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Microseismic records classification 
using capsule network with limited 
training samples in underground 
mining
Pingan Peng1,2, Zhengxiang He1,2*, Liguan Wang1,2 & Yuanjian Jiang1,2

The identification of suspicious microseismic events is the first crucial step in microseismic data 
processing. Existing automatic classification methods are based on the training of a large data set, 
which is challenging to apply in mines without a long-term manual data processing. In this paper, we 
present a method to automatically classify microseismic records with limited samples in underground 
mines based on capsule networks (CapsNet). We divide each microseismic record into 33 frames, then 
extract 21 commonly used features in time and frequency from each frame. Consequently, a 21 × 33 
feature matrix is utilized as the input of CapsNet. On this basis, we use different sizes of training 
sets to train the classification models separately. The trained model is tested using the same test set 
containing 3,200 microseismic records and compared to convolutional neural networks (CNN) and 
traditional machine learning methods. Results show that the accuracy of our proposed method is 
99.2% with limited training samples. It is superior to CNN and traditional machine learning methods in 
terms of Accuracy, Precision, Recall, F1-Measure, and reliability.

Underground engineering causes disturbances in the stress state of the rock mass, leading to a large number of 
microseismic  events1. By post-processing these records (e.g., P-wave arrival  picking2, event  location3, and source 
parameter  calculation4–6), the mechanical state of the corresponding rock mass can be adequately reflected, which 
is beneficial especially for disaster early warning in underground  mining7–9. However, in the underground mining 
process, the microseismic monitoring system often receives interference from blasting operations, ore extraction, 
mechanical operations, high voltage cables, and magnetic  fields10. Therefore, quickly and accurately identifying 
microseismic records from a large number of suspicious records is a crucial task. Currently, the classification 
of suspicious microseismic records depends on the visual scanning of waveforms by experienced  analysts11. 
However, manual classification of microseismic records is a time-consuming, tedious task that is easy to bring 
into subjective opinions. For these reasons, automatic classification of microseismic records is urgently needed.

Throughout the years, many automatic classification methods have been proposed to address the abovemen-
tioned problems in seismic and microseismic fields. Scarpetta et al.12 established a specialized neural discrimina-
tion method for low magnitude seismic events, quarry blasts, underwater explosions, and thunder sources at Mt. 
Vesuvius Volcano, Italy.  Langer13,  Esposito14 and  Curilem15 used the machine learning to classify seismic records 
at the Soufriere Hills volcano (Montserrat), Stromboli island (southern Italy) and the Villarrica volcano (Chile), 
respectively.  Malovichko16 utilized a set of seismic characteristics and the multivariate maximum-likelihood 
Gaussian classifier, to quantify a probability that a particular event belongs to a population of blasts. Vallejos 
and  McKinnon17 presented an approach to the classification of seismic records from two mines in Ontario, 
Canada, by using logistic regression approach and neural network classification techniques. Hammer et al.18 
attempted to automatically classify seismic signals from scratch by utilizing a hidden Markov model and 30 
features extracted from waveforms. Ma et al.4 realized the discrimination of mine microseismic events by Bayes 
discriminant analysis. Dong et al.19,20 proposed a discrimination method for seismic and blasting events based 
on a Fisher classifier, a naive Bayesian method and logistic regression; this method regards the logarithm of the 
seismic moment, the logarithm of the seismic energy, and the probability density function of the arrival time 
between adjacent sources as features.
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Although these researches promote the research process in this field, it still cannot realize the automatic iden-
tification of complex microseismic records in the actual production process. In recent years, the deep learning 
approach has demonstrated superior performance in various research fields. Similarly, deep learning techniques 
are increasingly used in the field of seismology. Shang et al.21 established a classifier to distinguish microseismic 
records from quarry blasts by using Principal Component Analysis (PCA) and Artificial Neural Networks (ANN). 
ANN is considered the basis of the deep learning approach. Serdar Kuyuk and Ohno  Susumu22 trained a deep 
learning Long Short-Term Memory (LSTM) network for the classification of near-source waveforms based on 
data from seismic events recorded by 305 three-component accelerometers recorded in Japan between 2000 
and 2018. The LSTM network was tested with the earthquake in Northern Osaka (M 6.1) in 2018 as an example. 
Manuel Titos et al.23 proposed a novel approach in the field of volcano seismology to classify volcano-seismic 
events based on fully connected DNNs. The DNNs model was trained by 9,332 volcanic earthquake events to 
classify the seven types of events, and good experimental results were obtained. Bi Lin et al.24 proposes a method 
combining Convolutional Neural Networks (CNN) with Support Vector Machine (SVM) for identifying the 
multi-channel microseismic waveform automatically. They used 30,000 signal samples for CNN training, 3,960 
event samples for SVM training, and finally achieved 98.18% classification accuracy. These new technologies 
and methods are encouraging because they effectively improve the accuracy and reliability of microseismic or 
seismic event classification.

However, the deep learning method requires a large amount of data to support the training process of its 
model. Hence, in actual applications, a large amount of manually labeled samples is required, which cannot be 
quickly applied in the newly built microseismic monitoring system of a mine, as the features of microseismic 
records in different mines vary greatly. Consequently, achieving a reliable real-time classification using limited 
samples is of great interest. Therefore, we concentrate on an approach with superior accuracy and stability to 
automatically classify multi-class microseismic records in underground mining using only limited samples. In 
this paper, we propose an approach to establish an automatic classifier for multi-class microseismic records with 
limited samples using the Capsule Network (CapsNet). This approach allows most of the current mines, both 
old and new, to use deep learning as early as possible to achieve the automatic classification of microseismic 
records and has a reliable result. The proposed method will be described in detail in the following sections. 
Subsequently, the proposed method will be applied to field datasets to demonstrate the efficiency and reliability 
of the classification of limited microseismic data.

Results
we analyze and discuss the proposed method based on the actual application process of the automatic classifica-
tion method. The accuracy and reliability of CapsNet, CNN and other methods are compared. Figure 1 shows 
the actual application process of the automatic classification method in the mine.

Training process. Based on the microseismic records from the Huangtupo Copper and Zinc Mine, five 
training sets are divided according to different proportions, which contain 400, 800, 1,200, 1,600, and 2000 
microseismic records. 20% of each training set will be used as the validation set. Moreover, one dataset had 3,200 
microseismic records, 800 of each type, and no duplicate elements from the training were set as a universal test 
set. Training sets of different sizes constitute different training processes, and the situations of different training 
processes are shown in Table 1. The purpose of different training processes is to test the performance and reli-
ability of CapsNet and CNN under limited samples.

Figure 1.  The actual application process of the automatic classification method in the mine.
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With the parameters and architecture of the CapsNet and CNN showed in Fig. 2, we trained this two networks 
in different training processes (as shown in Table 1). The CapsNet consists of 2 convolution layers, a maxpooling 
layer, 2 ReLU layers, and a unique dynamic routing layer; the CNN consists of 2 convolution layers, a maxpool-
ing layer, 5 ReLU layers, 5 batch normalization layers, 3 fully connected layers, 2 dropout layers, a softmax layer, 
and a classification layer. the minibatch size of all training process is 10 and ended in 30 epochs. The minibatch 
accuracy, validation accuracy, minibatch loss, and validation loss during the training process were recorded, and 
the training process were shown in Fig. 3.

From Fig. 3, the training process of CapsNet is stable and converges rapidly. Accuracy, loss, and validation 
curve closely match the training curve. However, for CNN, its training curve has been repeatedly beaten in 30 
Epochs, eventually resulting in a low convergence state, even though it achieves higher accuracy. Through dif-
ferent training processes, we obtained five classification models of CapsNet and CNN, respectively.

Accuracy and comparison. Based on the training process of the classification model, this section uses the 
test set to test the effect of these models. Moreover, the classification result of deep learning method is compared 
with the result of commonly used machine learning method. The test set consisted of 3,200 actual microseis-
mic records of the Huangtupo Copper and Zinc Mine, with 800 records for each category, and none of these 
records appeared during the training and verification process. As an evaluation, Accuracy, Precision, Recall, and 
F1-Measure will be  adopted25. Accuracy is the proportion of the microseismic record with the correct classifica-
tion in test set:

where TP denotes true positives (The records of the current type are correctly classified), TN denotes true 
negatives (The records of the other types are correctly classified), FP denotes false positives (The records of the 

(1)Accuracy = 1−
FP(tr)+ FN(tr)

TP(tr)+ TN(tr)+ FP(tr)+ FN(tr)

Table 1.  The situations of different training processes.

Process Amount of data used for training Amount of data used for validation Amount of data used for the test
Distribution of different types of 
samples

Training process 1 320 80 3,200 Even

Training process 2 640 160 3,200 Even

Training process 3 960 240 3,200 Even

Training process 4 1,280 320 3,200 Even

Training process 5 1,600 400 3,200 Even

Figure 2.  Detailed architecture and parameters of CapsNet and CNN.
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Figure 3.  The training process of CapsNet and CNN. (a) is training process 5; (b) is training process 4; (c) is 
training process 3; (d) is training process 2; (e) is training process 1. the left column of the figure is CapsNet, and 
the right column is CNN.
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other types are misclassified), and FN denotes false negatives (The records of the current type are misclassified). 
Precision is the proportion of predictions that are accurate, and Recall is the proportion of microseismic records 
that are correctly predicted:

moreover, comprehensive considering Precision and Recall, the the weighted harmonic average evaluation index 
(F-Measure) has been proposed.

when α = 1, is the most common F1-Measure:

Figure 4 shows the test results of the trained CapsNet and the trained CNN, and these results demonstrate 
the accuracy of CapsNet is always higher than that of CNN. Taking into account more detailed comparisons, 
the abovementioned Precision, Recall, and F1-Measure are calculated for each type of microseismic records.

Figure 5a,b show the Precision of each type of microseismic records in the different training process. From 
Fig. 5a,b, the Precision of the CapsNet is much larger than the CNN’s in both types of microseismic and blasting 
records, and for both ore extraction and noise, the two are almost identical. It reveals that CapsNet’s Precision is 
superior to CNN’s in different experiments. Also, Fig. 5c,d show the Recall of each type of microseismic records 
in the different training process. From Fig. 5c,d, the Recall of the CapsNet curve is much larger than the CNN 
in both types of blasting and ore extraction records, and for both microseismic and noise records, the gap still 
exists, but it is weak. It reveals that CapsNet’s Recall is superior to CNN’s in different experiments. Through 
F1-Measure, we take a comprehensive consideration of the above two indicators. Figure 5e,f show the F1-Measure 
of each type of microseismic records in the different training process. It can be found that the value of CNN’s 
test results is always lower than the value of the CapsNet’s test results. Multiple indicators reveal that CapsNet 
has certain advantages over CNN in the classification of microseismic records.

Moreover, a comparison of the classification performance between the deep learning approach and tradi-
tional machine learning methods is presented. Decision tree and k-nearest neighbor (kNN) are often used to 
classify microseismic records. Therefore, we tested these models by utilizing the same dataset of training process 
5 (details in Table 1) and compared their results with the findings from the deep learning approach proposed 
herein. Table 2 shows the classification results from different classification models, including the CapsNet and 
CNN presented in this paper, while utilizing the same dataset and features. For the testing accuracy, the CapNet 
performed the best. The testing accuracy of the CapsNet reached 99.2%, while the accuracies of the machine 
learning methods were below 90%. Each index of the CapsNet proposed in this paper outperformed those of 
the other methods. These findings demonstrate that the CapsNet has excellent efficiency and reliability for the 
classification of microseismic data.

(2)Precision =
TP(tr)

TP(tr)+ FP(tr)

(3)Recall =
TP(tr)

TP(tr)+ FN(tr)

(4)F − Measure =
(α2 + 1)× Precision× Recall

α2 × (Precision+ Recall)

(5)F1 − measure =
2× Precision× Recall

Precision+ Recall
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Figure 4.  Accuracy of CapsNet and CNN in the different training process.
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Discussion and conclusion
Additionally, to show that CapsNet has clear advantages over CNN in microseismic records classification, we 
analyze the reliability of the two from the network classification probability. In deep learning, the final predicted 
output is composed of the decision probability of the corresponding labels, and the label corresponding to the 
maximum probability value is used as the predicted class of input. The probability used in this paper is the max 
probability of predicted output.
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Figure 5.  Comparison of Precision, Recall, and F1-Measure. (a) The precision of the CapsNet test results. (b) 
The precision of the CNN test results. (c) The Recall of the CapsNet test results. (d) The Recall of the CNN test 
results. (e) The F1-Measure of the CapsNet test results. (f) The F1-Measure of the CNN test results.

Table 2.  Comparison of different classification models.

Method
Accuracy
/(%)

Microseismic Blasting Ore extraction Noise

Precision/
(%)

Recall/
(%) F1-Measure

Precision/
(%)

Recall/
(%) F1-Measure

Precision/
(%)

Recall/
(%) F1-Measure

Precision/
(%)

Recall/
(%) F1-Measure

CapsNet 99.2 99.1 99.6 99.3 99.0 98.0 98.5 98.5 99.0 98.7 100.0 100.0 100.0

CNN 98.2 96.6 99.1 97.8 97.8 96.5 97.1 98.3 97 97.6 100.0 100.0 100.0

Decision 
tree 88.2 79.6 98.2 87.9 86.6 74.7 80.2 86.6 84.2 85.4 100.0 100.0 100.0

KNN 80.0 79.1 99.8 88.3 42.8 84.0 56.7 98.3 57.8 72.8 100.0 100.0 100.0
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Figure 6 shows the distribution of classification probability in different training process and classification 
results (correct and incorrect). For example, Fig. 6a1,a2 show the probability distribution of test samples that 
predicted class in keeping with the label after training process 5 by CapsNet and CNN. On the contrary, (a3) and 
(a4) show that of incorrect classification.

For the correct classification, the results of CapsNet is concentrated on higher probability value, which is 
almost always above 0.70, and there is a larger percentage of results below 0.70 for CNN. Moreover, for the 
incorrect classification, an excellent classifier should attribute the failure to the hesitant state, that is, the output 
probability of all types is similar and low. However, the results of CNN are concentrated on higher probability 
which is above 0.90, many samples are strongly misclassified. But CapNet’s results are the opposite of CNN’s. 
Detailed probability distribution comparisons are shown in Fig. 7. In summary, CNN’s strong predictive char-
acteristics for both correct and incorrect classifications result in lower reliability than CapsNet. CapsNet’s strong 
prediction of correct classification and weak prediction of incorrect classification can effectively help inspectors 
to screen the results in specific situations.

In order to more intuitively prove the advantages of CapsNet under limited data, we designed a set of repeti-
tive experiments. We have prepared training sets with different amounts of data, which contain 400, 800, 1,200, 
1,600, 2000, 4,000, 8,000, 12,000, and 16,000 microseismic records. We define the data volume less than 2000 
as limited training samples. We perform four pieces of training and four tests on the model for each amount of 
data. As shown in Fig. 8, for each amount of data, we train four models for classification. From the experimental 
results, it can be seen that under limited training samples, CapsNet still has high accuracy and stability. However, 
for CNN, its accuracy is low, and the variation is large. As a consequence, CapsNet will outperform CNN in 
accuracy and stability for real applications with the everlasting scarcity issue of labeled seismic or microseismic 
data. Thus, CapsNet is a better option when we don’t have much labeled data at hand.

We propose a deep learning approach based on CapsNet to realize the automatic classification of microseis-
mic records with limited samples in underground mining. CapsNet is a fully connected network of a series of 
interconnected capsules. In order to convert the microseismic record into the input for CapsNet, we extract the 
feature of the microseismic record by dividing a microseismic record waveform into 33 frames and extracting 
21 feature parameters from each frame. Consequently, a 21 × 33 matrix is utilized to represent a microseismic 
record as the input of the CapsNet. On this basis, we use different sizes of training sets to train the classification 
models separately. The trained models are tested using the same test set containing 3,200 microseismic records 
and compared to CNN. Results show that CapsNet can achieve stable convergence faster than CNN with limited 
training samples. Then we use Accuracy, Precision, Recall, and F1-Measure as evaluation indexes. Results show 
that CapsNet is superior to CNN and traditional machine learning methods on various indicators. Finally, we 
analyze the reliability of the classification results of CapsNet and CNN. Results show that CapsNet performs 
better than CNN in terms of reliability. These results all indicate the reliability and practicability of CapsNet for 
automatic classification of microseismic records with limited samples in underground mining.

Methods
The principle of the CapsNet. At present, the deep learning architecture based on CNN architecture is 
widely used in various fields, such as image recognition, automatic driving,  etc26–28. However, due to the convolu-
tion operation of CNN, only the existence information of the feature is retained in the recognition process, and 
the orientation of the feature and the spatial relationship are ignored. Moreover, the downsampling of the max-
pooling layer discards much crucial information. Therefore, the conventional deep learning method represented 
by CNN requires much data for  training29.

The Capsule Network (CapsNet) represents an entirely novel type of deep learning architectures that attempt 
to overcome the abovementioned disadvantage of conventional deep learning. Figure 9 shows a typical archi-
tecture of CapsNet. The architecture is shallow with only two convolutional layers (Conv1 and Conv2 in Fig. 1) 
and one fully connected (FC)  layer30. The outputs of each layer are Conv1d, Primary Capsule (PrimaryCaps), 
and Digit Capsule (DigitCaps). CapsNet was robust to the complex combination of features and required fewer 
training data. Also, CapsNet has resulted in some unique breakthroughs related to spatial hierarchies between 
 features32. A capsule is a vector that can contain any number of values, each of which represents a feature of the 
object (such as a picture) that needs to be  identified33. In CNN, each value of the convolutional layer is the result 
of a convolution operation. The convolution operation is a linear weighted summation, so the value of each 
convolutional layer is a scalar. However, in CapsNet, each value of the capsule is a vector; that is, this vector can 
represent not only the characteristics but also the direction and the state of the input.

Moreover, the CapsNet uses the dynamic routing algorithm to achieve data transmission between the capsule 
layers (as shown in Fig. 10), which overcomes the shortcomings of the traditional pooling  layer34. In the dynamic 
routing algorithm, a non-linear "squashing" function (Eq. 6) is used to ensure that short vectors get shrunk to 
almost zero length and long vectors get shrunk to a length slightly below 1.

where  vj is the vector output of the capsule j and sj is its total input. And sj is a weighted sum of all output ûj|i of 
the previous layer. ûj|i is produced by multiplying the output ui with a weight matrix Wij.

(6)vj =

∥
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Figure 6.  Distribution of classification probability in different situation. The labels (a)–(e) represent training 
process 5 to training process 1; the number 1 represent probability of each sample with correct classification 
results of CapsNet; the number 2 represent probability of each sample with correct classification results of CNN; 
the number 3 represent probability of each sample with incorrect classification results of CapsNet; the number 
4 represent probability of each sample with incorrect classification results of CNN. For example, (b1) represent 
correct classification results of CapsNet in training process 2, but (d4) represent incorrect classification results 
of CapsNet in training process 4. Moreover, the light yellow blocks represent the probability value is below 0.70, 
but the light blue blocks represent the probability value is above 0.90.
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The cij in Eq. 7 denotes a coupling coefficient that is determined by the iterative dynamic routing process:

(8)ûj|i = Wijui
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Figure 7.  Detailed probability distribution comparisons. (a) The standard deviation of the probability 
distribution. (b) The proportion of probability value below 0.70 and above 0.90.
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Figure 8.  The results of repetitive experiments.

Figure 9.  A network architecture for CapsNet, consists of three layers: two convolutional layers (Conv1 and 
Conv2) and one fully connected (FC)30,31.



10

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:13925  | https://doi.org/10.1038/s41598-020-70916-z

www.nature.com/scientificreports/

where bij and bik are the log prior probabilities between two coupled capsules. Also, bij is in an ongoing process 
of updating:

The initial value of bij is 0. Therefore, in the forward propagation process of solving sj, we design weight 
matrix Wij as random values, bij is initialized to 0 to get cij, and dynamic update of bij continuously optimizes 
the coupling coefficient cij. This series of calculations finally realized the dynamic routing propagation between 
the two layers of  capsules35.

Except that the coupling coefficient cij is updated by dynamic routing, other convolution parameters of the 
entire network and Wij in the CapsNet need to be updated according to the loss function:

where Tk = 1, m+  = 0.9, and m−  = 0.1 by default. λ enables down-weighting of the loss for absent digit classes stops 
the initial learning from shrinking the lengths of the activity vectors of all the digit  capsules30.

Dataset. The Huangtupo Copper and Zinc Mine is located in the southwest of Hami city, Xinjiang Uygur 
Autonomous Region, China. Two larger goaf areas (No.1 and No.2 goaf in Fig. 11) have been formed in this mine 
because of the use of non-pillar sublevel caving. Moreover, as the lower part and the upper part of the ore body 
are being mined at the same time, a larger and more unstable goaf area (No.3 goaf in Fig. 11) is formed at the 
mining junction. The volumes of these three goaves are 120,068.60  m3,42,633.25  m3, and 183,483.19  m3, respec-
tively. Among them, the No.3 goaf area is much larger than the other two, and it is also the most dangerous. As 
shown in Fig. 11, No.3 goaf area has been interconnected with multiple mining routes, which is a severe crisis.

To understand the stability of the rock mass, a microseismic system was used to perform continuous moni-
toring of around goaves and stopes. Eight single-component accelerometers with a sensitivity of 10 V/g and a 
sampling frequency of 10 kHz were embedded in the Huangtupo Copper and Zinc Mine. Their coordinates are 
shown in Fig. 12.

Hundreds of events are triggered in the Huangtupo Copper and Zinc Mine every day. Considering our 
processing goal to monitor rock activity and to provide early-warning systems, these events are categorized into 
four types: microseismic events, blasts, ore extraction, and noise. All events triggered between September 2017 
and January 2019 were manually labeled and were selected as our dataset. The example of each type of event is 
shown in Fig. 13.

(9)cij =
exp(bij)

∑

k exp(bik)

(10)bij ← bij + ûj|ivj

(11)Lk = Tk max(0,m+ − �vk�)
2 + �(1− Tk)max(0, �vk� −m−)2

Figure 10.  Dynamic routing algorithm that completes the transition from the PrimaryCaps layer to the 
DigitCaps layer.
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Pretreatment. The original waveform is segmented every 380 sampling points to form a frame. A total of 80 
points repeatedly appear between adjacent frames to avoid a large difference between adjacent frames. As a con-
sequence, we can obtain 33 frames for each microseismic record under the condition that each record includes 
10,000 sampling points. The purpose of waveform framing is to preserve the characteristics of the time sequence 
while transforming the waveform. Moreover, to maintain continuity between adjacent frames and attenuate 
the frequency leakage caused by signal truncation, each frame is multiplied by the Hamming window after the 
microseismic records are  framed10. Assuming that the microseismic record is S(n), n = 1, 2, …, N − 1, multiplying 
the record by the Hamming window w(n) gives

Figure 11.  Distribution and influence of goaf in Huangtupo Copper and Zinc Mine.

Figure 12.  Coordinates of the accelerometers installed in the Huangtupo Copper and Zinc Mine.
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(12)S′(n) = S(n)× w(n)
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Figure 13.  Example of microseismic records. (a) is a microseismic waveform, (b) is a waveform of ore-
extraction event, (c) and (d) are the waveform of blasts, (e) and (f) are the waveform of instances of noise.
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where w(n) gives

where N is the number of frames within the framed microseismic record.
Then, we extract features of the time and frequency domains from each frame. Table 3 gives an overview of 

the 21 features employed most frequently in the literature for each frame used in this study. It is worth mention-
ing that these features are selected by the genetic algorithm (GA)-optimized correlation-based feature selection 
(CFS) method, for more detail implementation of feature selection, please see the  reference35, 36. Zero-crossing 
rates are used to determine whether the microseismic record is present in a  frame37. Energy and energy entropy 
can be used to indicate signal strength, and the strengths of different types of microseismic records show distinct 
 differences38. The spectral centroid, spectral spread, spectral entropy, spectral flux, and spectral rolloff form the 
low-level spectral features, which aim to describe the structure of the frame spectra using a single  quantity39,40; 
these features can be extracted within either linear or logarithmic frequency domains using spectral amplitudes, 
power values, logarithmic values, etc. Mel frequency cepstral coefficients (MFCCs) are an interesting variation on 
the linear cepstrum, which is widely used in signal analysis. MFCCs are the most widely used features in signal 
recognition, mainly due to their ability to concisely represent the signal  spectrum41,42. Additionally, the harmonic 
ratio can be used to indicate the proportion of the signal composed of the non-microseismic record  part43.

As a consequence, a microseismic record is transformed into a 21 × 33 feature matrix by framing and feature 
extraction. Figure 14 shows the process and result of the transform. This 21 × 33 feature matrix is the initial 
input of the CapsNet.

(13)w(n) = 0.54− 0.46× cos

(

2πn

N − 1

)

, 0 ≤ n ≤ N − 1

Table 3.  Definitions and descriptions of features.

Num Feature Description Definition Parameters

1 Zero-Crossing  Rate37 The rate of sign changes within a 
signal zcr = 1

T−1

T−1
∑

t=1
II{st st−1 < 0}

s is a signal of length T; the indicator func-
tion II{A} is 1 if its argument A is true and 
0 otherwise

2 Energy38 The energy of the waveform E =
T
∑

t=1

|st |
2 s is a signal of length T

3 Energy  Entropy38 The entropy of the energy of each 
frame EE = −

∑

n

En
E ln En

E

E is the total energy of a signal; En is the 
energy of the frame

4 Spectral  Centroid39 The centre of the spectral density 
function SCi =

∑N−1
j=0 fi(j)Ei(j)
∑N−1

j=1 Ei(j)

N is the length of the signal; fi(j) is the 
frequency of the j-th point of the i-th 
frame; Ei(j) is the spectral energy of the 
corresponding frequency of the i-th frame

5 Spectral  Spread39
A measure of the average spread 
of the spectrum in relation to its 
centroid

SS =

√

∑N/2
i=0 (fk−SC)2 |X(wi)|

2

∑N/2
i=0 |X(wi )|

2 X(wi) is the spectrum of the signal

6 Spectral  Entropy39 The complexity of a signal PSE = −
n
∑

i=1

1
N |X(wi )|

2

∑

i
1
N |X(wi)|

2 ln

(

1
N |X(wi )|

2

∑

i
1
N |X(wi)|

2

)

X(wi) is the spectrum of the signal

7 Spectral  Flux39 A measure of how quickly the power 
spectrum of a signal is changing SF =

N
∑

i=1
[

∣

∣

∣
X̂(wi)

∣

∣

∣
−

∣

∣

∣
X̂preframe(wi)

∣

∣

∣
]2 X̂(wi) is the normalized spectrum of the 

signal

8 Spectral  Rolloff39
The frequency below which 90% of 
the magnitude distribution of the 
spectrum is concentrated

argmin
fc∈{1,...,N}

fc
∑

i=1
mi ≥ 0.90 ·

N
∑

i=1
mi

fc is the rolloff frequency, and mi is the 
magnitude of the i-th frequency compo-
nent of the spectrum

9–20 Mel frequency cepstral 
 coefficient41,42

A representation of the short-term 
power spectrum of a signal based on a 
linear cosine transform of a log power 
spectrum on a nonlinear Mel scale of 
frequency

MFCC(n) =
M−1
∑

m=0

[

ln(
N−1
∑

i=1

|X(i)|2Hm(i)) · cos(
πn(m−0.5)

M )

]

MFCC(n) is the n-th Mel frequency 
cepstral coefficient, n = 2, …, 13; X(i) is the 
spectrum of the signal; Hm(k) denotes the 
M filter banks, 0 ≤ m < M; N is the number 
of frame points

21 Harmonic  Ratio43
A feature reflecting the ratio of energy 
in the harmonic portion of the signal 
to the total energy of the signal

HR = max
M0≤m≤M

{

N
∑

n=1
s(n)s(n−m)

√

N
∑

n=1
s(n)2

N
∑

n=0
s(n−m)2

}, 1 ≤ m ≤ M

s is a single frame of a signal with N points; 
M is the maximum lag in the calculation; 
M0 denotes the first zero crossings of the 
normalized autocorrelation
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