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Influence of ligand’s directional 
configuration, chrysenes as model 
compounds, on the binding activity 
with aryl hydrocarbon receptor
Taewoo Kim1, Juyuan Zhen2, Junghyun Lee1, Robert Bauer2, Changkeun Lee1, 
Bong‑Oh Kwon3, Keun Hwa Chae4, Seongjin Hong5, John P. Giesy6,7, Gap Soo Chang2* & 
Jong Seong Khim1*

Understanding what and how physico‑chemical factors of a ligand configure conditions for ligand‑
receptor binding is a key to accurate assessment of toxic potencies of environmental pollutants. 
We investigated influences of the dipole‑driven orientation and resulting directional configuration 
of ligands on receptor binding activities. Using physico‑chemical properties calculated by ab initio 
density functional theory, directional reactivity factors (DRF) were devised as main indicators of toxic 
potencies, linking molecular ligand‑receptor binding to in vitro responses. The directional reactive 
model was applied to predict variation of aryl hydrocarbon receptor‑mediated toxic potencies among 
homologues of chrysene with structural modifications such as the numbers of constituent benzene 
rings, methylation and hydroxylation. Results of predictive models were consistent with empirical 
potencies determined by use of the H4IIE‑luc transactivation bioassay. The experiment‑free approach 
based on first principles provides an analytical framework for estimating molecular bioactivity in 
silico and complements conventional empirical approaches to studying molecular initiating events in 
adverse outcome pathways.

Protein receptors act as transcription factors that regulate expressions of genes and determine how cells in organ-
isms respond to xenobiotics. When a receptor binds with exogenous substances (viz., ligand), ligand-receptor 
complexes are translocated to nuclei of cells where they regulate expressions of genes. In the case of xenobiot-
ics, this includes up-regulation of genes coding for enzymes, such as cytochrome P450 1A1 (CYP1A1), which 
transforms  xenobiotics1. This receptor-mediated, enzyme regulation depends on ligand-specific binding affinity 
and especially since it is the first initiation event, provides the basis of toxicology. Although various receptors 
and signal transduction pathways are known, kinetics of how ligands interact with responsive receptors remains 
imperfect and is thus currently undergoing intensive  research2,3.

To understand such ligand-specific events involved in adverse outcome pathways (AOPs) or functioning 
of drugs, knowledge of affinities of binding to receptors is  fundamental4. There are a number of nuclear recep-
tors, conserved in a wide range of vertebrates with which contaminants or drugs can interact as agonists or 
 antagonists5. Variations among amino acid sequences of the ligand binding domain can explain differences in 
potencies of chemicals and sensitivities among  species6. Due to incomplete understanding of physico-chemical 
interactions involved in binding of ligands to protein receptors, accurate prediction of affinities of ligand-specific 
binding in addition to steric factors, predicting initiation of AOPs, and toxicities is challenging.
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In ecotoxicology, assessment of toxic potencies has relied primarily on empirical observations of biological 
responses through in vivo and later developed in vitro  systems7. Aside from ethical issues involved in testing of 
whole animals and difficulty of studying threatened or endangered species or non-standard laboratory animals, 
the rapid upsurge in new chemicals either found in nature or synthesized in industry outpaces capacities of 
industries and governments to assess risks by use of traditional methods, which makes them impractical for 
routine screening and  testing8. In an effort to complement traditional assays and efficiently screen new chemicals, 
this proliferation of new chemicals has led to increasing attention being given to in silico alternatives to empiri-
cal testing, especially in vivo9. Quantitative structure–activity relationships (QSAR) is one accepted alternative, 
in silico predictive method based on linear free energy models (LFEM) and statistical correlations between 
structure-related physico-chemical properties of ligands in form of molecular descriptors (numerical quanti-
ties) and previously experimented bioactivity data. Multiple linear regression equations developed by the QSAR 
approach are then used to extrapolate target endpoints, such as toxic potencies of new chemicals (Fig. 1A)10–12. 
LFEMs include predictors of hydrophobic, electrical, and steric parameters. When structure-related properties are 
however, not linearly correlated to bioactivities, statistical inferences of target endpoints during semi-empirical 

Figure 1.  Directional reactive modeling for AhR mediated potency. (A) Comparison between contemporary 
experimental approaches, quantitative structure–activity relationship (QSAR) and first principles potential 
toxicity prediction model; (B) Physico-chemical properties of the model compound, chrysene, for the 
directional reactive factor (DRF); (C) Structural model of aryl hydrocarbon receptor (AhR) with ligand 
binding sites based on PDB ID: 4F3L and its amino acids sequence which is counted to 107. Net charge of AhR 
homology (QAhR,net) is determined to + 4.1.
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modeling are not  applicable13–15. Alternatively, recently, molecular docking models, based primarily on steric 
considerations, are being used to analytically estimate the binding affinity of ligands with  receptors16,17.

In a previous study, we introduced the directional reactivity factor to predict bioavailabilities of polychlorin-
ated biphenyl congeners (PCBs) based on first principles. But physico-chemical information of participating 
receptors, such as electronic charge state was not considered in the predictive equation, which makes it limited for 
predicting receptor-dependent  bioactivity18. Here, we report a novel, advanced directional reactive (DR) model 
that illustrates how physical properties of a ligand interplay to constitute optimal environments for biochemi-
cal interactions with respective receptors (Fig. 1A). The DR approach identifies three, stepwise key parameters 
and optimal conditions affecting ligand-receptor activity: (1) dipole-driven electrostatic interactions between 
ligands and receptors; (2) molecular orientation induced by physical ligand-receptor interaction and (3) resulting 
directional configuration of reactive sites in ligands. As a proof of concept, the DR model was applied to a ligand 
class containing homologues of polycyclic aromatic hydrocarbon (PAH), chrysene interacting with cytosolic 
protein, the aryl hydrocarbon receptor (AhR). Variation of the AhR-mediated toxic potencies across chrysene 
and its derivatives was well reproduced by the predictive model based on first-principles.

Results
Directional reactive modeling. For modeling interactions between ligands and receptor proteins, we 
explored two hypotheses; (a) different binding activities of various ligands with the same kind of receptor (AhR 
in this study) would solely depend on the ligand’s physico-chemical properties and (b) different binding activi-
ties would be resulted from the interaction of ligands with common properties of the receptor. These hypotheses 
suggest that a proper identification of physical properties of the ligand compounds and their interplay config-
uring the optimal interaction conditions with the common receptor would provide a probabilistic estimation 
of the ligand-specific binding activity. Then, the estimated ligand-receptor binding activity can be verified by 
comparison with statistical observation of receptor-mediated toxic potency.

When a ligand (drug or xenobiotic) is introduced into the cytosol of cells, it encounters various forces such as 
electrostatic, hydrogen bonding, π-π stacking, and van der Waals  forces19. Among these, electrostatic interaction 
is often the dominant force at large ligand-receptor separation before binding, while others are relatively weak 
or working over only small  distances20. This electrostatic interaction is mediated by dipole moments of ligands 
and charge state contributed from charged amino acids in a receptor. Considering larger molecular weights of 
receptor proteins than that of ligand molecule, charges on receptors can be assumed to be fixed in space and 
result in rotation of the ligand to make its dipole moment vector align along the line of force action, while the 
ligand moves toward the receptor. This process would determine the relative orientation of a ligand to “active 
binding” sites of the receptor. Another necessary condition to be considered for optimal reactions, resulting in 
ligand-receptor binding, is distribution of “frontier molecular orbitals (FMOs)” of a ligand, that is, the highest 
occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). Spatial distribu-
tions of HOMO and LUMO are related to charge densities in FMOs and thus, suggest which constituent atoms 
in a molecule serve as preferred sites for nucleophilic or electrophilic interactions with charged amino acids in 
a receptor. The DR model employs the atom-condensed Fukui function (F) as a FMO reactivity indicator. This 
approximation is valid for most cases of negligible orbital  relaxation21. The optimal ligand-receptor reaction 
would then require the more reactive sites to be located at the front of the ligand, which is governed by the “dipole 
moment-driven alignment” (Fig. 1B). Considering these physico-chemical processes, we developed directional 
reactivity factors (DRFs), which describe favorable orientation configurations between ligands and receptors, 
given the charge-dipole interaction (Eq. 1).

where QR,net is the receptor’s net charge contributed from charged amino acids, F+ (F-) is the nucleophilic (elec-
trophilic) Fukui function of each terminal atom bonded with hydrogen or other functional groups (#A:X) in the 
ligand, ⇀D is the ligand’s dipole moment vector, and n̂ is the bonding direction of the terminal atom. The correla-
tion coefficient CLR is 1/4πεoεRr that represents Coulomb constant, relative permittivity of receptor cytosol ( εR ), 
and the inverse proportionality of charge-dipole interaction to the intermolecular distance (r). This coefficient 
becomes constant under the condition of equal ligand-receptor distance for the same type of receptor.

The DRF equation takes into account contributions of all atom-condensed Fukui functions along the line 
of action ( D̂ ). This describes reactive sites located behind the molecule (π/2 < ϕn < 3π/2) with respect to the line 
of action that would reduce reaction affinity with the receptor. The use of either F+ or F- in the DRF calculation 
depends on the charged state of the responsive receptor. These quantities are computationally obtainable using 
the homology modeling method and the density functional theory (DFT)22,23.

DRF as an indicator of ligand‑binding reactivity. The DR model was applied to predict AhR medi-
ated toxic potencies of homologues of chrysene by examining the DRF, which represents the degree of optimal 
reaction configuration toward ligand-receptor binding. Cytosolic AhR is a widely used ligand-activated tran-
script factor regulating expression of CYP450, xenobiotic metabolizing enzymes, which occur in diverse spe-
cies and cell  types24. Chrysene is listed as one of 16 priority PAHs by the US Environmental Protection Agency 
(US EPA) and has a variety of  homologues25. The model compounds included 4 groups of differently modified 
chrysene homologues; benzo-, dibenzo-, methylated, and hydroxylated chrysenes. In each homologue group, 
2−3 congeners were targeted to generally encompass homologous variations (Table S1 for full list of chrysene 
homologues). The net charge of AhR (QAhR,net) was obtained by building three-dimensional (3D) structures of 
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the ligand binding domain (LBD) from the sequence of amino acids in the rat AhR (GI: 7304873 in the NCBI 
sequence database) using SWISS-MODEL26. The 3D AhR homology structure is composed of 107 amino acids 
in total and contains 5 histidines (His or H), 10 arginines (Arg or R), and 5 lysines (Lys or K), which possess posi-
tive charges at pH 7.4 (acidity condition of the in vitro bioassay in this study), and 5 aspartates (Asp or D) and 6 
glutamates (Glu or E) of negatively charged acids (Fig. 1C and Figure S1). These charged amino acids result in a 
total net charge of + 4.1 at pH 7.4 (Figure S2 and Table S2 for details of net charge calculation)27.

Various physico-chemical properties of chrysenes, such as HOMO, LUMO, and molecular dipole moment, 
were determined by ab initio DFT calculations with Becke three-parameter Lee–Yang–Parr (B3LYP) exchange 
functional and the polarized triple-zeta valence (def2-TZVPP) basis set. The atom-condensed Fukui function 
was determined from the DFT-calculated Hirshfield charge  population28. Due to structural symmetry, when the 
chrysene base molecule is modified by electrophilic methyl and nucleophilic hydroxyl groups while the base 
molecule has a weak dipole moment almost perpendicular to the molecule plane, the dipole moment changes 
dramatically, both in direction and magnitude (Fig. 2A, Table 1, and Figure S3). The additive rings (benzo- and 
dibenzo-chrysenes) also result in rotation of dipole moment with small increase in magnitude. The hydroxy 
chrysene group has the largest dipole moment followed by the methyl group. The dipole moments of benzo and 
dibenzo groups are comparable to that of the base molecule. The electrophilic methyl and nucleophilic hydroxyl 
groups substantially increase the dipole moment magnitude. Alternatively, frontier orbitals (HOMO and LUMO) 
responsible for intermolecular interaction are additionally contributed from orbitals around carbon sites in 
benzo- and dibenzo-chrysenes (Fig. 2B and Figure S4).

Carbon in the methyl group does not possess LUMO and addition of the hydroxyl group suppress LUMO 
from nearby carbon atoms. The influence of molecular modification on frontier orbitals is supported by measure-
ments of C 1s near-edge X-ray absorption fine structure (NEXAFS) (Fig. 2C). Two spectral features about 284.8 
and 285.6 eV correspond to C 1s → LUMO transitions from carbon atoms bonded with hydrogen or other func-
tional groups (peak a) and those bonded with neighboring carbon atoms (peak b)29. Addition of a methyl group 
increases the spectral weight of a peak at the higher energy than LUMO of chrysene base molecule (284.8 eV) 
and thus the π* state of carbon in the methyl group does not appear in the LUMO iso-surface. Suppression of 
the LUMO state due to the presence of the hydroxyl group is also supported by a decrease in the spectral weight 
of peak a, although there is no loss of a carbon atom through hydroxylation (Figure S5 for C 1s NEXAFS results 
for all chrysene homologues).

Using DFT-calculated properties and total net charge of the AhR, DRF values for all 12 homologues of 
chrysene were obtained (Table 1). The charge-dipole interaction would occur in the cell cytosol containing dis-
solved ions such as  Na+,  K+, and  Cl-, not in free  space30. Results of a recent study suggested that these dissolved 
ions are attracted by and trapped in the vicinity of the charged amino acids in cytosolic  proteins31. That is,  Na+ 
and  K+ ions are bound to negative Asp and Glu residues while  Cl- ions are to positive Arg, Lys, and His resi-
dues. After being introduced into the cell cytosol, the ligand thus recognizes the electrostatic potential by these 
ions surrounding the charged amino acids, which can be approximated to opposite charge of the AhR protein 
(-QAhR,net). The dipole moment vector and Fukui functions resulting in the DRFs are selected in this regard. The 
most striking result is that hydroxy-chrysene has the smallest DRF values despite their strongest dipole moments. 
This is because carbons with the large Fukui functions are located on the opposite side of the ligand from the 
receptor (Table 1 presents as an example, the location of carbon with the largest Fukui value). Methyl chrysene 
exhibited the largest DRF values, followed by benzo-chrysenes. In each homolog group, DRF values depend on 
the dipole moment and relative location of reactive carbons to the dipole orientation. The DRF shows the large 
value (27.97) for 2-methylchrysene (2MC) and decreases to 6.79 for 1-methylchrysene (1MC). In the case of 
benzo[c]chrysene (BcC), the DRF is larger than that of 1MC, because of the favorable distribution of reactive 
carbon sites despite the smaller F+ and dipole moment.

AhR‑mediated toxic potency of chrysene homologues. If the DR model describes the optimal con-
figuration for ligand-receptor reaction properly, the DRF would be one promising indicator accurately estimat-
ing ligand-specific bioactivity. For robust validation of the DR model, a homogeneous set of AhR-mediated toxic 
potencies for chrysenes were examined experimentally by use of the in vitro, H4IIE-luc transactivation assay 
and compared with DRF values calculated from first-principles. The experimental dose–response curves for 
the groups of similarly structured chrysenes are presented (Fig. 3A). AhR-mediated potencies of all chrysene 
homologues are evidenced in the range of 51–147%BaPmax, which indicated significant potential to cause tox-
icity and suggests selected target chemicals are as potent as benzo[a]pyrene, which is a well-known in vitro 
agonist of the AhR. By group, methyl chrysene exhibits the greatest potency, followed by benzo-chrysene, while 
dibenzo-chrysene and hydroxy chrysene both exhibited similar or lesser potencies, compared to that of the base 
compound of unsubstituted chrysene.

For a detailed comparison with the DRF value for individual compounds, the half-maximal effective con-
centration  (EC50) values were calculated (Fig. 3B and Table 2). Among chrysene homologues tested, 2MC turns 
out to have the greatest toxic potency  (EC50 = 6.6 × 10−1 μM) and 3-hydroxychrysene (3HC) was the least potent 
 (EC50 = 1400 × 10−1 μM). Different  EC50 values were also observed within each homologue group. The  EC50 values 
of benzo[a]chrysene (BaC), benzo[b]chrysene (BbC), and BcC are 200 × 10−1 μM, 28 × 10−1 μM and 13 × 10−1 μM, 
respectively, despite having the same molecular formula, mass, and octanol–water partition coefficient (Log 
 Kow; hydrophobicity). For the dibenzo-chrysene group, differences in  EC50 values were between dibenzo[b,def]
chrysene (DbdC) (140 × 10−1 μM) and dibenzo[def,p]chrysene (DdpC) (760 × 10−1 μM). A similar trend was 
observed for the methyl- and hydroxy-chrysene groups. The experimentally derived bioactivity data was consist-
ent with the optimal ligand-receptor reaction predicted by the DR model for toxicity rank among homologue 
groups and also among congeners within a homologue. This consistency suggests that accurate predictions 
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of ligand-receptor binding and resulting ligand-specific bioactivity requires contributions involving not only 
physico-chemical properties but also interplay between and among them.

Comparison of predicted potencies: DR model versus current in silico models. DRF values and 
experimental toxic potency data (inverse of  EC50) were compared with the toxicity-relevant characteristics pre-
dicted by currently used in silico predictive models; QSAR (inverse of the median effective concentration, 1/
EC50), a structure-based statistical regression method, and molecular docking models (free energy and binding 
distance), a structure-based analytical approach searching for the best ligand-receptor binding pose in terms 
of binding free  energy32,33. Target toxicants can be input as the unambiguous notation of the structure such as 
SMILES in VEGA-QSAR. The results of predictive  EC50 were obtained from the Instituto di Ricerche Farma-

Figure 2.  Molecular orbital structures of chrysene and its homologues (benzo, dibenzo, methyl and hydroxy 
chrysenes). (A) Change in dipole moment by addition of a benzene ring and functional group (methyl- and 
hydroxy-) of chrysene. Carbon atoms with the largest Fukui value in each chrysene homologue are highlighted 
in yellow and the red arrow denotes the direction and magnitude of dipole moment; (B) The HOMO and 
LUMO energies and corresponding orbital iso-surfaces for the chrysene homologues; (C) C 1s near-edge X-ray 
absorption fine structure (NEXAFS) spectra of chrysene homologues collected from pristine samples. Photon 
energy ranges exhibiting spectral features of carbon atoms bonded with hydrogen or other functional groups, 
C-H or C-X (peak a) and those bonded with neighboring carbon atoms, C–C (peak b).
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Table 1.  Structural and electronic configuration parameters of the chrysene homologues and the potential 
toxicity predicted by directional reactivity factor (DRF). *The carbon with the largest Fukui value; forward (F), 
perpendicular (P), and backward (B) to the AhR.

Compounds HOMO (eV) LUMO (eV)
HOMO–LUMO 
energy gap (eV)

Dipole moment 
magnitude  (102 
Debye)

Fukui value
Carbon atoms with the 
largest Fukui value

Location of 
carbon* to AhR

Directional 
reactivity factor 
(DRF)F+

Chrysene − 5.75 − 1.51 4.24 0.03 0.068 7C, 12C P − 0.02

Benzo[a]chrysene − 5.73 − 1.50 4.24 3.30 0.062 10C B − 2.98

Benzo[b]chrysene − 5.43 − 1.94 3.49 1.89 0.056 8C F 1.60

Benzo[c]chrysene − 5.77 − 1.59 4.18 10.10 0.060 10C F 9.75

Dibenzo[b,def]
chrysene − 5.11 − 2.22 2.89 0.03 0.062 10C, 18C B − 0.02

Dibenzo[def,p]
chrysene − 5.36 − 1.97 3.39 3.43 0.059 10C B − 3.57

1-methylchrysene − 5.69 − 1.49 4.20 39.58 0.069 7C F 6.79

2-methylchrysene − 5.68 − 1.47 4.21 61.40 0.067 7C F 27.97

3-methylchrysene − 5.67 − 1.44 4.23 57.52 0.067 7C F 13.66

1-hydroxychrysene − 5.56 − 1.43 4.14 131.50 0.070 7C B − 33.19

2-hydroxychrysene − 5.66 − 1.49 4.17 145.70 0.069 7C B − 51.44

3-hydroxychrysene − 5.62 − 1.48 4.14 94.04 0.059 12C B − 58.75

Figure 3.  Experimental AhR-mediated potencies of chrysene homologues. (A) Dose-dependent activation 
of chrysene base compound and its homologues; benzo (n = 3), dibenzo (n = 2), methyl (n = 3), and hydroxy 
chrysenes (n = 3). Relative responses were normalized against the positive control (benzo[a]pyrene at the 
following concentrations; 100, 20, 4, 0.8, 0.16, 0.032, 0.0064, 0.00128, 0.000256, or 0.0000512 μg mL−1; set as 1.0 
of potential toxicity). Dose expressed as nmol chrysene homologues/mL media (μM) present in the test well. 
 EC50 are means of three or four independent experiments. Error bars represent the standard error; (B) The 
order of potential toxicity of chrysene homologue based on  EC50 calculated for H4IIE-luc transactivation assay. 
Examined chrysene homologues were ranked in descending order of potential toxicity. The methyl chrysene 
group exhibits the highest potency followed by benzo chrysene one while dibenzo chrysene and hydroxy-
chrysene groups show similar or lower potencies than other chrysene homologue groups.
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cologiche Mario Negri (IRFMN) toxicity model (Daphnia magna acute) based on the training sets including 
aromatic  hydrocarbons34. The same AhR homology used in the DR model was employed for calculations with 
docking models. Overall, the results suggest that both QSAR and molecular docking models do not accurately 
estimate the experimental potencies determined by use of in vitro bioassays, say anti-empirical data.

The QSAR model predicted greatest toxic potency of dibenzo- and benzo-chrysene groups followed by 
chrysene base compound and methylated chrysenes. Different experimental toxicities within each homologue 
group are also not reproduced, rather the similar degree of toxicity among congeners was observed (benzo-
chrysene: 5.4 × 10−1 μM; dibenzo-chrysene: 4.2 × 10−1 μM; methyl-chrysene: 7.4 × 10−1 μM; hydroxy-chrysene: 
32 × 10−1 μM) (Fig. 4A and Table 2). This results in statistically insignificant correlations between experimental 
1/EC50 and QSAR-estimated 1/EC50  (R2 = 0.20, p > 0.05), which implies considerable uncertainty in prediction 
accuracy of toxicity (Fig. 4B). Unlike the QSAR approach, the docking analysis predicts different toxic poten-
cies of congeners in each homologue group and high binding affinity behaviors (i.e., low free energy and short 
binding distance) of the group of methylated chrysene, which was consistent with empirical toxicity data (Fig. 4B 
and Figure S6).

Chrysene homologues composed of benzene rings (benzo- and dibenzo-chrysene groups) exhibited lesser 
free energies than those of methyl- and hydroxy-chrysene groups. Another notable feature is that hydroxy-
chrysenes show comparable free energy to methyl chrysenes while experimental toxic potency due to addition of 
the hydroxyl group is least among chrysene homologues tested. Considering the fact that hydroxylated benzene 
compounds are usually known as metabolites by degradation or metabolism in abiotic and biotic responses, the 
docking model seems to overestimate toxicities of these model compounds (Table S3 presents a result of potential 
toxicity from other in silico models to predict toxic potencies)35. The statistical correlation between calculated 
optimal binding affinity and experimental 1/EC50 values is found to be insignificant  (R2 = 0.09, p > 0.05) (Fig. 4B). 
Meanwhile, although a positive correlation between 1/EC50 and total binding distance between the ligand and 
either of two binding domains (H285 and F318) was observed  (R2 = 0.61, p < 0.01), the short binding distances 
calculated for chrysene and 3HC compounds are inconsistent with experimental toxicity results.

Discrepancies of experimental bioactivity data from toxicity-relevant characteristics predicted by current 
in silico models are not unexpected. In fact, QSAR approaches are based on algorithms composed of a linear 
regression relationship between logarithms of aquatic toxicity of known chemicals and their structural molecu-
lar descriptors (training set). Effective toxic concentrations of individual chemicals were estimated by use of 
regression equations after training and the measure or calculated values of corresponding chemical from the 
 descriptors36. As a consequence, the congeners in each homologue group with the same molecular weight shows 
the same toxic potency according to the QSAR model.

Discussion
Toxicity testing has become central to hazard assessments of (in)organic substances associated with causal expo-
sure in environments. Thus, accurate evaluation of adverse effects of chemicals on bio-organisms have been a 
profound problem in environmental and pharmaceutical  toxicology37. Development of a model to reliably predict 
bioactivity complementing traditional bioassays is directly related with a fundamental question about how a 
chemical trigger the ligand-receptor binding that results in the following expression of xenobiotic metaboliz-
ing genes. Current computational approaches have focused on statistical correlations between structure-based 
physico-chemical properties and the observed bioactivity endpoints using multiple linear regression (i.e., QSAR), 

Table 2.  Comparison of the directional reactivity (DR) model with other predictive models and experimental 
potential toxicity data. a Predicted data from VEGA-QSAR. b Galaxydock. c Histidine 285. d Phenylalanine 318 in 
the AhR homology.

Chemical

In vitro bioassay QSARa Docking  modelb

Directional 
reactivity factor 
(DRF)

H4IIE-luc  EC50

Daphnia magna 
 EC50 Free energy (kcal 

 mol−1)

Binding distance to 
LBD (Ǻ)

(μM) (μM) Total H285c F318d

2-methylchrysene 6.6 × 10−1 7.4 × 10−1 − 7.1 6.3 3.0 3.3 28.0

3-methylchrysene 11 × 10−1 7.4 × 10−1 − 10.5 6.3 3.0 3.4 13.7

Benzo[c]chrysene 13 × 10−1 5.4 × 10−1 − 8.0 7.4 3.6 3.8 9.8

1-methylchrysene 19 × 10−1 7.4 × 10−1 − 9.8 6.6 3.1 3.4 6.8

Benzo[b]chrysene 28 × 10−1 5.4 × 10−1 − 6.6 22.8 9.1 13.8 1.6

Chrysene 72 × 10−1 9.1 × 10−1 − 9.7 6.6 3.2 3.4 − 0.02

Dibenzo[b,def]
chrysene 140 × 10−1 4.2 × 10−1 − 6.1 23.2 9.2 14.0 − 0.02

Benzo[a]chrysene 200 × 10−1 5.4 × 10−1 − 5.6 25.1 10.6 14.5 − 3.0

Dibenzo[def,p]
chrysene 760 × 10−1 4.2 × 10−1 − 7.8 33.0 18.4 14.6 − 3.6

2-hydroxychrysene 590 × 10−1 32 × 10−1 − 8.0 31.9 17.7 14.2 − 51.4

1-hydroxychrysene 870 × 10−1 32 × 10−1 − 8.9 32.3 17.7 14.6 − 33.2

3-hydroxychrysene 1400 × 10−1 32 × 10−1 − 8.1 6.7 2.9 3.8 − 58.8
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and characteristics of the ligand-receptor binding after minimization of free energy of binding (i.e., molecular 
docking)38–40. However, here, we have shown that structural similarity does not always guarantee that bioactivities 
will also be similar, but small structural differences, like different functionalization sites between 1MC and 2MC, 
can result in dramatic differences in toxic potency. Furthermore, since long-range dipole-charge interactions 
predetermine orientation and relative distribution of ligand’s reactive sites before binding to the receptor, the 
best ligand-receptor binding pose with the minimum free energy must not be always plausible.

The DR model suggests that individual physico-chemical properties of specific ligands do not contribute 
independently to binding, but interplay between them is also important. This kinetic approach begins with con-
sideration of the “molecular dipole moment” that is sensitive to functionalization, as the main property of ligand 
interacting with a receptor (mediated by trapped cytosolic ions) after a ligand is introduced into the cell cytosol. 

Figure 4.  Prediction efficiency of DR model and other in silico assays. (A) Experimental potency results 
of in vitro bioassay (H4IIE-luc) and predicted toxicity-relevant characteristics by in silico models (QSAR, 
molecular docking model, and the DR model introduced here). The QSAR and the docking model calculations 
were made using VEGA-QSAR and GalaxyDock, respectively. Each toxicant in the graph was sorted in 
descending order of 1/EC50 value. (B) Predicted versus observed values represented from each method and the 
regression coefficient,  R2 with significance (p). (C) Visualization of first principles prediction model for AhR-
mediated potency of chrysene homologues before their binding to AhR.
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However, the favorable binding environment is achieved by combined influence from the molecular orientation 
and relative location of reactive sites driven by “alignment” of the dipole moment (Fig. 4C). In this study, the 
DRF devised from the molecular level kinetic process could estimate the macroscopic toxic potency of chrysene 
homologues and therefore serve as a bioactivity indicator of chemicals. Once the amino acid sequence and 
constituent, charged acids are identified, the DR model can be applied to investigate species-specific bioactivity.

Unlike other current models, this model does not predict toxicity through statistical methods, but predicts the 
possibility of toxic effects, assuming the pre-conjugation state in the case of toxicants combined with receptors. 
Based on this model, it was confirmed that the reactivity (Fukui value) of molecules in each ligand group was 
different depending on the position despite their structural similarity, and the contribution in dipole moment of 
the ligand was confirmed according to the position of the reactive molecule. Thus, we found that the shape and 
orientation configuration of toxicants before the ligand-receptor interaction were generally consistent with  EC50 
values. This model was based on a good understanding on the toxic mechanisms and could apply to compounds 
with different action mechanisms explaining different reactivity of similarly structured chemicals to AhR.

Computational studies have been increasing substantially in the last few years. These computational tech-
niques with toxicity prediction model highly rely on QSAR analysis. While the DR model is an in silico-based 
approach like QSAR, but it employs more mechanism-driven consideration of toxic reaction rather than statisti-
cal inference and extrapolation. The DRF could bring up a topic of understanding the more scientifically robust 
basis for risk assessment by providing detailed mechanistic pathways and serve as a complementary to existing 
QSAR methodology. Using various efficient tools to calculate electronic excitation such as time dependent density 
functional theory (TDDFT), the DR model have the potential to extend to predict chemical interaction with 
biomolecules (e.g., fatty acids, DNA, RNA, and micro RNA)41. Therefore, further improvement of the DR model 
will keep pace with mutual advances in molecular biology and computational structural biology and provide a 
useful tool for discovery of drugs or predictive toxicology.

Materials and methods
Selection of model chemicals. As a first step toward identification of the major physical factors affecting 
toxic potencies, we selected the model chemicals considering four criteria: First, the selection began with a pool 
of high priority 16 PAHs regulated by the US EPA which have played an exceptionally large role in environmen-
tal sciences. Second, candidates were narrowed to 7 PAHs exhibiting acute toxic potency since the DR model 
does not consider absorption, distribution, metabolism, and excretion, and thus the model compounds should 
show perceivable variation in the toxic potency for a short period of  exposure42. Third, for prediction of the 
binding activity with AhR, the most potent AhR agonist in the environment would be desirable. Finally, various 
homologues of the selected AhR agonist were added in order to understand how the structural modification of 
ligand induces different binding activity with AhR and resulting toxic potency. Following these steps, chrysene 
and its homologues were selected as the model compounds for application of our bio-physical communica-
tion model and comparison with experimental results of toxic potency testing. Chrysene homologues cover a 
broad set of compounds ranging from four- to six-membered benzene to methylated- and hydroxylated ben-
zene; chrysene (Chr), BaC, BbC, BcC, DbdC, DdpC, 1MC, 2MC, 3-methylchrysene (3MC), 1-hydroxychrysene 
(1HC), 2-hydorxychrysene (2HC), and 3HC. Their full names, providers, and purities are present in the Sup-
plementary information (Table S1).

Density functional theory calculations. Physical properties of chyrsene and its homologues to be 
implemented in the DR model were obtained from DFT calculations, which were performed using the ORCA 
(version 4.1.1) program  package43. All stages of DFT computations were made by use of B3LYP exchange func-
tional with the def2-TZVPP basis set. Meanwhile, very tight, self-consistent field (SCF) convergence (the energy 
change is  10−9 a.u.) and fine integration grid of 5.0 were employed. The first stage (spin-restricted) geometric 
optimizations were performed for all structures of the homologues of chrysene. Next, ± e, charge was added to 
each compound as cationic or anionic case for the second stage (spin-unrestricted) optimizations. Based on the 
corresponding optimized structures, the molecular orbitals, Hirshfeld charge populations, density of orbital 
states, molecular dipole moments, and vibrational amplitudes for neutral, cationic and anionic states of each 
chrysene homologue were computed. The atom-condensed Fukui functions for all carbon atoms bonded with 
hydrogen or other functional groups in each homologue were determined by Hirshfield population  analysis28.

C 1s NEXAFS spectroscopy. Since physical properties were determined from the DFT-calculated molecu-
lar orbitals of each model compound, the calculated molecular orbital structures were verified through com-
parison with experimental unoccupied molecular orbital structures measured by NEXAFS spectroscopy. Meas-
urements of C 1s NEXAFS spectra were made at the 10D HR XAS KIST beamline of the Pohang Light Source 
in Korea. All NEXAFS spectra were measured in total electron yield (TEY) mode. After data acquisition, the 
spectra were energy calibrated with the Π* (C=C) transition at 285.6 eV of highly oriented pyrolytic graphite 
(HOPG). Samples were tested for radiation damage considering the sensitivity of carbon-based materials to 
X-ray radiation. Spectra were intensity-normalized to the incoming photon flux, as recorded by an Au mesh.

H4llE‑luc transactivation bioassay for evaluating AhR‑mediated potencies and calculation of 
 ec50 of homologues of chrysene. H4IIE cell line derived from rat hepatoma has been reported to contin-
uously express cytochrome P450 protein/mRNA. For this study, H4IIE cells transfected with the luciferase (Luc) 
reporter gene plasmid (pGudLuc1.1) were used, originally obtained from Jac Aarts, University of Wageningen, 
The Netherlands and further developed by John Giesy, University of  Saskatchewan44,45. Upon ligand binding, 
AhR in H4IIE-luc is activated and translocated to the nucleus, where heat shock proteins are dissociated from 
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the complex and they form a dimer with the AhR nuclear translocator (ARNT) protein. This complex binds to 
specific DNA sequences with high affinity, the dioxin-responsive element (DRE). The binding to the DRE results 
in DNA bending transcriptional activation of adjacent responsive genes. The detailed mechanism is provided 
in Figure S7.

Acute toxic potencies of chrysene homologues were determined based on an AhR-mediated activity using 
H4IIE-luc cells, by the method previously  reported46. Since PAHs could be degraded by metabolic activity dur-
ing the H4IIE-luc transactivation bioassay with longer exposure time, the 4 h exposure time was chosen for 
calculation of AhR-mediated toxic potency. After the exposure, the activity results were expressed as relative 
luminescence units that were quantified using a Victor X3 multi label plate reader (PerkinElmer, Waltham, 
MA). Benzo[a]pyrene was used as a positive control ligand. We converted responses of the H4IIE-luc bioassay 
to the percentages of the maximum response (%BaPmax) observed for a 50 nM BaP (= 100%BaPmax). All bioas-
says were repeated four times in triplicate (Table S4 for detail information of in vitro bioassay conditions). The 
half effective concentrations for the AhR-mediated effects of individual compounds were determined by use 
of H4IIE-luc bioassays. Compounds with 10 concentrations using fivefold serial dilutions (viz., 100, 20, 4, 0.8, 
0.16, 0.032, 0.0064, 0.00128, 0.000256, and 0.0000512 μg mL−1) were tested. Estimations of  EC50 values of target 
compounds from the dose–response relationships were basically assumed equal efficacy and parallelism between 
target compounds and reference compound (benzo[a]pyrene).

In silico analysis: quantitative structure–activity relationship (QSAR) and molecular docking 
model. Prediction capability of current in silico models for chrysene homologues were tested with QSAR 
model and molecular docking analysis. VEGA-QSAR program and the GalaxyDock program were used for 
QSAR and molecular docking analysis, respectively. VEGA-QSAR has been performed and showed a large set 
of toxicological data and endpoints convincing to derive predictive toxicity according to the previous  studies47. 
In our case,  EC50 values were obtained using SMILES notation of VEGA-QSAR and obtained the toxicity data 
corresponding to D. magna.

For molecular docking analysis, the GalaxyDock was used to simulate the optimized configuration of AhR in 
the presence of model chemicals and determine the binding affinity for receptor-ligand docking at each ligand. 
The receptor-ligand docking was then simulated using the GalaxyDock in  GalaxyWEB34,48. For each model 
chemical, 50 candidate configurations of the ligand-receptor docking were calculated and the configuration with 
the lowest formation energy was chosen as the optimal binding structure. Two aromatic residues of histidine 
285 (H285) and phenylalanine 318 (F318) in the homology modeling were recognized as the most important 
for ligand  binding49. The distances between the nearest aromatic ring or residues of chrysene homologues and 
each of the ligand binding domains were calculated from the predicted binding pose generated by GalaxyDock. 
For calculations, the three-dimensional (3D) structure of the ligand binding domain (LBD) of the AhR was built 
from the sequence of amino acids in the rat AhR (GI: 7304873 in the NCBI sequence database) by the validation 
using the SWISS-MODEL, Rampage web servers, and ProSA-web26,50. A crystal structure of 4F3L (sequence 
identity = 27.8%, residues 252–357) was selected as a template. The structure model, built using Ramachandran 
plot from Rampage web server, was validated since 98% of the total residues were in the favored region with 2.4% 
of the residues in the allowed region. Furthermore, results from ProSA analyses showed the z-score for the 3D 
model to be within the range of score typically found for native proteins of the similar size.

Data availability
All data are available in the main text or the Supplementary information.
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