI than 
those of BPNN. This explains the more accurate results we got through PLSR over BPNN.

The sensor-viewing angle is an external factor when estimating crop vegetation properties by multi-angular 
remote sensing. In fact, canopy reflectance could change with the viewing angle, so the directional characteristics 
of surface reflectance should not be  ignored37, hence, VIs, BPNN, and PLSR are further influenced by directional 
reflectance. Although sensor-viewing angle conditions may be calculated by different algorithms, such informa-
tion is not normally used.

Many studies have focused on analysing angle sensitivity of VIs, reporting directionality effects arising from 
canopy structure, the proportion of photosynthetic tissues, shadow effects, and background  compounds38. In 
our study, BPNN and PLSR consisted of multiple bands, for which angular sensitivity persisted, mainly because 
LAI was obtained from the whole plant leaves in the target area, and the larger viewing angles (i.e., ± 40°– ± 60°) 
mainly corresponded to the middle-upper part of plant properties of  wheat39. Thus, inconsistency of spectral 
information and sampling probably led to the differential monitoring accuracy found under the 13 VZAs.

The angle sensitivity of the four compared methods, however, achieved their best estimation accuracy near the 
nadir direction. For BPNN, forward scattering direction did not showed better performance than the VIs, likely 
due to full bands diminishing the advantage of red-edge band. The performance disparity between backscat-
tering and forward scattering directions for the spectral index and PLSR is small; perhaps because the red-edge 
band changes little with viewing angle, tempering this difference to some  extent35. PLSR outperformed the other 
methods at larger viewing angles not only via its higher estimation accuracy but also its lower RMSE. This is best 
explained by the PLSR method selecting abundant related bands with LAI, and these bands were mainly focused 
on the red-edge bands. This suggests PLSR is suitable for multi-angular remote sensing.

The performance of red band, red-edge and NIR are different dependent upon VZAs; the red edge is relatively 
 insensitive35. Some studies have used the sensitivity of the red and NIR bands to construct a hotspot index, which 
indeed improved the monitoring accuracy of  LAI3,30. However, in actual production, the hotspot of reflectance 
varies according to the experimental date, location and measurement time, making the analysis of hotspots 
complicated. Thus, the application of hotspot index is limited. In this study, based on wide viewing adaptability 
as a starting point, by comparing four methods, we not only proved the importance of red edge monitoring LAI, 
but also demonstrated the insensitivity of the red edge to VZA. Thus, the red edge band could be an effective 
band when multi-angular remote sensing monitoring LAI on a large scale.

To date, multivariate calibration methods are used sparingly within agricultural remote sensing. So our find-
ings here represent an initial step towards evaluating bilinear PLSR compared with VIs and BPNN. Although 
we tried to strengthen our dataset by including in it a wide range of LAI, soil types, cultivars and years, it cannot 
fully capture all the variability characterizing reality. To better increase the applicability of our results, more 
species and more satellite remote sensing data sets should be measured and tested. In addition, some radiative 
transfer models quantitatively describe the transmission mechanism of solar radiation in crop canopy, and fully 
consider the optical characteristics based on strict physical process and mathematics, which have strong univer-
sality and extensibility for data inversion. So the results of this study about multi-angular remote sensing should 
be tested and optimized using radiative transfer models in next step, and further analyze the application value 
of multi-angular data in agricultural production from the perspective of combining physical mechanism with 
biological mechanism. Nevertheless, our study was able to yield interesting insights concerning the usefulness 
of multi-angular remote sensing for estimating LAI in crops.

conclusion
Selecting suitable methods is necessary for multi-angular hyperspectral data analysis. This paper examined 
the most widely used VIs, optimal two-band VIs, BPNN, and PLSR models for LAI estimation under different 
VZAs. The results demonstrated that either of these methods is potential for establishing relationship between 
LAI and canopy reflectance under the nadir direction. Red-edge clearly plays a key role in estimating LAI, as 
the best traditional VIs, optimal two-band VIs, and PLSR all included a red-edge band in showing satisfactory 
performance. Portable sensors and satellite channels could thus pay more attention to selecting red-edge bands 
for monitoring other plants. Nonetheless, the predictive ability of the four methods decreased with increasing 
VZA, with LAI estimated most reliably near the nadir. Among all the methods, PLSR is superior to other in its 
estimation accuracy and angular insensitivity. This study increased angular application range for PLSR, revealing 
it as a powerful tool for multi-angular satellite remote sensing.
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Materials and methods
Experimental data collection. The study area consisted of eight experiments from two experimental 
sites: Henan Agricultural University in Zhengzhou city (113° 35′ E, 34° 51′ N) and Shangshui Farm in Zhoukou 
City (114° 37′ E, 33° 33′ N). Overall, this represented two soil type (sandy loam and clay soils); two treatments 
(N rates and planting densities); two canopy structures: (erect and horizontal wheat cultivars); three consecutive 
years of data (2011–2014); and multiple growth stages of wheat (from jointing to mid-filling stages).

Each field experiment was arranged in a randomized complete block design, with three replications. The row 
spacing was 20 cm, and 50% of the nitrogen fertilizer (urea) was applied before each sowing stage, and the other 
50% at the jointing stage for the + N treatments;  P2O5 (as monocalcium phosphate [Ca(H2PO4)2]) at 150 kg ha−1 
and  K2O (as KCl) at 90 kg ha−1 were applied as base fertilizer for all treatments. The plant density was fixed at 
1.8 × 106 plants  ha−1 for all N treatments; conversely, N applications were kept at 240 kg ha−1 for the planting 
density treatments, all of which corresponding to local farmers’ practice. Further details of this data collection 
are summarized in Table 2 and He et al.35. Since experimental factors will differentially affect canopy spectral 
reflectance, we collected a total of 221 plant samples to ensure adequate variation present in the possible range 
of LAI values acquired within each wheat cultivar, by including multiple growth periods, N and density treat-
ments, years, and sites.

Multi-angular spectral measurements and LAI measurements. Multi-angular spectral data were 
measured in situ by an ASD FieldSpec HandHeld spectroradiometer fitted with a 25°-field-of-view fiber optic 
adaptor and Field Goniometer System with a 1-m radius and view zenith angular resolution of 10° (Fig. S6). Data 
for 13 VZAs were obtained from backscattering extreme VZAs to the nadir direction to the forward scattering 
extreme VZAs (− 60° to 0° to + 60°). Back- and forward-scattering directions were designated negative and 
positive, respectively. The wavelength range used was 325–1,075 nm, and the sampling interval was the 3.5-nm 
band (Analytical Spectral Devices, Boulder, USA). For each VZA, ten sequential spectral reflectance values were 
obtained and then averaged for the analysis. To weaken the influence of solar observation angle on multi-angular 
data, all experimental data were acquired between 11:00 and 13:00, during which the solar zenith angle and 
azimuth angle varied little (Table S1).

Destructive LAI samples were taken at the same position where the multi-angular spectral data measurements 
had been taken. A leaf area meter (Model LI-3100, LI-COR, Inc., Lincoln, USA) was used to quantify total LAI 
from this harvested wheat material. For each experimental treatment plot, its mean LAI was based on five indi-
vidual measurements of LAI that, overall, ranged between 1.25 and 8.76 (mean = 4.90, standard deviation = 1.63).

Table 3.  Common vegetation indices (VIs) used for leaf area index (LAI) estimation reported in the literature.

Index Formular References

2 bands

Normalized Difference Vegetation Index [NDVI (810, 680)] (R810 − R680)/(R810 + R680) Rouse et al. (1974)40

Ratio Vegetation Index [RVI (810, 680)] R810/R680 Jordan (1969)41

Difference Vegetation Index [DVI (810, 680)] R810 − R680 Jordan (1969)41

Soil Adjusted Vegetation Index (OSAVI) (1 + 0.16)(R800 − R670)/(R800 + R670 + 0.16) Rondeaux et al. (1996)42

Photochemical Reflectance Index (PRI) (R570 − R531)/(R570 + R531) Gamon et al. (1992)43

Wide Dynamic Range Vegetation Index (WDRVI) (0.2 × R800 − R670)/(0.2 × R800 + R670) + (1–0.2)/(1 + 0.2) Peng et al. (2011)44

Vogelmann Index (VOG) R740/R720 Vogelmann et al. (1993)34

Red edge Chlorophyll index (CIred-edge) (RNIR/Rred-edge) − 1 Gitelson et al. (2003)45

3 bands

Modified Red-edge Normalized Difference Vegetation Index (mND705) (R750 − R705)/(R750 + R705 − 2 × R445) Sims and Gamon (2002)46

Modified Red-edge Simple Ratio Index (mSR705) (R750 − R445)/(R705 − R445) Sims and Gamon (2002)46

Enhanced Vegetation Index (EVI-1) 2.5 × (R860 − R645)/(1 + R860 + 6 × R645 − 7.5 × R470) Huete et al. (2002)47

Modified Chlorophyll Absorption in Reflectance Index (MCARI2) [1.5 × (2.5 × (R800 − R670) − 1.3 × (R800 − R550))]/[Sqrt((2 × R800 + 1)2 − 6 × 
R800 + 5 × sqrtR670) − 0.5] Haboudane et al. (2004)8

Modified Trangular Vegetation Index (MTVI2) 1.5 × [1.2 × (R800 − R550) − 2.5 × (R670 − R550)]/[(2 × R800 + 1)2  − (6 × R800 
− 5 × R6700.5) − 0.5]0.5 Haboudane et al. (2004)8

Structure Insensitive Pigment Index (SIPI) (R800 − R445)/(R800 − R680) Peñuelas et al. (1995)33

Meris Terrestrial Chlorophyll Index (MTCI) (RNIR − Rred-edge)/(Rred-edge − Rred) Dash and Curran (2004)48

New Double Difference Index (DDn) 2 × R710 − R660 − R760 LeMaire et al. (2008)9

4 bands

TCARI/OSAVI (TCARI/OSAVI) TCARI/OSAVI Haboudane et al. (2002)49

Modified Soil-Adjusted Vegetation Index (MSAVI2) 0.5 × (2 × (R(760 − 900) + 1) − sqrt((2 × R(760 − 900) + 1) × (2 × R(760 − 900) + 
1) − 8 × (R(760 − 900) − R(630 − 690))) Qi et al. (1994)50

Red-edge Position R700 + 40 × [(R670 + R780)/2 − R700]/(R740 − R700)] Guyot et al. (1988)51

Double Difference Index (DD) (R749 − R720) − (R701 − R672) LeMaire et al. (2004)52

Vogelmann Index (VOG-2) (R734 − R747)/(R715 + R726) Vogelmann et al. (1993)34
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Data analysis. Common hyper‑spectral vegetation index. VIs represent a simple empirical approach for 
parameter inversion; hence, they could be widely used in forest, grass, and crop monitoring. Many VIs have been 
developed to estimate LAI, and those classed with 2, 3, or 4 bands are listed in Table 3.

Two‑band random combinations. Two-band combinations indices were developed using two random available 
wavebands (i.e., λ1 and λ2) in the 400–900 nm range. This was done for three types of indices: a normalized dif-
ference (ND), simple ratio (SR), and difference vegetation index (DVI). As shown below in Eqs. (1)–(3):

Back‑propagation neural network. The BPNN is typically composed of input layers, some hidden layers, and 
output layers. As inputs, we used the 501 bands in the spectral range 400–900 nm; for the middle layer, the 
numbers of neurons were determined by the  GridSearch53 to between 5 and 200; the activation function and 
optimizer of the middle hidden layer was “ReLU” and “Adam”. The fivefold cross-validation54 technique was used 
to model LAI in Python programming; the whole procedure was repeated 1,000 times to weaken unacceptable 
effects resulting from the random initialization of the optimization routine. For each VZA, 176 and 45 samples 
were used respectively as the training and test sets. The network outputs and the measured LAI values were used 
to build a linear regression model to identify the best BPNN model.

PLSR. PLSR was used to decompose the spectral data, by selecting several sensitive variables and remove some 
unrelated information to target the parameters. Reflectance data of 400–900 nm wavelengths were used for this 
PLSR analysis, which used the same training and test sets as BPNN. The GridSearch method was used to select 
the optimal number of PLSR factors, followed by a fivefold cross validation to assess model and select the best 
parameters.

Model performance. The spectral information of each VZA was processed and analysed separately as an indi-
vidual set. First, the 221 samples were randomly partitioned into two databases: 176 samples for the calibration 
(training) set and 45 samples for the validation (test) set. Validation of the models for estimating LAI was done 
by comparing their  R2 and RMSE values. For BPNN and PLSR methods, this relied on the fivefold cross-valida-
tion procedure, in which all samples are predicted once and only once. For the VIs’ methods, their correspond-
ing  R2 and RMSE values were calculated using Eqs. (4, 5).

where SSE is the sum of squares for error, SST is the sum of squares for total, n is the number of samples, and Pi 
and Oi respectively are the predicted and observed values. The flow chart of experimental setup is given in Fig. S7.
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