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peripheral serum metabolomic 
profiles inform central cognitive 
impairment
Jingye Wang1, Runmin Wei1,2, Guoxiang Xie1, Matthias Arnold 3,4, 
Alexandra Kueider‑Paisley 3, Gregory Louie 3, Siamak Mahmoudian Dehkordi3, 
colette Blach5, Rebecca Baillie 6, Xianlin Han7, Philip L. De Jager 8, David A. Bennett9, 
Rima Kaddurah‑Daouk 3,10,11* & Wei Jia 1*

The incidence of Alzheimer’s disease (AD) increases with age and is becoming a significant cause of 
worldwide morbidity and mortality. However, the metabolic perturbation behind the onset of AD 
remains unclear. In this study, we performed metabolite profiling in both brain (n = 109) and matching 
serum samples (n = 566) to identify differentially expressed metabolites and metabolic pathways 
associated with neuropathology and cognitive performance and to identify individuals at high risk 
of developing cognitive impairment. The abundances of 6 metabolites, glycolithocholate (GLCA), 
petroselinic acid, linoleic acid, myristic acid, palmitic acid, palmitoleic acid and the deoxycholate/
cholate (DCA/CA) ratio, along with the dysregulation scores of 3 metabolic pathways, primary bile acid 
biosynthesis, fatty acid biosynthesis, and biosynthesis of unsaturated fatty acids showed significant 
differences across both brain and serum diagnostic groups (P‑value < 0.05). Significant associations 
were observed between the levels of differential metabolites/pathways and cognitive performance, 
neurofibrillary tangles, and neuritic plaque burden. Metabolites abundances and personalized 
metabolic pathways scores were used to derive machine learning models, respectively, that could be 
used to differentiate cognitively impaired persons from those without cognitive impairment (median 
area under the receiver operating characteristic curve (AUC) = 0.772 for the metabolite level model; 
median AUC = 0.731 for the pathway level model). Utilizing these two models on the entire baseline 
control group, we identified those who experienced cognitive decline in the later years (AUC = 0.804, 
sensitivity = 0.722, specificity = 0.749 for the metabolite level model; AUC = 0.778, sensitivity = 0.633, 
specificity = 0.825 for the pathway level model) and demonstrated their pre‑AD onset prediction 
potentials. Our study provides a proof‑of‑concept that it is possible to discriminate antecedent 
cognitive impairment in older adults before the onset of overt clinical symptoms using metabolomics. 
Our findings, if validated in future studies, could enable the earlier detection and intervention of 
cognitive impairment that may halt its progression.

Alzheimer’s disease (AD), one of the top 10 leading causes of death in the United States, is an increasing chal-
lenge for health care systems and will result in increased economic burden as increasing numbers of new cases 
are diagnosed  annually1,2. Currently, there is no therapy to prevent or slow AD progression, which may be 
due to the inability to detect AD before its progression into evident cognitive decline. Identification of early 
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biomarkers associated with preclinical symptoms would allow early intervention or preventive strategies to be 
 developed3. Research has identified multiple neurochemical perturbations in AD, including amyloid precursor 
protein metabolism, phosphorylation of tau protein, and a wide range of metabolic  perturbations4. Unfortunately, 
current biomarkers for early disease, including cerebrospinal fluid (CSF) beta-amyloid and tau  levels5, structural 
and functional magnetic resonance  imaging6, the recent use of brain amyloid  imaging7 or  inflammaging8, and 
CSF markers to track brain atrophy and deposition of cortical beta-amyloid and neurofibrillary tangles, are 
limited because they are either invasive, time-consuming or expensive.

Recent studies have focused on obtaining biomarkers to identify features that differentiate persons with 
cognitive impairment from persons without cognitive impairment. Molecular markers sensitive to the underly-
ing pathogenic factors would be highly relevant to early disease detection and facilitation of disease monitoring 
and treatment responses. Metabolomics is an unbiased approach to study small-molecule metabolites that offers 
hope for the discovery of more biomarkers for AD. This profiling technology has already been used to identify 
differential metabolites that can distinguish mild cognitive impairment (MCI) subjects who will develop AD 
from stable  MCI9. Mounting evidence suggests that AD is closely accompanied with the abnormal bile acid (BA) 
 metabolism10–13, free fatty acid (FFA)  metabolism14–16, lipid  metabolism17,18, and neurotransmitter  metabolism19. 
BAs have become increasingly recognized as important metabolic signaling molecules that modulate lipid, glu-
cose, and energy  metabolism20. More importantly, BAs in brain act as neuroactive  steroids21. Different classes of 
BAs can either inhibit or potentiate  GABAα, and inhibit NMDA receptors while also exerting neuroprotective 
effects 22,23. Recent cross-sectional studies have shown differences in blood BAs in AD compared with non-cog-
nitively impaired  individuals24,25. Additionally, researchers found an accumulation of FFAs in the hippocampus 
and cortex of AD mice compared to control  mice26,27. Another animal study examined the role of elevated FFA 
in the pathogenesis of AD and established a potential mechanism of FFA causing hyperphosphorylation of tau 
through astroglia-mediated oxidative  stress28. Alterations of FFAs have also been detected in postmortem AD 
brains  tissues14 and serum  samples16, which may indicate an alternative fuel source before the onset of clinical 
 symptoms29. These observations have given rise to the possibility that metabolic perturbations could presage the 
onset of cognitive impairment and therefore aid in the identification of individuals with higher risks by providing 
additional information to use with standard clinical markers.

In this study, we performed metabolomic profiling in participants from a large, longitudinal cohort, with the 
goal of identifying metabolic changes as well as key metabolic pathways that might serve as new predictors of 
future cognitive impairment in older adults.

Materials and methods
Participants. The Religious Orders Study (ROS), which began in 1994, is a longitudinal clinical-pathologic 
cohort study of risk factors of cognitive decline and incident dementia run from the Rush Alzheimer’s Disease 
Center that is comprised of individuals from religious communities (e.g., Catholic brothers, nuns, and priests) 
across the  USA30,31. The Rush Memory and Aging Project (MAP), which began in 1997 includes participants 
from northeastern Illinois, USA with a broader range of socioeconomic status and life  experiences31. Partici-
pants in both studies enroll without known dementia, agree to annual clinical evaluation, and organ donation. 
Both studies were approved by an Intuitional Review Board of Rush University Medical Center. All subjects 
signed an informed consent, an Anatomic Gift Act, and a repository consent to allow their biospecimens and 
data to be used for ancillary studies. All research was performed in accordance with relevant guidelines/regula-
tions set forth by the Rush University Medical Center. Both studies are conducted by the same team of examiners 
and share a large common core of data collection at the item level to allow for efficient merging of data.

Cognitive performance tests. Cognitive performance was measured using a battery of 19 cognitive 
performance tests, 17 of which could be summarized in five cognitive domains (i.e., episodic memory, work-
ing memory, semantic memory, perceptual orientation/visuospatial ability, and perceptual speed) (Table S1). 
Domains are created by averaging the z-scores, based on mean and standard deviation from all baseline data, 
for tests in each domain. The global cognitive function score is calculated by averaging z-scores for all 17 tests to 
yield a global measure of cognitive function. Additionally, the Mini-Mental State Examination was also admin-
istered to characterize the cohort.

Clinical diagnoses. Medical conditions were documented via self-report and clinical evaluation. Clini-
cal diagnoses each year were determined blinded to previously collected data. A three-step process starts with 
an actuarial decision tree based on the history of cognitive decline, and impairment ratings in five cognitive 
domains based on cutoffs for 11 cognitive  tests32 followed by clinical judgment by a neuropsychologist for cogni-
tive impairment and determination of dementia and its causes by a clinician (i.e., neurologist, geriatrician, sec-
ond neuropsychologist, geriatric nurse practitioner)33. The diagnosis of AD follows the criteria of the National 
Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related 
Disorders Association (NINCDS/ADRDA)34. Participants were categorized as (a) AD, (b) MCI if diagnosed cog-
nitive impairment by the neuropsychologist but not diagnosed dementia by the  clinician32, and (c) no cognitive 
impairment (NCI) if diagnosed without AD or  MCI35. At the time of death, brain autopsies and histopathologi-
cal exams were performed by clinicians to confirm the diagnosis. After an autopsy was completed, a spectrum 
of neuropathologic diagnoses was obtained, such as a pathologic diagnosis of AD as defined using the modified 
NIA Reagan criteria. However, many other pathologies were present in the brains of older individuals (the mean 
age of death is 88.8 years old in ROSMAP), and they were catalogued for each participant.
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NCI converters were those participants who were cognitively normal at the time of blood draw and then 
experienced the cognitive decline (MCI or AD) at the time of death, while NCI non-converters were participants 
who remained cognitively normal during follow-up.

Neuropathology. Upon death, a postmortem neuropathological evaluation was implemented, and the 
procedures follow those outlined by the pathologic dataset recommended by the National Alzheimer’s Disease 
Coordinating Center. Brains of deceased subjects were removed, weighed, cut into one cm-thick coronal slabs 
and stored. Each brain was examined for the neuropathological indices of common pathologies that contribute 
to cognitive impairment. The location, age, and volume of all macroscopic infarcts were recorded, and tissue 
was obtained for histological confirmation, in addition to the identification of microscopic infarctions, as previ-
ously  described36,37. AD pathology was identified using the modified Bielschowsky silver stain technique and 
by use of the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD)  criteria38 and NIA-Reagan 
 criteria39, while the assessment of neurofibrillary tangles was based on Braak  criteria40 as described  previously41. 
The CERAD score, a semi-quantitative measure of neuritic plaque burden, is made of 4 levels: 4 = no AD, 3 = pos-
sible AD, 2 = probable AD and 1 = definite AD. As recommended, CERAD scores were reclassified to a binary 
level: score 1 ~ 2, score 3 ~ 4. Seven categories of Braak stages were based on the region and severity of neurofi-
brillary tangles pathology.

Metabolites quantification. Using targeted metabolomics  protocols42 and profiling  protocols43 estab-
lished in previous studies, BAs were quantified by ultra-performance liquid chromatography triple quadrupole 
mass spectrometry (UPLC-TQMS) (Waters XEVO TQ-S, Milford, USA) and other metabolites were quantified 
by gas chromatography time-of-flight mass spectrometry (GC-TOFMS) (Leco Corporation, St Joseph, USA). 
Details are described in the Supporting Information.

Statistical analysis. Stratifying by clinical diagnosis, continuous demographic variables were expressed as 
mean [standard deviation (SD)] and tested by Wilcoxon rank-sum test, while categorical demographic variables 
were expressed as n (percentage) and tested by Chi-square test. Missing values in quantitative metabolites due to 
limits of quantification were regarded as left-censored missing and imputed by  GSimp44,45. Individual BA con-
centrations were normalized to the total BAs concentration (i.e., the proportion of total BAs). Metabolites were 
reported as median (25% quantile, 75% quantile) and tested by univariate analysis (Wilcoxon rank-sum test). 
Due to the limited sample size of the AD group (11 participants) in serum samples, we combined MCI and AD 
participants into an aggregate group (MCI/AD) for the following data analysis. Log-transformed abundances 
were used in the following data analysis. We additionally generated 12 BA ratios based on the BA metabolic 
pathway topology.

To identify metabolites differentially expressed in participants with cognitive decline, we used ordinal logistic 
regression to compare metabolites across three groups (NCI, MCI, AD) for brain samples and logistic regression 
across two groups (NCI, MCI/AD) for serum samples. To control the positive false discovery rate, Q-values were 
calculated based on P-values. Additionally, for serum samples, we adjusted for potential confounders, (e.g., fasting 
status, supplements, diabetic and lipid lowering medications) using logistic regressions. The relationships between 
log-transformed brain metabolites levels with neurofibrillary tangle burden and neuritic plaque burden were 
expressed as boxplots across Braak scores (Kruskal–Wallis test) and CERAD scores (Wilcoxon rank-sum test), 
respectively. Using Spearman’s rank correlation test, we further evaluated the associations between the abun-
dances of each identified metabolite and the global cognitive function score in both brain and serum samples. 
Linear regression models with each individual metabolite used as the predictor and each cognitive test as the 
response variable (adjusted for age, gender, years of education, and presence of APOE ε4) were used to test the 
associations between metabolite and cognitive function. Similar analyses with an additional adjustment of BMI 
were conducted for serum samples. The Wilcoxon rank-sum test was carried out to explore whether identified 
variables were differentially expressed between NCI (converters) vs. NCI (non-converters), and between NCI 
(converters) vs. MCI/AD in sera. Then, we built a random forest (RF) predictive model to differentiate NCI (non-
converters) vs. MCI/AD using glycolithocholate (GLCA), deoxycholate/cholate (DCA/CA) ratio, petroselinic 
acid, linoleic acid, myristic acid, palmitic acid, palmitoleic acid, and age as the predictors.

To differentiate MCI/AD vs. NCI (non-converters), we randomly split the data into 70% (training set) and 
30% (testing set) 100 times. Each time, we trained an RF model on the training set to differentiate the MCI/
AD from NCI (non-converters) and evaluated it on the testing set using the area under the receiver operating 
characteristic curve (AUROC), sensitivity (SE) and specificity (SP). A final model was built on the whole NCI 
(non-converters) and MCI/AD data.

To investigate the pre-clinical predictive potentials as well as to validate the classification performance of our 
model, we utilized this model on the entire baseline NCI group to identify those NCI (converters) from NCI 
(non-converters). The differences of RF scores between NCI (non-converters) vs. NCI (converters), and NCI 
(non-converters) vs. MCI/AD groups were tested by the Wilcoxon rank-sum test. To determine whether RF 
scores could independently differentiate NCI (converters) from NCI (non-converters) in the presence of potential 
confounders, we used the logistic regression method with RF scores as the predictor adjusting for gender, years of 
education, APOE ε4, and BMI. Additionally, we fit linear mixed effects models to evaluate correlations between 
RF scores with global cognitive function and each of the five cognitive domains separately with a random effects 
term for education and BMI and fixed effects terms for RF score, gender, and APOE ε4.

For the personalized pathway level analyses, we extracted metabolite information from the Human Metabo-
lome Database (HMDB)46 and metabolic pathway information from the Kyoto Encyclopedia of Genes and 
Genomes (KEGG)  database47 to map affiliated metabolites to metabolic pathways. We used the pathifier 
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 algorithm48 to transfer metabolic level information of each sample to pathway level by generating a pathway 
dysregulation score (PDS). For each pathway, each sample was projected onto a directed principal  curve49, which 
was yielded depending on leading principal components of the pathway, to optimally pass through the cloud of 
samples. PDS was the distance along the curve between the projection of each sample and that of NCI. Thus, PDS 
could capture the pathway-level extent of abnormality (increments or decrements) for each participant relative 
to those with NCI. We performed similar data analysis on pathway level data to what we did on metabolomics 
level data. We tried to identify differential pathways using ordinal logistic regression across NCI, MCI, and AD 
groups in brain samples and logistic regression for NCI and MCI/AD in serum samples. Next, we explored the 
associations between identified pathways with neuropathology (Kruskal–Wallis test for Braak scores, Wilcoxon 
rank-sum test for CERAD scores) and cognitive performance (Spearman’s rank correlation test for the global 
cognitive function, linear regression with adjustments for each cognitive test). Then, we examined the predictive 
potential of identified pathways in serum samples using univariate analysis (Wilcoxon rank-sum test for NCI 
(converters) vs. NCI (non-converters), NCI (converters) vs. MCI/AD). Finally, we built RF models on 70% train-
ing sets and tested them on 30% testing sets according to 100 times random splitting on the model construction 
data, and applied the final model on the validation data using ROC, SE, SP as evaluation methods. The overall 
workflow chart of the data and the analysis are shown in Fig. S9.

Data were analyzed using R version 3.5.1 with packages including pROC, pathifier, randomForest, ggplot2, 
ggsignif, and MASS. The statistically significance was determined by a threshold of unadjusted P-values < 0.05 
and Q-values < 0.250.

Results
Participants and characteristics. For the joint analyses of the ROS/MAP study, we measured metabo-
lomics of 566 serum samples (446 NCI, 109 MCI, and 11 AD at the blood draw) and 109 postmortem brain 
tissues from dorsolateral prefrontal cortex (51 NCI, 31 MCI, and 27 AD at the time of death). Among 109 brain 
samples and 566 serum samples, a total of 92 participants had both brain and blood metabolomics data. NCI 
participants (n = 466) were further categorized into 90 “NCI (converters)” and 356 “NCI (non-converters)”. NCI 
(converters) were those participants who were cognitively normal (NCI) at the time of blood draw and then 
experienced the cognitive decline (MCI or AD) at the time of death, while NCI (non-converters) were partici-
pants who remained cognitively normal during follow-up. Among 446 NCI participants, the time between the 
blood draw and conversion ranged from 0 to 19 years with a median of 3 years (Fig. S10). Detailed demographic 
characteristics of the serum samples and postmortem brain samples are included in Table 1. Among participants 
with postmortem brain samples, AD patients tended to have at least one APOE ε4 allele compared to the NCI 
group as expected. The mean age of NCI and MCI/AD group at the time of blood draw among serum samples 
was 80.77 years (SD: 7.37) and 86.30 (SD: 6.26), respectively. Similarly, the age and the percentage of APOE ε4 

Table 1.  Detailed demographic characteristics of study samples. *Chi-square test, P-value < 0.05 comparing 
AD vs. NCI. **Wilcoxon rank sum test, P-value < 0.05 comparing MCI/AD vs. NCI. ***Wilcoxon rank sum 
test, P-value < 0.05 comparing NCI (converters) vs. NCI (non-converters). ****Chi-square test, P-value < 0.05 
comparing NCI (converter) vs. NCI (non-converter. NCI cognitively normal, MCI mild cognitive impairment, 
AD Alzheimer’s disease, APOE ε4 apolipoprotein E epsilon 4 allele, SD standard deviation.

Overall NCI MCI AD

Brain samples

N 109 51 31 27

Age, mean (SD) 90.40 (5.86) 90.06 (5.56) 90.72 (6.14) 90.68 (6.28)

Male, n (%) 31 (28.4) 18 (35.3) 9 (29.0) 4 (14.8)

Education, mean (SD) 15.08 (3.17) 15.25 (3.60) 14.65 (2.27) 15.26 (3.23)

APOE ε4-carrier, n (%) 22 (21.2) 6 (12.2) 7 (24.1) 9 (34.6)*

Overall NCI MCI/AD

Serum samples

N 566 446 120

Age (years), mean (SD) 81.94 (7.49) 80.77 (7.37) 86.30 (6.26)**

Male, n (%) 121 (21.4) 93 (20.9) 28 (23.3)

Education (years), mean (SD) 15.71 (3.11) 15.79 (3.12) 15.42 (3.09)

APOE ε4-carrier, n (%) 95 (19.9) 68 (18.1) 27 (26.5)

Overall NCI (non-converters) NCI (converters)

Serum NCI samples

N 446 356 90

Age (years), mean (SD) 80.77 (7.37) 79.73 (7.42) 84.87 (5.54)***

Male, n (%) 93 (20.9) 74 (20.8) 19 (21.1)

Education (years), mean (SD) 15.79 (3.12) 15.87 (3.16) 15.48 (2.94)

APOE ε4-carrier, n (%) 68 (18.1) 43 (14.8) 25 (29.4)****
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carriers were higher in the NCI (converters) group than the NCI (non-converters) group. We did not observe 
other significant demographic characteristics differences across clinical groups (Table 1).

Identifying metabolites differentially expressed in participants with cognitive impairment. In 
this study, 177 metabolites and 164 metabolites (129 overlapping metabolites) were detected in brain tissues and 
serum samples, respectively (Tables S7, S8). Amino acids, BAs, carbohydrates, organic acids, and fatty acids were 
the predominant types of annotated metabolites (accounting for 84.17% of all the metabolites in brain tissues, 
and 84.75% in serum samples) (Fig. 1a,b, left panel). A total of seven metabolites (1 BA, 1 BA ratio, 1 organic 
acid known as a long-chain fatty acid, 4 fatty acids) showed significant differences across clinical groups in both 
brain and serum samples (P-value < 0.05 and Q-value < 0.2, ordinal logistic regression for brain samples, logistic 
regression for serum samples) (Fig. 1a,b, right panel, Tables S14, S15). After adjusting for confounders (i.e. fast-
ing status, supplement use, diabetic and lipid lowering medications), most of serum metabolites remained sta-
tistically significant (Table S18). In brain tissues, increments of the levels of GLCA, DCA/CA ratio, petroselinic 
acid, linoleic acid, myristic acid, palmitic acid, and palmitoleic acid followed the pattern NCI < MCI < AD. We 
observed increments of GLCA, DCA/CA ratio and decrements of petroselinic acid, linoleic acid, myristic acid, 
palmitic acid, palmitoleic acid in sera of MCI/AD compared to controls (Table 2). 

The trend of increments of identified metabolites in brain samples, increments of BAs and decrements of 
FFAs in serum samples were further validated within 92 individuals with both brain and serum samples. From 
NCI to MCI and AD groups, increments of identified metabolites were observed in brain samples (Table S11). 
The increasing trend of GLCA, DCA/CA ratio and decreasing trend of FFAs among MCI/AD group relative to 
NCI group were detected in sera (Table S11).

The seven brain metabolites were all negatively correlated with global cognitive function where higher scores 
indicate better cognitive performance (ρ = − 0.091 for GLCA; ρ = − 0.21 for DCA/CA ratio, ρ = − 0.16 for pet-
roselinic acid, ρ = − 0.25 for linoleic acid, ρ = − 0.22 for myristic acid, ρ = − 0.2 for palmitic acid, and ρ = − 0.26 for 
palmitoleic acid) using Spearman’s rank correlation analysis (Fig. 2a). Similarly, after adjusting for age, gender, 
years of education, and APOE ε4, all identified metabolites remained negatively correlated with tests in five 

Figure 1.  Brain metabolome and serum metabolome composition and alterations. (a) Left panel: the brain 
metabolome composition. Right panel: – log10 (P-value) across clinical groups of brain tissues (NCI, MCI, AD). 
(b) Left panel: the serum metabolome composition. Right panel: – log10 (P-value) across clinical groups of 
serum tissues (NCI, MCI/AD).
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Table 2.  Levels of metabolites differentially expressed in participants by diagnostic group. *P-value < 0.05, 
**P-value < 0.01, ***P-value < 0.001, by Wilcoxon rank sum test comparing AD vs. NCI. # P-value < 0.05, 
##P-value < 0.01, ###P-value < 0.001, by Wilcoxon rank sum test comparing MCI/AD vs. NCI. NCI cognitively 
normal, MCI mild cognitive impairment, AD Alzheimer’s disease, IQR interquartile range.

NCI MCI AD

Brain samples

GLCA %, median [IQR] 0.44 [0.24, 0.84] 0.59 [0.25, 1.22] 0.86 [0.42, 1.24]*

DCA/CA, median [IQR] 6.06 [2.57, 11.79] 9.14 [6.00, 15.75] 8.60 [4.26, 31.96]*

Petroselinic acid, median [IQR] 1696.67 [1,323.38, 2,166.37] 1856.55 [1,529.43, 2,374.30] 2,181.55 [1,761.35, 2,617.07]**

Linoleic acid, median [IQR] 13.86 [10.64, 18.15] 14.37 [10.40, 21.62] 19.93 [15.08, 29.43]***

Myristic acid, median [IQR] 164.14 [130.79, 205.57] 177.10 [136.34, 205.38] 206.86 [177.15, 246.65]**

Palmitic acid, median [IQR] 8,504.53 [6,898.86, 10,496.19] 9,025.76 [7,811.72, 10,964.45] 10,323.59 [9,204.13, 12,785.95]***

Palmitoleic acid, median [IQR] 64.96 [48.13, 79.72] 75.39 [61.45, 100.90] 82.06 [64.21, 127.76]**

NCI MCI/AD

Serum samples

GLCA %, median [IQR] 0.96 [0.49, 1.60] 1.10 [0.54, 1.94]

DCA/CA, median [IQR] 10.30 [3.11, 28.10] 14.78 [3.69, 44.75]#

Petroselinic acid, median [IQR] 0.84 [0.45, 1.41] 0.49 [0.33, 1.02]###

Linoleic acid, median [IQR] 0.90 [0.64, 1.24] 0.73 [0.58, 0.99]##

Myristic acid, median [IQR] 0.84 [0.59, 1.22] 0.63 [0.52, 0.97]###

Palmitic acid, median [IQR] 0.89 [0.68, 1.18] 0.78 [0.62, 1.00]##

Palmitoleic acid, median [IQR] 0.75 [0.35, 1.35] 0.43 [0.23, 0.87]###

Figure 2.  Associations between metabolites level and global cognitive function. (a) Boxplots showing group 
differences and P values for identified metabolites across Braak groups for brain tissue abundances. (b) Boxplots 
showing group differences and significances for identified metabolites across CERAD groups for brain tissue 
abundances. ρ, correlation coefficient of Spearman’s rank correlation test.



7

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:14059  | https://doi.org/10.1038/s41598-020-70703-w

www.nature.com/scientificreports/

cognitive domains and the Mini-Mental State Exam (see Table S2 for significant correlation pairs). The serum 
concentration of two BAs showed negative correlations with global cognitive function (ρ = − 0.074 for GLCA; 
ρ = − 0.075 for DCA/CA ratio), conversely fatty acids demonstrated positive correlations (ρ = 0.17 for petroselinic 
acid, ρ = 0.13 for linoleic acid, ρ = 0.13 for myristic acid, ρ = 0.11 for palmitic acid, and ρ = 0.17 for palmitoleic 
acid) (Fig. 2b). Linear regression revealed similar, consistent results in serum samples with adjustment for age, 
gender, years of education, APOE ε4, and BMI (see Table S2). Results of associations between identified metabo-
lites/ratio and each cognitive performance domains are shown in Table S13. Correlations with global cognitive 
function were further validated in 92 individuals with both brain and serum samples and the directions were 
consistent with our previous findings among the entire cohort. Seven identified metabolites were all negatively 
correlated with global cognitive function in brain samples while two BAs showed negative correlations and five 
FFAs showed positive correlations in serum samples (Fig. S6). Additionally, the serum/brain ratio of identified 
FFAs were positively correlated with global cognitive function (i.e., lower levels of identified FFAs in serum and 
higher levels of identified FFAs in brain were associated with worse cognition) (Fig. S7).

Identified metabolites predicted antecedent cognitive impairment before the manifestation 
of clinical symptoms. The concentrations of GLCA and DCA/CA were significantly lower in the NCI 
(non-converters) group than in the NCI (converters) group. By contrast, the abundances of petroselinic acid, 
linoleic acid, myristic acid, palmitic acid, and palmitoleic acid were higher in the NCI (non-converters) group 
than in the NCI (converters) group (Fig. 3a). There were no significant differences in these metabolites between 
participants in NCI (converters) group vs. MCI/AD group (Fig. 3a). Using the seven metabolites and age, we 
built RF models on the 70% training set according to 100-times randomly splitting approach to differentiate 
MCI/AD patients from NCI (non-converters) group. The median of 100 times AUC on 30% testing set was 0.772 
(95% CIs 0.763–0.781) with 0.786 SE (95% CIs 0.767–0.804) and 0.716 SP (95% CIs 0.695–0.737) using Youden’s 
index to maximize the sum of SE and SP (Fig. 3b). RF models showed decent classification performances in dif-
ferentiating MCI/AD group from NCI (non-converters).

Next, we were interested in studying the model’s early diagnostic capability for predicting NCI (convert-
ers) before clinical diagnosis. The model was thus applied on the entire NCI group at baseline to differentiate 
NCI (converters) from NCI (non-converters). We achieved an AUC of 0.804 (95% CIs 0.749–0.859, SE = 0.722, 
SP = 0.749 at the cutoff value of 0.357) (Fig. 3c) with significant differences in RF scores between NCI (convert-
ers) vs. NCI (non-converters), between NCI (non-converters) vs. MCI/AD group using the Wilcoxon rank-sum 
test (P-value < 0.001) (Fig. 3d). After additional adjustment for gender, years of education, APOE ε4, and BMI, 
fasting status, and medications (supplements, diabetes, lipid lowing), the RF scores remained significant (as 
an independent predictor) with a coefficient of 7.828 (P-value < 0.001) (Table S3). Additionally, the RF scores 
showed significant negative correlations with global cognitive function and the five cognitive domains with the 
same adjustment in mixed effects models (Table S12).

Personalized metabolic pathway‑based study for the association and prediction of cognitive 
impairment. Considering altered metabolite levels were significantly associated with cognitive impair-
ment and showed early predictive value of clinical symptoms onset, we then employed the pathifier algorithm 
to summarize metabolite information to pathways level for further examinations. All PDS scores ranged from 
0 to 1, where larger scores represent the higher extent of the abnormality in the corresponding metabolic path-
way. 109 out of 177 metabolites detected in brain tissues and 102 out of 164 metabolites detected in sera were 
successfully mapped to the KEGG metabolic pathways. This method identified 52 metabolic pathways in brain 
tissues and 45 metabolic pathways in serum samples (44 overlapping pathways) (Figs. S1a,b, left panel; Table S9, 
Table S10), three of which (i.e., primary BAs biosynthesis, FFAs biosynthesis, and biosynthesis of unsaturated 
FFAs) were significantly shifted in both brain and serum samples (P-value < 0.05, and Q-value < 0.2, ordinal 
logistic regression for brain samples, logistic regression for serum samples) (Fig. S1a,b, right panel, Table S16, 
Table S17). We noted increased PDS for all three identified pathways from NCI to MCI/AD that suggested 
dysregulation of these metabolic pathways in MCI/AD patients compare to NCI. Detailed PDS of these path-
ways stratified by diagnostic groups are described in Table S4. Results also indicated that higher PDS were 
significantly associated with lower global cognitive function (i.e., worse cognitive performance) in both brain 
(ρ = − 0.16 for primary BAs biosynthesis pathway, ρ = − 0.23 for FFAs biosynthesis pathway, ρ = − 0.26 for bio-
synthesis of unsaturated FFAs pathway) (Fig. S4) and serum samples (ρ = − 0.16 for primary BAs biosynthesis 
pathway, ρ = − 0.13 for FFAs biosynthesis pathway, ρ = − 0.14 for biosynthesis of unsaturated FFAs pathway) 
(Fig. S5 respectively. In Table S5, we show the significant negative associations between each cognitive test and 
PDS of three pathways after adjusting for age, gender, years of education, and APOE ε4 (additional adjustment 
for BMI in serum samples). Two fatty acid pathways showed significantly different PDS between the NCI 
(non-converters) group and the NCI (converters) group (P-value = 0.0012, and P-value < 0.001), respectively. 
A gradually increasing trend was noted for the BAs pathway across groups (i.e., NCI (non-converters) < NCI 
(converters) and MCI/AD) (Fig. 4a).

We then constructed a discriminant RF model in 70% training data and tested on 30 testing data based on 
three identified metabolic pathways along with age to differentiate MCI/AD from NCI (non-converters) in model 
construction data using 100-times randomly splitting approach. The median AUC on the testing set was 0.731 
(95% CIs = 0.723–0.739) with 0.750 SE (95% CIs = 0.727–0.773) and 0.662 SP (95% CIs = 0.637–0.687) (Fig. 4b). 
Applying the RF model to the whole NCI data at baseline could successfully discriminate NCI (converters) from 
NCI (non-converters) with an AUC of 0.778 (95% CIs = 0.721–0.834), SE = 0.633, SP = 0.825, cutoff value = 0.457 
(Fig. 4c). Similarly, predictive RF scores were significantly different between NCI (converters) vs. NCI (non-
converters), and NCI (non-converters) vs. MCI/AD group (P-value < 0.001) (Fig. 4d). After adjusting for gender, 
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years of education, APOE ε4, BMI, fasting status, and medications (supplement, diabetes, lipid lowing), the RF 
scores remained statistically significant as an independent predictor with a coefficient of 5.629 (P-value < 0.001) 
(Table S6).

Figure 3.  The identified panel of metabolites and its predictive performance. (a) Boxplots showing group 
differences and P values for identified metabolites across NCI (non-converters), NCI (converters), and MCI/
AD for serum abundances. (b) ROC curves of metabolite models trained on the 70% training data and tested 
on the 30% testing data according to 100-times randomly training–testing splitting. (c) The ROC curve of the 
final metabolite model on the validation data. (d) RF scores of the final metabolite model across NCI (non-
converters), NCI (converters), and MCI/AD. *P-value < 0.05, **P-value < 0.01, ***P-value < 0.001, Wilcoxon rank 
sum test. The optimal cutoff was determined by the Youden index. AD Alzheimer’s disease, AUC  area under the 
receiver operating characteristic curve, NCI(C) NCI (converters), NCI(N) NCI (non-converters), CIs confidence 
intervals, MCI mild cognitive impairment, NS not significant, SE sensitivity, SP specificity.
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Identified metabolites and metabolic pathway were associated with neuropathology. Notably, 
we observed significant differences (gradually increasing trend) of metabolite abundances in brain tissue across 
Braak scores: DCA/CA ratio (P-value = 0.021), petroselinic acid (P-value = 0.038), linoleic acid (P-value = 0.041), 
palmitic acid (P-value = 0.043), and palmitoleic acid (P-value = 0.038) (Fig. S8a). Consistently, the abundance 
of six metabolites in brain were higher in the CERAD AD group (score 1 ~ 2) than the CERAD non-AD group 
(score 3 ~ 4): GLCA (P-value = 0.041), petroselinic acid (P-value = 0.014), linoleic acid (P-value < 0.001), myristic 
acid (P-value = 0.015), palmitic acid (P-value = 0.026), and palmitoleic acid (P-value = 0.0019) (Fig. S8b). Brain 
PDS of identified pathways were gradually increased across Braak scores, where the biosynthesis of unsaturated 
FFAs pathway differed with statistical significance (P-value = 0.036) (Fig. S2). Higher brain PDS were associated 
with a significantly greater risk of neuritic plaque burden based on CERAD criteria: primary BAs biosynthesis 
(P-value = 0.04), FFAs biosynthesis (P-value = 0.028), and biosynthesis of unsaturated FFAs (P-value = 0.0089) 
(Fig. S3).

Figure 4.  The pathway panel and its predictive performance. (a) Boxplots showing group differences and 
P values for identified pathways across NCI (non-converters), NCI (converters), and MCI/AD for serum 
abundances. (b) ROC curves of pathway models trained on the 70% training data and tested on the 30% testing 
data according to 100-times randomly training–testing splitting. (c) The ROC curve of the final pathway model 
on the validation data. (d) RF scores of the final pathway model across NCI (non-converters), NCI (converters), 
and MCI/AD. *P-value < 0.05, **P-value < 0.01, ***P-value < 0.001, Wilcoxon rank sum test. The optimal 
cutoff was determined by the Youden index. AD Alzheimer’s disease, AUC  area under the receiver operating 
characteristic curve, NCI(C) NCI (converters), NCI(N) NCI (non-converters), CIs confidence intervals, MCI 
mild cognitive impairment, NS not significant, SE sensitivity, SP specificity.
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Discussion
The alterations of metabolic profiles, especially in the brain, of MCI and AD patients have not been extensively 
studied. In our study, we comprehensively measured 164 and 177 metabolites in serum and brain samples, 
respectively. Our findings showed six significantly differential metabolites and one ratio in both brain and serum 
samples (petroselinic acid, linoleic acid, myristic acid, palmitic acid, and palmitoleic acid, GLCA, and DCA/CA 
ratio). We observed the differences of serum metabolites were not as strong as those in the brain samples which 
is reasonable considering peripheral circulation serves as a down-stream pool of all the pathological perturba-
tions, and thus could be noisier than brain samples. However, in the following analysis, the identified metabolites/
ratios showed consistent associations with neuropathology results, and cognitive function regardless of adjust-
ments for potential confounding factors (i.e., age, gender, years of education, APOE ε4, BMI, and medications). 
AD is a progressive neurodegenerative disease with neuropathological changes commonly observed. Although 
brain tissues used in our research were obtained and implemented upon death, studies have shown that there 
is a strong independent correlation between autopsy neuropathological hallmarks with cognitive impairment 
 severity51. Thus, we believe both neuropathology results and cognitive function tests are AD markers which 
were correlated with identified metabolites in our study. Additionally, these metabolites demonstrated group 
differences of NCI (converter) vs. NCI (non-converter) within baseline normal controls which indicated their 
potential predictive value. A personalized pathway-level analysis further demonstrated our findings of FFAs and 
BAs metabolic perturbations among cognitively impaired persons and the predictive value of using personalized 
pathway information.

Altered FAs profiles were found in different regions of brain tissue in AD patients and linked to neuropathol-
ogy and cognitive  performance14. Our study showed five significant increments of brain FFAs, while decrements 
of these FFAs appeared in the serum of AD patients. The serum/brain ratio of identified FFAs were positively 
correlated with global cognitive function (i.e., lower levels of identified FFAs in serum and higher levels of identi-
fied FFAs in brain were associated with worse cognition) (Fig. S7).

Our findings are consistent with prior observations in AD mice that the significant accumulation of FFAs 
in the hippocampus and cortex, including palmitoleic acid, palmitic acid, and linoleic acid, might be associated 
with the utilization of free fatty acid in the brain26. It is well-known that the brain is one of the most energy-
demanding organs with a high glycolytic, catabolizing rate of glucose consumption. The energy supply shift from 
glucose towards alternative energy sources, (e.g., ketone bodies and FFAs) has been observed in other neurologi-
cal disorders including  schizophrenia52 (Fig. 5). More interestingly, at the early stages of AD, reduced glucose 
utilization and metabolic dysfunction can be detected using FDG-PET, which is one of the earliest detectable 
symptoms of  AD53. The metabolic instability with decreased glucose utilization in impaired neurons among 
AD patients occurs up to twenty years prior to the onset of clinical symptoms indicating that metabolic decline 
may contribute to the development of cognitive  impairment54. Previous studies suggested that fatty acids can 
across the blood–brain barrier (BBB) via simple diffusion. At the same time, fatty acid transport proteins are also 
involved in this process. Fatty acid binding protein 5 (FABP-5), fatty acid transport proteins-1 (FATP-1), FATP-
4, and fatty acid translocase (CD36) are the key FFA transport proteins and these transporters are expressed in 
human brain microvessel endothelial cells (HBMEC)55. The significant decrement of the movement for many 
FFAs (including linoleic acid, myristic acid, and palmitic acid) from apical medium to the basolateral medium 
across HBMEC monolayer with the knockdown of these FFA transport proteins was  observed55. Additionally, 
many studies demonstrated that the CD36 gene is associated with  AD56,57, and the BBB damage may also facilitate 
the transferring of FFAs from blood to brain in AD  patients58.

In addition to the FFAs dysregulation, the association between cholesterol metabolism and AD leads to sub-
stantial research interests of how BAs profile changes in cognitively impaired and AD  patients59. Furthermore, 
BAs play a major role in regulating energy homeostasis through binding to nuclear receptors and evidence has 
shown that both primary and secondary BAs could cross the BBB via a gut-liver-brain  axis60,61. In this study, we 
observed one secondary conjugated BA (i.e., GLCA) and one primary-secondary BAs ratio (DCA/CA) increased 
in both serum and brain tissue in MCI/AD patients compared to NCI, which was consistent with previous 
 findings12. Primary BAs are synthesized in the liver from cholesterol and are then bio-transformed into second-
ary BAs by the gut microbiome (Fig. 5). The increasing DCA/CA ratio seen here might suggest a dysfunction 
of bacterial 7α-dehydroxylases which leads to the accumulation of cytotoxic secondary BAs. Similarly, GLCA, 
another cytotoxic BA, was increased in our study. The survival analysis conducted by Mahmoudian Dehkordi 
et al. on MCI conversion to AD showed significantly changed prognostic endpoints when splitting samples 
into different groups according to BA  levels12, which also suggested that the total BAs/BA ratios could serve as 
potential predictors for the conversion of ADs among non-AD clinical groups.

Human CSF-based studies also detected metabolic changes between controls and MCI and AD patients. 
One study demonstrated that altered fatty acids levels in CSF reflected the importance of abnormal metabolism 
in AD and suggested that disturbed fatty acids metabolism might contribute to AD  pathology62. Similarly, 
Trushina et al.63 found the BA pathway was significantly altered in both plasma and CSF of AD vs. NCI subjects 
and significant alterations in fatty acid metabolism in the plasma of MCI patients and in the CSF of AD patients.

While this study was conducted on a well-characterized longitudinal cohort it is not without its limitations. 
First, the sample size of brain tissues in this study is relatively limited due to the study design which required 
available ante-mortem MRI. Additional work with a larger number of brain tissues is ongoing. In addition, there 
are only 11 AD subjects with serum samples. We expect further validating our finding in more serum samples 
with an ordinal group level (NCI → MCI → AD), as was done with brain samples as more data becomes avail-
able. Second, the current data is cross-sectional preventing us from exploring serum metabolome changes over 
time. More analyses can be performed to further explore the metabolite changes in the development of AD 
over time. Third, although we validated our prediction models on the entire NCI group to show its additional 
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predictive values in differentiating NCI (converters) from NCI (non-converters), more external data are needed 
for validation. Fourth, in this study, we utilized GC-TOFMS and LC-TQMS platforms to quantitatively measure 
177 metabolites in brain samples and 164 in serum samples (mainly amino acids, bile acids, carbon hydrates, 
organic acids, and fatty acids). It would be interesting to measure broader untargeted metabolic profiles and 
more metabolites of AD serum and brain samples in the future studies. Fifth, our findings suggest the emerging 
role for gut microbiome in the development of AD. Thus, further experimental microbiota studies could provide 
a better understand of how the gut-brain axis plays a role in AD development. Last, since our results provide a 
proof-of-concept for the feasibility of early detection among NCI subjects at high risk of developing cognitive 
impairment, future clinical studies can be designed to explore the benefits of early interventions. The study also 
has strengths in that the follow-up and autopsy rates in the parent cohorts are very high leading to excellent 
internal validity. The diagnostic groups were comparable as they came from a single larger cohort.

Collectively, our findings present a new point-of-view into the pre-clinical evolution of AD and lend strength 
to the hypothesis that individuals with higher risks of cognitive impairment can be identified before the develop-
ment of overt symptoms via a metabolomics approach. To this end, we provide two predictive models: one based 
on differentially expressed metabolites and the other on identified metabolic pathways. Varma et al. utilized 
machine learning approaches to identify potential metabolites related to AD pathology and  progression18. We 
took their work one step further by constructing machine learning models to discriminant the final-state healthy 
controls vs. MCI/AD patients. The 100 times resampling results demonstrated the feasibility and robustness of 
our predictive models. Particularly, by employing our models on the baseline group, we successfully identified 
the high-risk subgroup (i.e., NCI (converters)) several years before the clinical diagnosis.

Data availability
Metabolomics datasets used in the current analyses for the ROS/MAP cohorts are available via the Accelerating 
Medicines Partnership-Alzheimer’s Disease (AMP-AD) Knowledge Portal and can be accessed at https ://doi.
org/10.7303/syn10 23559 4. The full complement of clinical and demographic data for the ROS/MAP cohorts are 
available via the Rush AD Center Resource Sharing Hub and can be requested at https ://www.radc.rush.edu.

Figure 5.  Pathways involved in FFAs and BAs. Healthy neurons are highly glycolytic, catabolizing rate of 
glucose consumption through the glycolysis and TCA cycle to produce ATP. Reduced glucose utilization and 
metabolic dysfunction could be detected using FDG-PET and metabolomics approaches in AD patients. The 
metabolic instability with decreased glucose utilization in impaired neurons can cause the energy supply shift 
towards alternative energy sources, e.g., FFAs and ketone bodies. Primary BAs are synthesized in the liver from 
cholesterol. A dysfunction of the gut microbiome can cause the accumulation of cytotoxic secondary bile acids, 
e.g., DCA and GLCA, which can be secreted into the systemic circulation and then across the blood–brain 
barrier to enter the brain. ASBT apical sodium-dependent bile acid transporter, BSEP bile salt export pump, 
CA cholate, CDCA chenodeoxycholate, CoA coenzyme A, DCA deoxycholate, F-6-P fructose-6-phosphate, 
FATP fatty acid transporter, G-6-P glucose-6-phosphate, GCA  glycocholate, GCDCA glycochenodeoxycholate, 
GDCA glycodeoxycholate, GLCA glycolithocholate, GLUT glucose transporter, GUDCA glycoursodeoxycholate, 
LCA lithocholate, MCT monocarboxylate transporter, NTCP sodium/taurocholate co-transporting 
polypeptide, OST organic solute and steroid transporter, TCA  tricarboxylic acid, TCA  taurocholate, TCDCA 
taurochenodeoxycholate, TDCA taurodeoxycholate, TLCA taurolithocholate, TUDCA tauroursodeoxycholate, 
TGR5 G protein–coupled bile acid receptor, UDCA ursodeoxycholate.

https://doi.org/10.7303/syn10235594
https://doi.org/10.7303/syn10235594
https://www.radc.rush.edu
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