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equilibrium properties of assembly 
of interacting superparamagnetic 
nanoparticles
n. A. Usov1,2* & o. n. Serebryakova2

the stochastic Landau–Lifshitz equation is used to investigate the relaxation process and equilibrium 
magnetization of interacting assembly of superparamagnetic nanoparticles (SpMnps) uniformly 
distributed in a nonmagnetic matrix. For weakly interacting assembly, the equilibrium magnetization 
is shown to deviate significantly from the Langevin law at moderate and large magnetic fields under 
the influence of their magnetic anisotropies. For dense assemblies with noticeable influence of the 
magneto-dipole interaction, a significant dependence of the initial susceptibility on the assembly 
density is revealed. The difference between the initial susceptibility and the corresponding Langevin 
susceptibility can serve as an indication of appreciable influence of the magneto-dipole interaction on 
the assembly properties. A new self-consistent approach is developed to explain the effect of mutual 
magneto-dipole interaction on the behavior of dense assembly of SpMnps. the probability densities 
of the components of random magnetic field acting on magnetic NPs are calculated at thermodynamic 
equilibrium. the self-consistent probability densities of these components are found to be close to 
Gaussian distribution. A decreasing equilibrium assembly magnetization as a function of its density 
can be explained as a disorienting effect of the random magnetic field on the NPs magnetic moments.

Assemblies of superparamagnetic nanoparticles (SPMNPs) are widely used in various fields of nanotechnology, 
in particular, in biomedicine, for magnetic resonance imaging, targeted drug delivery, purification of biological 
media from toxins, in magnetic hyperthermia, etc.1–4. However, the study of the physical properties of dense 
assemblies of magnetic NPs is complicated by the influence of a strong magneto-dipole interaction between the 
 NPs5–13. Formally, the equilibrium properties of an assembly of SPMNPs distributed in a rigid media can be 
studied on the basis of the Gibbs  principle14–18, if for a given temperature T of a thermal bath and applied mag-
netic field H0 the complete thermodynamic equilibrium is established for a finite time. For such assembly, the 
equilibrium magnetization, Meq = Meq(H0,T), can be calculated as the derivative of the free energy with respect 
to the applied magnetic  field14–18. Unfortunately, the direct use of the Gibbs statistical integral for calculating the 
equilibrium properties of dense NPs assembly is associated with great mathematical difficulties.

In a classical  paper19, Langevin used Gibbs  principle20,21 to calculate the equilibrium magnetization of a 
non-interacting assembly of freely rotating magnetic dipoles. The Langevin law for equilibrium assembly mag-
netization is often used in the analysis of the experimental  data22–29. However, it is important to recall that in the 
simplest Langevin  approximation19, both the magnetic anisotropy energy and the energy of the magneto-dipole 
interaction of NPs are neglected. Meanwhile, the influence of particle magnetic anisotropy on assembly behav-
ior has been investigated  analytically30,31 and  numerically32 based on the Gibbs formula in the limit of weakly 
interacting NPs. On the other hand, the evaluation of the Gibbs statistical integral in a general case of interacting 
assembly is a difficult problem, well known in the theories of non-ideal gas, dipole fluids, plasma, and other fields 
of classical and quantum  physics14–18,20. A similar problem also exists for interacting assemblies of SPMNPs.

In recent years a significant amount of  research25,33–55 has been devoted to theoretical and experimental stud-
ies of the influence of the magneto-dipole interaction on the properties of dense NPs assemblies. In particular, 
the Monte-Carlo simulations have been carried  out25,33–42,46,50,53 for assemblies of interacting magnetic NPs in 
the temperature range exceeding the blocking temperature. Various generalizations of the Langevin formula 
were proposed, such as the interacting SPM model (ISM)43–45,51, or different versions of the effective magnetic 
 field46–50,52. For the same purpose the thermodynamic perturbation  theory54 and the decomposition of the Gibbs 
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statistical integral by the Born–Mayer  method55 were employed. However, despite several approaches used, an 
understanding of the role of magneto-dipole interaction in equilibrium properties of dense SPMNPs assembly 
is still incomplete.

In this paper, the equilibrium magnetization of an assembly of interacting SPMNPs uniformly distributed 
in a rigid nonmagnetic matrix is calculated by solving the stochastic Landau–Lifshitz (LL)  equation56–60. This 
approach is an alternative to the classical method of Gibbs assemblies. It enables one to simultaneously take into 
account the effect of various types of magnetic anisotropy, magneto-dipole interaction, and thermal fluctuations 
of the particle magnetic moments on the assembly behavior. Moreover, this method allows one to consider also 
kinetic processes such as the relaxation process to the equilibrium assembly magnetization.

Calculations based on the stochastic LL equation were performed in this work for a dilute assembly of NPs 
clusters with a finite filling density η = NpV/Vcl, where V = πD3/6 is a volume of spherical nanoparticle of diameter 
D, Np being the number of NPs in a cluster of volume Vcl. The random positions of the NPs in the cluster are 
assumed to be fixed, the rotation of the NPs as a whole is excluded. The easy anisotropy axes of the NPs are ran-
domly oriented. A saturation magnetization of the particles is taken to be Ms = 350 emu/cm3, which is typical for 
iron oxide  NPs3,6,10. The uniaxial magnetic anisotropy constant K1 is varied from 6 × 104 to 1.5 × 105 erg/cm3. The 
numerical simulations are carried out at room temperature, T = 300 K. Therefore, the diameter of spherical NPs 
is restricted to a range D < 25 nm, to  ensure61 that the blocking temperature Tb of the largest NPs is well below 
the room temperature. A significant dependence of the assembly equilibrium magnetization on the intensity of 
the magneto-dipole interaction inside the clusters has been revealed.

In addition, the statistical properties of random magnetic field acting on magnetic NPs in a dense assembly 
of SPMNPs have been studied. Following the Lorentz  approach20 it is shown that the random component of 
magnetic field acting on a typical nanoparticle of the assembly is determined only by the surrounding NPs 
located inside the Lorentz sphere. The magnetic moment of a typical nanoparticle, and hence the equilibrium 
magnetization Meq of the assembly, is calculated self-consistently depending on the total magnetic field acting on 
the particle. The variant of the self-consistent field approximation developed in this work is shown to describe 
qualitatively correctly the numerical simulation data for the equilibrium assembly magnetization, obtained by 
means of solution of the stochastic LL equation, over an effective H0 ≤ 600 Oe range.

Results and discussion
Dilute nanoparticle assembly. As mentioned in the introduction, there are two important contributions 
that lead to a difference in the reduced equilibrium magnetization of interacting assembly, meq = Meq(H0,T)/Ms, 
from the Langevin  law19–21

where x = MsVH0/kBT is the dimensionless Langevin variable and kB is the Boltzmann constant. These are mag-
netic anisotropy energy and the energy of the magneto-dipole interaction. Let us discuss the influence of these 
factors on the equilibrium properties of an assembly separately.

Consider first a relatively simple case of a dilute NPs assembly, η → 0, neglecting the influence of magneto-
dipole interaction. Here, an equilibrium assembly magnetization can be determined evaluating the Gibbs statisti-
cal  integral30–32. The corresponding calculations for randomly oriented monodispersed assemblies of SPMNPs 
are shown in Fig. 1. The magnetic field dependence of equilibrium magnetization of randomly oriented NPs of 
various diameters is shown in Fig. 1a. Figure 1b shows that the static magnetic susceptibility of the assembly falls 
down rapidly over H0 ≤ 200 Oe. As can be seen from the plots, the static susceptibility substantially depends on 
average D values. Moreover, as Fig. 1c portrays, a second derivative of meq with respect to H0 reveals a pronounced 
minimum in the region of low, H0 ≤ 50 Oe, magnetic fields, whose position is a function of average D value.

Let us normalize H0 to the particle anisotropy field, Ha = 2K1/Ms, in a reduced variable he = H0/Ha. Then it can 
be  shown30–32 that a meq value in a dilute assembly is a universal function of he that depends only on the reduced 
height of the particle potential energy barrier, Rb = K1V/kBT, so that meq0 = meq0(he,Rb). However, as Fig. 1d shows 
in a limit of small H0 the meq(H0) curve coincides with the Langevin function, Eq. (1), for all K1 values. This is a 
consequence of the fact that in the limit he → 0 the expansion

is  valid30,31. As a result, a K1 dependence of meq in the region of small H0 disappears. At the same time, according 
to Fig. 1d for moderate and large H0 the difference of meq from the Langevin function is very significant. It follows 
from Eq. (2) that a static magnetic susceptibility of the assembly in the low-field region does not depend on the 
K1 value. Therefore, it is impossible to determine the K1 value by measuring the static susceptibility of a dilute 
assembly, dmeq0/dH0, in the limit he → 0. At the same time, as we will see later, the static magnetic susceptibility 
of an interacting assembly differs significantly from the Langevin susceptibility. This important fact makes it 
possible to evaluate the effect of the magneto-dipole interaction on the equilibrium properties of an assembly.

The noticeable influence of the particle magnetic anisotropy energy on the behavior of dilute assembly of 
monodispersed NPs in the range of moderate and high H0 fields, and at temperatures not too high with respect 
to Tb was studied in detail both  experimentally23,25 and  theoretically30–32. The area of parameters H0 and T, 
where there is a considerable deviation of meq from the Langevin law was  characterized23,25 as an anisotropic 
superparamagnetism. Unfortunately, in a number of recent experimental works (see, for example, Refs.26–29), 

(1)
�M�
Ms

= mL(x); mL(x) = coth (x)− 1

x
,

(2)meq0(he ,Rb) =
2

3
Rbhe + · · · = MsVH0

3kBT
+ · · ·



3

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:13677  | https://doi.org/10.1038/s41598-020-70711-w

www.nature.com/scientificreports/

the experimental meq data are described by a weighted sum of Langevin functions. In this way, the particle size 
distribution is taken into account, whereas the influence of the magnetic anisotropy energy is completely ignored.

Assembly of dense 3D clusters. As noted in the introduction, a direct application of the Gibbs principle 
for calculating the equilibrium magnetization of an assembly of interacting NPs is associated with significant 
mathematical difficulties. To overcome this difficulty, various theoretical methods were  used25,33–55. The most 
convincing results were obtained by means of Monte-Carlo  simulations33–42,46,50,53 for assemblies of interacting 
SPMNPs uniformly distributed in a nonmagnetic media. However, a known drawback of this method is the 
difficulty in estimating the actual time for evolution of the assembly in a given magnetic field, as individual 
Monte-Carlo steps do not correspond to real physical  time33. As an alternative approach to the problem, in the 
given paper we use direct numerical simulation based on a solution of the stochastic LL  equation56–60. Numerical 
calculations of meq and static susceptibility of a dilute assembly of dense clusters consisting of Np = 60–100 NPs 
are carried out in a range of applied magnetic fields, H0 = 0–600 Oe, the cluster filling density being η = 0–0.3. 
The details of numerical modeling of the kinetic properties of an assembly of magnetic NPs using the stochastic 
LL equation are described below in the “Methods” section.

Figure 2 shows the magnetization relaxation curves of randomly oriented assemblies of magnetic NPs of 
various D values in a given H0 field for different initial magnetization states. In the magnetization distribution 
designated as Z state, at time t = 0 the NPs are magnetized along the applied magnetic field, whereas for the R 
initial state the magnetic moments of the NPs are randomly oriented in space. Both initial distributions of the 
particle magnetic moments differ from thermal equilibrium. Figure 2 shows a temporal evolution of the assembly 
magnetization for t > 0. It is calculated by solving the stochastic LL equation with a sufficiently small numerical 
time step Δt with respect to characteristic particle precession time Tp

60. To obtain the complete magnetization 
relaxation curve of an assembly to the equilibrium state a sufficiently large number of the numerical time steps 
must be taken. The thermodynamic equilibrium is considered to be achieved when the magnetic relaxation curve 
approaches a constant value, meq = Meq/Ms, and fluctuates around this value with a small dispersion, as shown 
in the relaxation curves presented in Fig. 2. To obtain statistically reliable results a large number of numerical 
experiments, Nexp = 100–200, is carried out with the same initial conditions. An average magnetization of a dilute 

0 50 100 150 200
0.0

0.2

0.4

0.6 K1 = 105 erg/cm3

m
eq

H0 (Oe)

D = 17 nm
D = 19 nm
D = 21 nm
D = 23 nm
D = 25 nm

(a)
0 50 100 150 200

0.00

0.01

0.02

dm
eq
/d
H

H0 (Oe)(b)

D = 19 nm
D = 21 nm
D = 23 nm

K1 = 105 erg/cm3

0 50 100 150

-0.8

-0.6

-0.4

-0.2

0.0

d2
m

eq
/d
H

2 *
10

-3

K1 = 105 erg/cm3

H0 (Oe)

D = 17 nm
D = 21 nm
D = 25 nm

(c)
0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

m
eq

D = 21 nm

K1 = 6*104 erg/cm3

K1 = 8*104 erg/cm3

K1 = 105 erg/cm3

K1 = 1.5*105 erg/cm3

H0 (Oe)

Langevin (K1 = 0)

(d)

Figure 1.  (a) The reduced equilibrium magnetization, meq = Meq/Ms, of a randomly oriented assembly of non-
interacting magnetic NPs of different average diameters; (b) reduced magnetic susceptibility of the assembly, 
dmeq/dH0; (c) a second derivative of equilibrium magnetization, showing a pronounced minimum; (d) a 
dependence of the reduced assembly magnetization on the K1 values for NPs (D = 21 nm) with Ms = 350 emu/
cm3 at room temperature.



4

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:13677  | https://doi.org/10.1038/s41598-020-70711-w

www.nature.com/scientificreports/

assembly of clusters is calculated by averaging over the set of magnetic relaxation curves of individual clusters 
with independent realization.

Figure 2a compares the magnetization relaxation curves from a uniformly magnetized state (Z state) in H0 = 10 
Oe for non-interacting and interacting assemblies of NPs of the same diameter D = 21 nm. To obtain the statisti-
cally reliable results shown in Fig. 2a, the numerical simulation data were averaged over Nexp = 200 independent 
numerical experiments. In every numerical experiment N = 3 × 106 numerical steps were performed with a small 
time step Δt = 1.26 × 10–5 μs, assuming a phenomenological damping coefficient κ = 0.5. In Fig. 2a the relaxation 
curve for a non-interacting assembly, η = 0, can be described by a time dependent exponent with a single relaxa-
tion time τ = 0.2 μs. It approaches a steady value, meq0 = 0.133, which coincides with the reduced equilibrium 
magnetization of the non-interacting assembly calculated using the Gibbs formula. At the same time, as Fig. 2a 
shows, the relaxation curve for an assembly of clusters with a filling density η = 0.278 cannot be characterized by 
a single relaxation time. To approximate this curve at least two exponents with significantly different relaxation 
times should be used. Nevertheless, as Fig. 2a shows, this curve also approaches a steady value, meq = 0.056, at 
a sufficiently long time. It is reasonable to take this value as the equilibrium magnetization of an assembly of 
clusters with a filling density η = 0.278 in applied magnetic field H0 = 10 Oe.

As Figure 2a shows, a magneto-dipole interaction leads to a decrease in the magnetization relaxation time at 
the fast initial stage, followed by a much slower stage of the full establishment of thermodynamic equilibrium, 
during which the average magnetization of the assembly already changes relatively weakly. Interestingly, the 
equilibrium magnetization for the assembly of clusters with a noticeable intensity of the magneto-dipole interac-
tion always decreases compared to that of the corresponding assembly of non-interacting NPs.

This conclusion is confirmed by the data in Fig. 2b,c were the magnetization relaxation curves of various 
assemblies are shown for different initial Z and R states, respectively. As can be seen from Fig. 2b,c, in accord-
ance with the Gibbs principle the equilibrium state of the assembly in a given H0 field turns out to be the same, 
regardless of the type of initial magnetization configuration. It is worth mentioning that the Gibbs postulate is not 
applicable to study a temporal evolution of the assembly magnetization. Fortunately, it can be done numerically 
by solving the stochastic LL equation. The equilibrium value of the reduced magnetization of the assembly can 
be obtained by averaging the relaxation curve over a finite interval of times exceeding the characteristic time of 
magnetic relaxation, t > τ.
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Figure 2.  Relaxation of magnetization to a thermodynamically equilibrium value in randomly oriented 
assemblies of magnetic NPs: (a) comparison of the magnetization relaxation curves of non-interacting (η = 0) 
and interacting (η = 0.278) assemblies of NPs of diameter D = 21 nm and (b, c) comparison of magnetization 
relaxation curves for different initial magnetization states for NPs of D = 17 and 19 nm, respectively, with 
Ms = 350 emu/cm3 and K1 = 105 erg/cm3.
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For an assembly with given parameters (D, Ms, K1, Np, η) it is possible to obtain the equilibrium value of the 
reduced magnetization as a function of H0 using the calculations similar to those shown in Fig. 2b,c. The results 
so obtained are plotted in Fig. 3. As cluster filling density η increases, resulting in the increase in the magneto-
dipole interaction intensity inside the clusters, the value of the equilibrium assembly magnetization decreases. In 
Fig. 3a–c, the magnetic susceptibility of the assembly, dmeq/dH0, in the low-field, H0 → 0, substantially decreases 
as a function of η values. For a given set of Ms and K1 values for NPs assemblies of D ≤ 21 nm the reduced equi-
librium magnetization at room temperature vanishes in the limit H0 → 0. These assemblies exhibit typical SPM 
behavior. At the same time, as Fig. 3d shows, for an assembly of NPs of a larger D = 25 nm, there is a remanent 
magnetization in the limit H0 → 0. Therefore, the blocking temperature Tb of this assembly exceeds the room 
temperature value. As a result, the true equilibrium state for this assembly is not reached in a finite evolutionary 
time. Interestingly, in Fig. 3d the remanent magnetization of the assembly decreases with increasing intensity 
of the magneto-dipole interaction.

Figure 4 demonstrates an universal behavior of the equilibrium magnetization curves for assemblies of NPs 
with a noticeable intensity of the magneto-dipole interaction, η ≥ 0.2. While the equilibrium magnetization 
curves of assemblies of non-interacting NPs substantially depend on an average D value (see Fig. 1a), these curves 
in interacting assemblies practically coincide at the same η value. An exception is the magnetization curve in 
rather large particles, D = 25 nm, with nonzero remanent magnetization.

To explain this effect, one notes that to an order of magnitude the magnetic anisotropy energy of the particle 
is Wa ~ K1V, whereas the characteristic energy of the magneto-dipole interaction of the NPs can be estimated 
as Wm ∼ (MsV)2

/

L3av , where Lav is the average distance between the NPs of the cluster, which can be estimated 
from the relation L3av = Vcl

/

Np . Thus, for the characteristic energy of the magneto-dipole interaction one obtains 
Wm ∼ M2

s Vη . Therefore, the energy ratio Wa

/

Wm ∼ K1

/

M2
s η is independent of the nanoparticle volume being 

approximately constant for a fixed η value.
Figure 5a plots the reduced equilibrium magnetizations of the assemblies of NPs with the same D = 21 nm, 

but with different magnetic anisotropy constants. It is noteworthy that the equilibrium magnetization of inter-
acting NPs assemblies differs significantly from the Langevin curve. As Fig. 5a shows in a sufficiently dense 
assemblies with η = 0.278 the influence of particle magnetic anisotropy on the equilibrium magnetization curve 
is not significant. In particular, the static magnetic susceptibility of the assembly, dmeq/dH0, in the limit H0 → 0 
is practically independent of the K1 value, similar to the case of assemblies of non-interacting NPs (see Fig. 1d). 
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Figure 3.  Equilibrium reduced magnetization over H0 fields for dilute assemblies of clusters of magnetic NPs 
with Ms = 350 emu/cm3, K1 = 105 erg/cm3, and the number of particles in the clusters Np = 60, for various D and η 
values at room temperature.



6

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:13677  | https://doi.org/10.1038/s41598-020-70711-w

www.nature.com/scientificreports/

However, the static magnetic susceptibility of the interacting assembly is significantly less than the Langevin 
value, dmeq/dH0 = MsV/3kBT30,31.

To demonstrate clearly the effect of the magneto-dipole interaction on the equilibrium properties of a SPM 
assembly, it is of interest to study the equilibrium magnetization curves of an assembly of NPs with a negligibly 
small K1 ~ 0. As Fig. 5b,c show, the equilibrium magnetization in the case K1 = 0 approaches the Langevin curve 
only in the limit η → 0. Note that the magnetic susceptibility of such an assembly in the limit H0 → 0 substantially 
depends on its η value. As can be seen from Fig. 3, this conclusion is also valid for assemblies with a finite K1 
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value. Thus, a difference of the static magnetic susceptibility from the Langevin value, dmeq0/dH0 = MsV/3kBT, 
reveals the influence of the magneto-dipole interaction of NPs on the assembly properties.

Self consistent field approximation. The detailed numerical calculations performed above make it 
possible to quantitatively assess the change in the equilibrium and kinetic properties of the assembly with an 
increase in the intensity of the magneto-dipole interaction. However, these calculations do not shed light on the 
physical cause of such changes. It is clear that in the presence of a magneto-dipole interaction, the magnetic field 
acting on a typical nanoparticle differs from the magnetic field H0 applied to the assembly, since the magnetic 
fields of the surrounding NPs also act on this nanoparticle. In dense clusters, at small distances between the NPs, 
the magnetic fields of the nearest NPs can be very significant. Therefore, a fundamental interest is determining a 
probability density of such a magnetic field acting on a typical magnetic nanoparticle in the assembly.

In recent years, several approaches are  proposed46–52 to introduce effective magnetic field acting on a typical 
nanoparticle in a dense SPM assembly. However, it is  shown53 that the expressions suggested for the effective mag-
netic fields in some cases are hardly consistent with the Monte-Carlo simulation results. In this paper, we develop 
another approach to evaluate the effect of random magnetic fields acting in a dense nanoparticle assembly.

Let us consider an effectively large spherical assembly, as schematically shown in Fig. 6, which can be char-
acterized by an average magnetization Meq(H0,T) at equilibrium. Let us select around a typical nanoparticle 
of the assembly a spherical region (Lorentz  sphere20) with radius RL much larger than the average distance Lav 
between NPs. Outside Lorentz sphere one can introduce a nearly homogeneous magnetization distribution close 
to the average assembly magnetization, <M(r)>  = Meq. Then, inside the Lorentz sphere, at least near its center, 
the magnetic field of external magnetic dipoles is almost completely compensated to  zero20. Therefore, the mag-
netic field in the center of the Lorentz sphere acting on the reference particle is created by the surrounding NPs 
located in the Lorentz sphere.

First, let us analyze the probability density of random magnetic field acting on a typical particle of an assem-
bly with a negligibly small magnetic anisotropy constant, K1 = 0. As Fig. 5b,c show, in such assembly due to the 
influence of the magneto-dipole interaction a difference arises between the equilibrium magnetization and the 
Langevin law. Let H = (Hx, Hy, Hz) be a vector of the random magnetic field in the center of Lorentz sphere cre-
ated by the NPs located inside it. Without a loss of generality, one can assume that the external magnetic field 
H0 is applied along the Z axis of the Cartesian coordinates. Then, the total magnetic field in the center of Lorentz 
sphere is given by Ht = (Hx, Hy, Hz + H0). Let Ht be the module of this vector. It is reasonable to assume that in 
thermodynamic equilibrium the time-average magnetic moment of the reference particle located in the center 
of Lorentz sphere is

where mL(x) is the Langevin function in Eq. (1). It points parallel to vector Ht, so

Further, let P(Hx,Hy,Hz) be the probability density of a random magnetic field created by surrounding parti-
cles in the center of the Lorentz sphere. Then, the average magnetization of the assembly in the direction of the 
applied field H0 is given by

(3)�M�/Ms = mL

(

MsVHt

kBT

)

, Ht =
√

H2
x +H2

y + (Hz +H0)
2,

(4)�Mx�/�M� = Hx

/

Ht ,
〈

My

〉

/�M� = Hy

/

Ht , �Mz�/�M� = (H0 +Hz)
/

Ht

(5)
�Mz�
Ms

=
∫∫∫

mL

(

MsVHt

kBT

)

Hz +H0

Ht
P
(

Hx ,Hy ,Hz

)

dHxdHydHz .

Lorentz sphere
RL >> Lav

Lav

RL

1

2
H1r

H2r

Random 
magnetic field

H0

Applied
magnetic

field

H

Figure 6.  A model Lorentz sphere around a reference nanoparticle in an assembly of SPMNPs.



8

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:13677  | https://doi.org/10.1038/s41598-020-70711-w

www.nature.com/scientificreports/

Thus, to calculate the equilibrium assembly magnetization in the given approximation it is necessary to 
determine the probability density of random magnetic field in the center of the Lorentz sphere, created by NPs 
located inside the said sphere.

For given assembly parameters, a self-consistent value P(Hx,Hy,Hz) can be obtained numerically by conduct-
ing a sufficient number of numerical experiments with random spherical clusters of a volume Vcl, number of 
particles Np, and a fixed η value. As will be shown below, the partial probability densities P(Hx), P(Hy), and P(Hz) 
of the random functions Hx, Hy, and Hz are close to the Gaussian distributions. Due to the random nature of the 
magnetic field Ht, which is the sum of a large number of independent contributions of the magnetic fields of 
individual NPs, there is a relation

To find self-consistent probability densities P(Hx), P(Hy) and P(Hz), an appropriate iterative procedure should 
be performed. At the first stage of this procedure we consider all particles inside the Lorentz sphere to be mag-
netized strictly parallel to the H0 field, so that <Mx> = 0, <My> = 0, <Mz> = Ms. Under this assumption we obtain 
the empirical probability densities P1(Hx), P1(Hy) and P1(Hz) of the first approximation in the following manner. 
A sufficiently wide range of magnetic fields, (− Hmax, Hmax), is divided into a large number of equal intervals, 
ΔH ≪ Hmax. Then a sufficient number of numerical experiments Nexp are performed in random clusters created 
independently. A random field H = (Hx, Hy, Hz) in the center of each cluster is calculated and the relative numbers 
of clusters with components Hx, Hy, and Hz falling into each predefined interval ΔH are determined.

To obtain the partial probability densities of the second approximation, we generate clusters in the volume of 
the Lorentz sphere, the particle centers being randomly distributed. The magnetization directions of individual 
NPs are assigned in accordance with the probability density P1(Hx,Hy,Hz) = P1(Hx)P1(Hy)P1(Hz). Namely, the 
magnetic field H = (Hx, Hy, Hz) acting on a specific nanoparticle of the cluster is set randomly, in accordance to 
P1(Hx,Hy,Hz) values. Then, the average magnetization of this particle is determined by Eqs. (3) and (4). In this 
way, we can assign the magnetization of all ‘Np − 1’ NPs of the cluster and calculate the total magnetic field act-
ing on the test particle. If we repeat this procedure a sufficient number of times, we can determine the empirical 
probability density in the second approximation, P2(Hx,Hy,Hz). These iterations are repeated until successively 
obtained probability densities, Pi(Hx,Hy,Hz), i = 1, 2, … converge to a certain limit. This limiting probability 
density is used in Eq. (5) to obtain the equilibrium magnetization of the assembly at a given H0 value.

To obtain the probability density P(Hx,Hy,Hz) with an ~ 1% accuracy, it is enough to carry out only 3–4 itera-
tions of this iterative procedure. The first iteration thus yields partial probability densities P1(Hx), P1(Hy) and 
P1(Hz), which are very close to the Gaussian distribution, P(H) = exp

(

−H2
/

2σ 2
)/√

2πσ , with some empiri-
cal standard deviations, σ (1)

x  , σ (1)
y  and σ (1)

z  . As a result of the iterative procedure, we obtain series of standard 
deviations, σ (i)

x  , σ (i)
y  and σ (i)

z  , i = 1, 2, … which quickly converge to some limiting values, σx , σy and σz . Moreover, 
due to the axial symmetry of the problem an approximate equality σ (i)

x  ≈ σ (i)
y  is satisfied at each iteration step.

As an example, Fig. 7a shows the evolution of the empirical probability densities P1(Hx)–P4(Hx) for the Hx 
component of random magnetic field during four successive stages of the iterative procedure. To obtain empirical 
probability density, at each stage of the iterative procedure Nexp = 105 numerical experiments were carried out in 
which spherical clusters consisting of Np = 60 NPs of diameter D = 21 nm and cluster filling density η = 0.278 were 
created. To construct the empirical probability densities, the interval of magnetic fields (− 600, 600 Oe) was sub-
divided into 120 intervals each of 10 Oe. The particle centers inside the cluster volume were randomly distributed 
using the algorithm described in the “Methods” section. The particle magnetizations were assigned by means of 
the procedure described above and using Eqs. (3) and (4). As can be seen from Fig. 7a, the successively obtained 
P(i)(Hx), i = 1–4, values can be described with a reasonable accuracy by the Gaussian distribution. The empirical 
standard deviations quickly converge to a constant limiting value. The empirical probability densities for the Hy 
and Hz components of the random magnetic field H are of the same form. As Fig. 7b shows, for small H0 values 
the limiting empirical standard deviations σx and σz turn out to be very close each other. As H0 increases, they 

(6)P(Hx ,Hy ,Hz) = P(Hx)P(Hy)P(Hz).
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Figure 7.  (a) Evolution of the empirical probability densities P(i)(Hx) of the Hx component of random magnetic 
field for successive iterations i = 1–4; and (b) limiting empirical standard deviations of the probability densities 
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bifurcate, but always σx < σz . Moreover, σx = σy for the transverse components of the random magnetic field due 
to the axial symmetry of the problem.

Figure 8a,b plot so obtained meq values over H0 for assemblies with K1 = 0. Solid lines represent the results of 
direct numerical calculation using the stochastic LL equation for NPs with diameters D = 17 and 21 nm, respec-
tively, while the dots show the values calculated in the self-consistent approximation developed. The number of 
NPs in the Lorentz sphere in the latter case was fixed at Np = 60, and only four cycles of the iteration procedure was 
carried out for every dot. Here, the maximum difference between the results of two calculations does not exceed 
15%, which is due to the presence of the correlation effects. Obviously, the dynamics of the magnetic moments 
of closely located NPs should be strongly correlated, but this fact is not taken into account in the approximation 
developed. Figure 8c plots meq values of random assembly of NPs with D = 21 nm calculated for different numbers 
of NPs in the Lorentz sphere. An increase in the number of NPs in the Lorentz sphere in excess of Np = 60 does 
not lead to any noticeable change in meq values.

As Fig. 7b shows, a difference between the self-consistent standard deviations σx and σz is usually small in 
a wide range of H0 ≤ 500 Oe. Assuming approximately σx ≈ σz = σ and performing calculations in a spherical 
coordinate system with the polar axis parallel to the direction of the applied H0 field, one can rewrite Eq. (5) as 
follows

where ξ = HH0/σ2. In the limit H0 → 0 this integral is estimated to be

where σ(0) is the standard deviation at H0 = 0. For characteristic values of the standard deviation, σ(0) ~ 100 Oe, 
the Langevin function mL in Eq. (8) changes slowly. Thus, as Eq. (8) shows, with an increase in σ(0) value the 
initial magnetic susceptibility of the assembly decreases approximately as 1/σ(0). It can be shown that Eq. (8) 
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accurately describes the initial linear portion of the M(H0) curves shown in Fig. 8, if one uses in Eq. (8) the cor-
responding σ(0) values obtained in a numerical simulation. Obviously, the decrease in the equilibrium assembly 
magnetization as a function of its density is due to a disorienting effect of the random magnetic field H. Actually, 
under the influence of random magnetic field the magnetic moments of the NPs on average deviate from the 
H0 direction.

Similar calculations of the equilibrium assembly magnetization in the self-consistent field approximation were 
also performed for random assemblies with K1 > 0 value. Instead of using Eqs. (3) and (4), in this case one has to 
assign the magnetizations of the NPs within the Lorentz sphere by means of the corresponding Gibbs principle 
taking into account the K1 value and the directions of easy anisotropy axes of various NPs in the formulas given 
in Ref.32. Figure 9a,b plot meq values over H0 for an assembly of NPs with K1 = 105 erg/cm3, Ms = 350 emu/cm3 
for the NPs of D = 17 and 21 nm, respectively. The magnetic field dependences of meq values obtained in the two 
different methods turn out to be sufficiently close in the entire 0–500 Oe range of the applied H0 fields.

For completeness, similar calculations of the equilibrium assembly magnetization have been carried out for 
dilute assemblies of elongated and oblate clusters of magnetic NPs with aspect ratios Dz/D = 2.0 and Dz/D = 0.5, 
where Dz and D are the longitudinal and transverse diameters of the spheroidal magnetic cluster, respectively. 
It is shown that for a given H0 value, the equilibrium assembly magnetization increases for an elongated cluster 
with an aspect ratio Dz/D > 1 and decreases in the opposite case, Dz/D < 1, in comparison with the results for a 
spherical cluster, Dz/D = 1.0. These results are explained by the influence of the macroscopic demagnetizing field 
which acts inside the Lorentz sphere created in elongated or oblate spheroids.

conclusions
An assembly of single-domain magnetic NPs is a complex physical system whose properties are determined by 
many factors, such as the distribution of NPs in size and shape, the density of the assembly, and the value of the 
main magnetic parameters of the NPs. Behavior of the assembly depends also on the properties of the medium 
where the NPs are distributed, beside the applied magnetic field and the temperature. In contrast to classical 
plasma or quantum gases with Coulomb  interaction14–18 magnetic particles interact via anisotropic magneto-
dipole forces. Moreover, a SPMNP is characterized by an induced magnetization, which is nearly zero in the 
absence of magnetic field acting on the particle, contrary to elementary particles whose electric charge is fixed.

In this paper we study the properties of a SPM assembly of monodispersed NPs in a solid nonmagnetic 
matrix. The calculations performed take into account magnetic anisotropy and the magneto-dipole interac-
tion of particles, but a contact exchange interaction is ignored between the NPs, as they are protected by thin 
nonmagnetic shells. This model differs significantly from that describing  ferrofluids46, 47,50,52,53. In fluid NPs can 
rotate as a whole. In addition, they may redistribute to form chains of particles or dense  conglomerates46,47,50,52,53.

To realize a SPM regime the sample temperature should be higher than the characteristic blocking tempera-
ture Tb of NPs. It is important that SPMNPs assembly relaxes to a thermodynamically equilibrium over a finite 
observation time. The fundamental physical quantity of a SPMNPs assembly is the equilibrium magnetization, 
Meq = Meq(H0,T), which can be easily measured  experimentally23–29. Theoretically, this value can be determined 
on the basis of the Gibbs  principle14–21 as a derivative of the assembly’s free energy with respect to an applied field 
H0. However, a direct calculation of the Gibbs statistical integral for an assembly of interacting magnetic NPs 
involves great mathematical difficulties. In this paper, a new physically adequate method is used for calculating 
the Meq(H0,T) value of an assembly by solving the stochastic LL  equation56–60. In contrast to the Monte-Carlo 
 calculations25,33–42,46,50, the relaxation process to thermodynamic equilibrium in the assembly can be directly 
observed using the stochastic LL equation. Detailed calculations of the equilibrium magnetization were per-
formed for dilute assemblies of magnetic clusters containing Np = 60–100 NPs of a given diameter. The intensity 
of the magneto-dipole interaction inside the clusters can be controlled by changing the cluster filling density η.

In an assembly of weakly interacting NPs it is shown that due to the influence of magnetic anisotropy energy, 
equilibrium magnetization differs significantly from the Langevin law in the range of moderate and large H0 
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fields. Nevertheless, in sufficiently small H0 the K1 dependence of the equilibrium magnetization disappears. In 
this area the Langevin formula is valid and describes universal behavior of a dilute assembly. For the assemblies 
of iron oxide NPs studied here the universal behavior is observed over H0 ≤ 50 Oe. However, for dense assemblies 
with a noticeable influence of the magneto-dipole interaction a significant dependence of the initial susceptibility 
on the density is revealed. A difference of the initial susceptibility over the Langevin value serves as a validity of 
the influence of the magneto-dipole interaction on the assembly properties.

In this paper a new approach to describe the influence of random magnetic field acting on NPs in a dense 
assembly is proposed. In effective field  theories46–50,52 it is assumed that a typical nanoparticle of the assembly is 
subjected to some self-consistent magnetic field, which takes into account the influence of the magnetic fields 
of the surrounding NPs. However, in a real assembly each nanoparticle is under the influence of its own local 
magnetic field which contains a random component. In this paper the probability densities of the components of 
random magnetic field acting on a typical magnetic nanoparticle are calculated. The self-consistent probability 
densities of random field components are described by Gaussian distribution. Thus, the standard deviation in 
the Gaussian distribution becomes an important parameter of the theory. Knowing the probability density of the 
components of random magnetic field it is possible to calculate the equilibrium magnetization of the assembly in 
the given approximation as a function of applied H0 field. It is shown that the approach developed satisfactorily 
describes the numerical results obtained for the equilibrium M(H0) curve with the help of stochastic LL equation.

The effect of intense magneto-dipole interaction on the properties of an assembly of magnetic NPs is usually 
 explained25 either by a change in the characteristic height of energy barriers between potential wells of magnetic 
NPs, or by some collective processes that simultaneously affect the magnetic state of closely spaced magnetic 
NPs. Based on Eqs. (5) and (6) in this work it is shown that a decrease in the equilibrium magnetization of an 
interacting assembly as a function of its density can be explained by the disorienting effect of random magnetic 
field. This leads, on average, to a deviation of the magnetic moments of the NPs from the applied magnetic field 
direction. In this connection, it is worth noting that the broadening of spectral lines in a high temperature plasma 
was successfully explained by the action of a random electric microfield, the statistical properties of which are 
described by  Holtsmark62 or  similar63 distributions.

Methods
Stochastic Landau–Lifshitz equation. Dynamics of a unit magnetization vector �αi of a single-domain 
nanoparticle i of the cluster is determined by the stochastic LL  equation56–60

where γ is the gyromagnetic ratio, κ is phenomenological damping constant, γ1 = γ/(1 + κ2), �Hef ,i is the effective 
magnetic field and �Hth,i is the thermal field. The effective magnetic field acting on a separate nanoparticle can be 
calculated as a derivative of the total cluster energy

The total magnetic energy of the cluster W = Wa + WZ + Wm is a sum of the magneto-crystalline anisotropy 
energy Wa, Zeeman energy WZ of the particles in applied magnetic field �H0 , and the energy Wm of mutual 
magneto-dipole interaction of NPs in the cluster.

For spherical NPs with uniaxial type of magnetic anisotropy the magneto-crystalline anisotropy energy is 
given by

where ei is the orientation of the easy anisotropy axis of i-th particle of the cluster. Zeeman energy WZ of the 
cluster in an applied magnetic field H0 is given by

Next, for spherical uniformly magnetized NPs the magnetostatic energy of the cluster can be represented as 
the energy of the point interacting dipoles located at the particle centers ri within the cluster. Then the magneto-
dipole interacting energy is

where nij is a unit vector along the centers of i-th and j-th particles, respectively.
Thus, the effective magnetic field acting on the i-th nanoparticle of the cluster is given by
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The thermal fields, �Hth,i , i = 1, 2, ... Np, acting on various NPs of the cluster are statistically independent, with 
the following statistical  properties56 of their components for every nanoparticle

here δαβ is the Kroneker symbol, and δ(t) is the delta function.
The procedure for solving these equations is described in detail in Refs.57–59.

Random 3D clusters of NPs. In the Monte-Carlo calculations performed to study the SPMNPs assemblies 
the nanoparticle positions were randomly  generated36,40 on nodes of simple cubic lattices with a certain lattice 
parameter. This numerical algorithm can hardly be considered as truly random. In particular, it completely pre-
vents the appearance of numerous assembly configurations where certain NPs turn out to be very close to each 
other, i.e. closer than the lattice parameter chosen. In the present study the 3D clusters consisting of Np identical 
magnetic NPs with truly random positions were created using numerical algorithm developed in Ref.12. First, a 
dense and approximately uniform set of N random points {ρi} was created in a sphere of the radius Rcl, so that 
|ρi| ≤ Rcl, i = 1, 2, ... N, for N ≫ Np. The first random point ρ1 can be chosen as a center of the first nanoparticle of 
the assembly, r1 = ρ1. Then it is necessary to remove all points with coordinates |ρi − r1| ≤ D from the initial set of 
the random points. Any random point in the remaining set of points can serve as a center of second nanoparti-
cle of the assembly, for example, r2 = ρ2. Continuing this procedure, one can assign centers to all Np NPs within 
the cluster volume. Moreover, none of the NPs of the assembly will be in a direct contact with the surrounding 
particles. This algorithm allows to create random 3D clusters of magnetic NPs with filling densities η < 0.5. The 
orientations of the easy anisotropy axes {ei}, i = 1, 2, … Np, of NPs in a random 3D clusters are chosen randomly 
in a sphere.
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