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Spatial regression analysis of MR 
diffusion reveals subject‑specific 
white matter changes associated 
with repetitive head impacts 
in contact sports
Patrick D. Asselin1,5, Yu Gu2,5, Kian Merchant‑Borna3, Beau Abar3, David W. Wright4, 
Xing Qiu 2* & Jeff J. Bazarian3

Repetitive head impacts (RHI) are a growing concern due to their possible neurocognitive effects, 
with research showing a season of RHI produce white matter (WM) changes seen on neuroimaging. 
We conducted a secondary analysis of diffusion tensor imaging (DTI) data for 28 contact athletes 
to compare WM changes. We collected pre‑season and post‑season DTI scans for each subject, 
approximately 3 months apart. We collected helmet data for the athletes, which we correlated with 
DTI data. We adapted the SPatial REgression Analysis of DTI (SPREAD) algorithm to conduct subject‑
specific longitudinal DTI analysis, and developed global inferential tools using functional norms and a 
novel robust p value combination test. At the individual level, most detected injured regions (93.3%) 
were associated with decreased FA values. Using meta‑analysis techniques to combine injured regions 
across subjects, we found the combined injured region at the group level occupied the entire WM 
skeleton, suggesting the WM damage location is subject‑specific. Several subject‑specific functional 
summaries of SPREAD‑detected WM change, e.g., the L∞ norm, significantly correlated with 
helmet impact measures, e.g. cumulative unweighted rotational acceleration (adjusted p = 0.0049), 
time between hits rotational acceleration (adjusted p value 0.0101), and time until DTI rotational 
acceleration (adjusted p = 0.0084), suggesting RHIs lead to WM changes.

Sport-related concussions and repetitive head impacts (RHI) incurred during sports have emerged as impor-
tant foci of brain injury research with the increased awareness and improved understanding of these injuries’ 
effects on neurocognitive function. RHI are broadly defined as any direct or indirect hit that exerts a force on 
the brain that may or may not cause a clinically diagnosed  concussion1. RHI occur frequently during contact 
and collision sports at all levels of play including youth, collegiate, and professional competitions. Both animal 
and human studies have shown acute changes in brain structure and function after RHI that are indicative of 
axonal  injury2–10. This understanding of the acute impact on the brain has led to questions about RHI’s potential 
long-term neurocognitive effects.

The direct connection between RHIs, acute brain injury, and their possible long-term effects on brain struc-
ture and neurocognitive function are difficult to confirm with retrospective research. Montenigro and colleagues 
showed a retrospective survey metric for head impact exposure was strongly associated with behavioral and 
cognitive dysfunction later in  life1. In addition, post-mortem studies of chronic traumatic encephalopathy (CTE) 
have described RHI as a necessary but not sufficient risk factor, which suggests RHI lead to biologic dysregulation 
and clinical  symptoms11. Despite this retrospective evidence, RHI causing CTE and other neurodegenerative 
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diseases is considered controversial because of the lack of prospective evidence linking RHI to acute and sub-
acute white matter (WM)  damage9,12. The ability to elucidate a link between WM damage and RHI has been 
greatly improved with diffusion tensor imaging (DTI).

The use of DTI has been critical in identifying and quantifying the in vivo brain changes from RHI. DTI 
measures WM structural changes by quantifying the direction and magnitude of water diffusion in the  brain13. 
Studies using DTI have shown structural changes in an athlete’s brain after a single season of RHI without frank 
 concussion4,14–16. These quantifiable WM changes after a season of football without a frank concussion initially 
suggested a relationship with RHI. However, the studies investigating the location of injury have shown little 
consistency in the locations of significantly changed  WM4,17–19. This lack of consistency cast doubt on the acute 
as well as the long-term effects of RHI on neurocognitive function and disease.

The methods used in these studies to compare DTI changes, region of interest analysis, and wild bootstrap-
ping, are possible causes for the differences in regions identified in the various  studies4,17–19. These methods are 
designed for group-level analyses, which work best when there is a strong spatial pattern of injury; however, 
the injury from RHI and sport-related concussion is thought to be subject-specific and  heterogeneous20. The 
analytical shortcomings of these methods have been identified by  others21,22. The above methods are unable to 
account for the variable baseline and disease progression between subjects, and they neglect the intrinsic spatial 
relationships in the imaging  data21,22. The novel analysis method of SPatial REgression Analysis of DTI (SPREAD) 
was proposed for the longitudinal comparison of DTI within a single  individual21. This method improves the 
statistical power of group-based statistical analyses by performing subject-specific DTI analysis, which accounts 
for the variable baseline DTI parameters and variable disease progression among  individuals21. In addition, 
SPREAD accounts for the spatial correlation among the voxels, which is the concept that neighboring voxels 
share similar imaging or function characteristics, and accounting for this greatly improves the statistical power of 
DTI  analysis21. Another advantage is SPREAD’s use of non-parametric permutation testing, which avoids some 
of the limitations of parametric testing and can potentially provide a more powerful and appropriate technique 
for analyzing subject-specific DTI changes in the setting of RHI.

This study investigated the extent to which SPREAD analysis can identify WM changes unique to contact 
athletes experiencing RHI; that is, we sought to identify the anatomic locations of these WM changes for each 
athlete, and study the overall pattern of these changes by a novel robust p value combination test. Secondly, we 
sought to determine the relationship between these WM changes to subject-specific head impact exposure over 
one season.

Methods
Participants. From 2011 to 2013, we enrolled 29 athletes, which were part of our initial data set for sec-
ondary analysis. These subjects were male varsity football players recruited during the 2013 football season by 
the University of Rochester, which participates in NCAA Division III. A single non-athlete subject, described 
elsewhere, was utilized in our simulation studies to identify optimal tuning parameters of our imaging compari-
son method, as described  below21,22. The athletes were selected to include a variety of positions to capture the 
spectrum of head impact exposure in frequency and intensity. Subjects were excluded in the parent study if they 
were < 18 years old or sustained a concussion within 2 weeks of study enrollment, which was determined by a 
validated self-report  questionnaire25. Data from one subject was excluded because of poor DTI image quality, 
leaving 28 athlete subjects for analysis, and one collegiate non-athlete subject for parameter optimization. Prior 
to participation in this study, all subjects provided written informed consent. The Research Subjects Review 
Board at the University of Rochester approved this study and the consent process. All experiments were per-
formed in accordance with relevant guidelines and regulations.

MR imaging acquisition and processing. Diffusion MR imaging, also known as DTI, was performed 
on all subjects before the start of the football season in August (pre-season) and within 1 week of the season’s 
end in November (post-season). All subjects had two DTI scans approximately three months apart. Imaging was 
acquired using a single 3 T Siemens Trio scanner (Siemens Healthcare, Erlangen, Germany) using Numaris 4 
software version 17B. The matrix head coil had 32 channels, and the scanning parameters were: total acquisi-
tion time of 11 min, spin-echo echo planar imaging, bandwidth of 1502 Hz/Px, parallel acceleration technique 
of generalized autocalibrating partially parallel acquisition, TR/TE = 9100 ms/89 ms, voxel size 2 × 2 × 2 mm, 69 
diffusion directions with b = 1200 s/mm2 and 10 averages of b = 0. The TR was chosen to minimize T1 weighting 
influences on the diffusion images and maximize the signal to noise ratio. TR times of similar duration have 
been used in similar studies that assess WM damage in individuals with head  trauma26. FSL-5.0.9 was used for 
all preprocessing of the diffusion data (FSL; www.fmrib .ox.ac.uk). Fugue and eddy packets in FSL were used to 
correct for magnetic susceptibility distortions, motion, eddy currents, and brain  extraction27. DTIFIT, an FSL 
packet, was used to create global maps of fractional anisotropy (FA). For time-point comparisons, the FA map 
for each subject’s post-season FA map was non-linearly registered to their pre-season FA map using the FSL 
function,  FNIRT28. The R package “oro.nifti” was used to load NIfTI image  data29. The registered images were 
noted to have ringing artifacts due to the sharp transitions near edges, which would detrimentally affect later 
image  processing30. We developed a simple and computationally efficient method, known as “MountDoom” in 
our software package, to remove these artifacts before the subsequent analyses (Supplementary Fig. 4). We first 
determined the foreground (true brain signals) and the background using DTIFIT, and then removed all voxels 
in the foreground with Euclidean distance to the background less than or equal to a pre-specified threshold, 
which was set to 4 mm, and represents two voxels apart in six major directions and a 3D neighborhood with 32 
voxels. After this step, we cropped the images to the individual’s smallest three-dimensional rectangle, which 

http://www.fmrib.ox.ac.uk
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contained all the voxels with nonzero FA values to reduce the dimensionality and computational cost. We uti-
lized SPREAD for image analysis.

SPREAD analysis of DTI. The SPREAD model used in the current study is an adaptation of the original 
model developed by Zhu and  colleagues21 (Fig. 1).

The original model has the capability to incorporate multiple scans collected from multiple subjects at several 
time points. In the original model, the voxel-wise summary statistic was calculated as the temporal standard 
deviation of averaged FA or mean diffusivity values for each subject, and each subject’s value was summed to get 
the final summary for one voxel. In our study, only the pre- and post-season scans are available for each subject 
and we decided to conduct subject-specific SPREAD analysis due to the high-level of heterogeneity among 
subjects (Fig. 2).

In this special case, the temporal standard deviation of FA values for a voxel is monotonically equivalent to 
the absolute value of the difference between the pre- and post-scans at this voxel, and we do not average this 
summary statistic over all subjects (Supplementary Methods). Using this simplification, we streamlined the code, 
which is mathematically equivalent to the original model. First, we randomly permuted the time labels of each 
voxel to create permutation samples, represented by k in our spatial regression model. We then fitted FA values, 
which were calculated by applying spatial regression based on multivariate Nadaraya–Watson kernel to each 
permutation sample. The test statistics were computed as the voxel-wise absolute difference between the fitted FA 
values of the pre- and post-scans for each permutation sample. Next, the permutation p values were computed 
by comparing the original, before permutation, to the absolute differences of FA values from their permuted 
counterparts. With the large number of hypotheses tested, we used Benjamini–Hochberg (BH) procedure to 
control the false discovery rate, and Westfall–Young (WY) procedure to control the family-wise error  rate30–32. 

Figure 1.  An overview of the enhanced SPREAD algorithm used in the current study. It depicts each stage used 
by the SPREAD algorithm for image analysis.
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The results are adjusted p value maps for each subject. In addition, we calculated functional summary statistics 
based on  Lp norms (see “Functional norms” in Supplementary Methods), and obtained global p values based on 

Figure 2.  Illustrative examples of subjects’ individual p value map at registered slice 32. (A) Subject 3′s 
highlighted voxels at registered slice 32. (B) Subject 4′s highlighted voxels at registered slice 32. (C) Subject 13′s 
highlighted voxels at registered slice 32. (D) Subject 15′s highlighted voxels at registered slice 32. (E) Subject 
19′s highlighted voxels at registered slice 32. (F) Subject 24′s highlighted voxels at registered slice 32. (G) Subject 
28′s highlighted voxels at registered slice 32. (H) Subject 31′s highlighted voxels at registered slice 32. (I) Subject 
34′s highlighted voxels at registered slice 32. The yellow/red highlighted regions of the brain are voxels with 
associated raw p values of < 0.002 when comparing the pre-season to post-season scans. The red voxels are 
associated with a lower raw p value than the yellow ones.
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k = 1000 permutations for each subject. These global summary statistics and p values were used in group-level 
analysis. We performed group-level inferences based on associating the global functional summary statistics 
with clinical outcomes and combining voxel wise p value maps by a novel robust meta-analysis method. The 
SPREAD method is illustrated in Fig. 1.

SPREAD parameter optimization. SPREAD was originally developed for detecting small WM lesions, 
typically under 5 voxels in size, seen with multiple  sclerosis21. Because the size of the “abnormal” region after RHI 
is not known, the parameters used in the original SPREAD procedure might not be appropriate. We designed 
a simulation study to select the optimal tuning parameters of the SPREAD method for analyzing WM changes 
occurring in the setting of RHI. Specifically, we studied the performance of SPREAD with the following param-
eters in a series of simulations involving a pre-post image pair from a single collegiate non-athlete subject: (1) 
we superimposed artificial “lesions” to different regions of the post-season scan with three sizes: radius of 5 
voxels (small), radius of 12 voxels (medium), and radius of 48 voxels (large); (2) various choices of bandwidth, 
ranging from three to 25 voxels, were used in the Gaussian kernel function; (3) BH and WY were used to obtain 
the adjusted p value maps; and (4) seven different p value thresholds were used to define statistically significant 
voxels based on the adjusted p value maps  (1e−4,  5e−4,  1e−3,  5e−3, 0.01, 0.05, and 0.1) (Supplementary Fig. 1). We 
assessed true positive and false positive rates to find the optimal combination of bandwidth, multiple compari-
son method, and p value threshold for each lesion size.

SPREAD outputs. From the SPREAD algorithm, we summarized the following outputs: number of sig-
nificantly changed voxels (NSV), total difference of significant voxels (TDSV), absolute difference of significant 
voxels (ADSV), and the  Lp norms of the fitted FA map. TDSV was calculated by taking the sum of the differ-
ences for significantly changed voxels between pre-season and post-season scans for a single subject. ADSV was 
calculated by taking the sum of the absolute difference for significantly changed voxels between pre-season and 
post-season scans for a single subject.  L1 is the absolute difference between pre and post-season scans of the fit-
ted FA values averaged over all voxels. The  L2 norm is the square root of the average of squared difference of the 
fitted FA values. The  L∞ norm is the maximum of absolute difference of the fitted FA values. TDSV, ADSV,  L1,  L2, 
 L∞ have the units of FA, which is a unitless scalar between 0 and 1.

In addition, we conducted a meta-analysis based on a novel robust p value combination test based on beta-
distributions. The objective of this analysis is to utilize p value maps, which is an image that marks voxels 
showing significant change from the pre and post-season scan comparison. We combine the p value maps of all 
28 subjects into a single group-level p value map, and then select significant regions based on this single map 
(Supplementary Methods).

Head impact exposure. Head impact exposures were estimated using the Head Impact Telemetry system 
(HITs) (Simbex, Lebanon, NH), which has accelerometers embedded in Riddell Revolution IQ Helmets (Riddell 
Corporation; Elyria, OH). HITs provides five helmet-based impact measures (HIM) for each impact > 10 g’s of 
linear acceleration: linear acceleration (LA), rotational acceleration (RA), Head Injury Criterion 15 (HIC 15), 
Gadd Severity Index (GSI), and Helmet Impact Technology severity profiles (HITsp), as well as time of impact 
and impact location. The 10 g threshold was chosen as it is the lowest threshold to be set by the helmets, and we 
were looking to record all hits that may lead to white matter damage and therefore went for the high sensitivity 
approach.

An equipment manager made sure all helmets were fitted to the player and connected to the computer 
before every contact session. A sideline computer monitored by a research coordinator at every helmeted ses-
sion collected the data wirelessly. In addition, the research coordinator monitored all equipment during play, 
and performed daily data scrubbing to remove any recordings that occurred while the helmet was not on the 
subject’s head.

Accelerometer output for an entire season was summarized with six different helmet impact metrics : mean 
HIMs, peak HIMs, cumulative unweighted (CUW) HIMs, and three cumulative time-weighted metrics that 
have been previously described in  detail33: (1) time between hits (TBH) weights HIMs for the current hit based 
on the magnitudes of the previous hits and the time between all previous hits and the current hit; (2) time until 
assessment (TUA) weights HIMs for the current hit based on the number of days between the current hit and 
the post-season DTI scan; (3) a combination of the TBH and TUA algorithms referred to as TBH + TUA.

Subjects undergoing RHI were monitored for concussion using methods described elsewhere in  detail33. In 
brief, certified athletic trainers were present at all practices and games monitoring the athletes for concussion. 
Concussion was defined by the Sport Concussion Assessment Tool 2, which requires at least one of the follow-
ing: symptoms (e.g. nausea), physical signs (e.g. loss of consciousness), impaired brain function (e.g. impaired 
memory), or abnormal  behavior34.

Clinical assessment of concussion‑related cognitive impairment. We used the Immediate Post-
Concussion and Cognitive Testing (ImPACT) (ImPACT Applications, inc) and the balance error scoring system 
(BESS) tests as our clinical measurements at pre-season and post-season evaluation for all 28  subjects35,36. The 
ImPACT test is a computerized test that looks at several different measurements of memory, reaction time and 
visual speed; from the ImPACT test, we measured verbal memory score, visual memory score, visual motor 
speed, and reaction  time35. The BESS test is a balance test for which the number of errors occurring during test-
ing are cumulated into a final score, which is what we for our  subjects36.
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Statistical analysis. Demographic variables were reported in Table 1. For continuous variables, medians, 
and inter-quartile ranges (IQR) were reported; for categorical variables, sample frequencies and percentages 
were reported. We used a novel robust p value combination test to assess the anatomic location for WM changes 
between the subjects. The primary statistical analysis is to correlate SPREAD outputs with helmet impact met-
rics. Considering the uncertainty of normality of the six helmet impact metrics, Spearman’s nonparametric 
correlation test was employed with the Benjamini–Hochberg procedure to control for multiple testing. Paired 
t-test was used in an auxiliary analysis to compare clinically defined, concussion-related cognitive test scores 
before and after the football season. We defined statistically significant findings for all testing to be those with 
(adjusted) p value < 0.05, and all tests were two-tailed. All statistical analyses were performed in R 3.3.037.

Results
Demographics. The characteristics of the 28 subjects recruited in our study are summarized in Table 1. 
Among them, three subjects sustained a mid-season concussion (Supplementary Table 1).

SPREAD parameter optimization. Using our simulation study to optimize the bandwidth parameter 
for RHI, we found the optimal bandwidth values to be five for small signal (radius of 5 voxels), 10 for medium 
signal (radius of 12 voxels), and 19 for large signal (radius of 48 voxels) (Table 2). We discovered that the optimal 
bandwidth value appears to be positively related to the signal size, i.e. the smaller the signal is, the smaller the 
optimal bandwidth is, which can help determine optimal bandwidth values based on lesion size created by the 
disease process. We also noticed that using very large bandwidth values for large signal tends to result in high 
levels of false positives (Supplementary Fig. 1). Based on these considerations, bandwidths of 3, 5, 10, and 15 
were used in the SPREAD algorithm when analyzing the current dataset.

Anatomic distribution of WM changes detected using SPREAD. When SPREAD results from 
pre-post comparisons for all 28 athletes were combined into a single p value map, we observed the significant 
changes to be scattered diffusely across the entire white matter region of the brain (Fig. 3).

When viewing all 28-individual p value maps, we saw that the SPREAD detected region of WM injury after 
RHI was highly heterogeneous among the athletes, and we did not identify a contiguous region with significant 
WM change that is common for all 28 subjects. Illustrative single subject raw p value maps can be seen in Fig. 2. 
All 28 raw p value maps can be seen in Supplementary Fig. 2.

Further investigations showed that most of those detected voxels were associated with decreased FA values. 
For example, using p < 0.002 as the p value threshold, 106,148 voxels were selected by the SPREAD procedure 

Table 1.  Subject characteristics. For continuous variables (Age and BMI), medians and inter-quartile ranges 
(IQR) were reported; for categorical variables, sample frequency and percentages were reported.

Contact athletes (n = 28)

Age (median years, IQR) 19.8, 2.1

BMI (median, IQR) 27.6, 2.1

Race, n (%)

White 21 (75)

Black 5 (17.9)

Other 2 (7.1)

Handedness, n (%)

Right 22 (78.6)

Left 6 (21.4)

Table 2.  Results of simulation study to determine the optimal bandwidth based on the signal size. MTP, 
multiple comparison procedure; pValue.thresh, p value considered significant change for a voxel; True Positive, 
number of true positives detected; TPRate, true positive rate; False Positive, the number of false positives 
detected; and FPRate, the false positive rate.

Signal Size MTPs Bandwidth pValue.thresh True positive TPRate False positive FPRate

Small BH 5 0.034 101 0.902 35 0.000

Small WY 5 0.050 101 0.902 35 0.000

Medium BH 10 3 × 10–4 1411 0.953 235 0.001

Medium WY 10 1 × 10–3 1442 0.974 411 0.001

Large BH 15 0.001 13,219 0.900 65,291 0.173

Large WY 15 0.279 13,234 0.901 65,762 0.174

Large BH 19 7.78 × 10–7 13,419 0.914 45,718 0.121

Large WY 19 1 × 10–5 13,584 0.925 51,627 0.137



7

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:13606  | https://doi.org/10.1038/s41598-020-70604-y

www.nature.com/scientificreports/

for all 28 athletes. Among them, 93.3% (99,008 voxels) have lower FA values after the football season. At a more 
stringent cutoff (p < 0.0005), this ratio is even higher: 22,344 voxels were associated with significantly decreased 
FA values, which made up 95.7% of 23,352 significant voxels.

Relationship between SPREAD detected WM changes and helmet impact metrics. The num-
ber of head hits over a single season of collegiate football ranged from 37 to 1057 hits with an average of 379 hits 
per athlete (Supplementary Table 2). We performed correlations between the 30 HIM and helmet impact metric 
combinations, with the 12 SPREAD derived functional norms and output-bandwidth combinations (Table 3; 
Supplementary Tables 3 and 4). The most significant correlations with the helmet impact metrics involved using 
L∞ norm with a bandwidth of 15. An illustrative example is seen in Fig. 4. In addition, a subset of cumulative 
time weighted helmet impact metrics is significantly correlated with the L2 norm with a smaller bandwidth (Sup-
plementary Table 4). 

All significant correlations in this association analyses were positive, suggesting that WM structural changes 
were induced by physical impacts, and the stronger the physical impacts, the greater the maximal injury. The 
specific metrics that showed significant correlations with L∞ were the cumulative metrics, all weighted metrics 
and the CUW metric with Spearman’s ρ values ranging from 0.4056 to 0.6327. The CUW metric had the strongest 
correlations to L∞ when compared to all other metrics; however, these differences were small (Table 3).

Clinical data. We found no significant changes in ImPACT testing scores between pre and post-season test-
ing (Table 4). There was a significant decrease in the BESS test scores with fewer errors seen on average in the 
post-season evaluation compared to the pre-season evaluation (p = 0.003, Table  4). The improvement in the 
BESS score is most likely a function inter-rater variability as well as a mild practice effect with repeated exposures 
to the  test38.

Figure 3.  Visualization of adjusted combined p value map showing areas of significant injury among all 28 
athletes. The yellow/red highlighted regions of the brain are voxels shown to be significantly changed in the 
athlete from pre-season to post-season (adjusted p value < 0.05). Red voxels represent more significant (adjusted 
p value < 0.005) changes than the yellow ones.
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Discussion
Our study focused on the ability of SPREAD to identify subject-specific WM changes after one football season, 
and how SPREAD outputs were associated with multiple single-season summaries of helmet data. It yielded 
three important findings: (1) SPREAD were able to detect subject-specific FA changes after a single football 
season; (2) the location of injury is quite heterogeneous and diffuse when looking at the athletes’ injury profiles 
individually and as a group, respectively; (3) the helmet impact metrics had strong associations with the SPREAD 
outputs, and more specifically the cumulative metrics appeared to have the strongest associations with the WM 
changes seen on DTI.

Longitudinal WM changes on DTI have been shown in athletes in multiple  studies15,23. We detected longitu-
dinal WM changes for the athletes after a single football season, and the identified voxels were overwhelmingly 
(> 93%) associated with decreased FA values. A decrease in FA is a sign of less unidirectional diffusion and has 
been reported by others in the context of concussion. The pathological underpinning of decreased FA is contro-
versial but is thought to reflect myelin damage and/or axonal  loss13,39,40. SPREAD provided a unique opportunity 
to visualize the injury distribution among the athletes not allowed by previous methods.

Using the SPREAD algorithm and meta-analysis techniques, we were able to create a single common map 
of injury among all the athlete data. We showed that the athletes as a group had large diffuse areas of injury 
throughout the white matter of the brain with no distinct, defined region of injury. This diffuse nature is high-
lighted in other studies that have used region of interest analysis with the individual studies describing different 
regions with significant change with minimal consistency among the  studies4,17–19. In comparison, when assessing 
the athletes individually we found their injury profiles to be quite heterogeneous. This heterogeneous nature of 
injury within individuals could be a reason why group-level DTI analysis methods have a difficult time showing 
significant regions of injury as well as a lack of consistent regions of injury among the  studies4,17–19. The diffuse 

Table 3.  Helmet impact metric correlations with the L∞ norm. “c.c” is the Spearman rank correlation 
coefficient (ρ). Bold values signify significant correlations (adjusted p value < 0.05). LA linear acceleration, 
RA rotational acceleration, HIC15 head impact criterion 15, GSI Gadd Severity Index, HITsp helmet impact 
technology severity profile.

Metric HIM

Bandwidth 3 Bandwidth 5 Bandwidth 10 Bandwidth 15

c.c
Adjusted p 
value c.c

Adjusted p 
value c.c

Adjusted p 
value c.c

Adjusted p 
value

Mean

LA 0.1303 0.8239 0.0640 0.8946 − 0.0224 0.9416 − 0.0126 0.9611

RA 0.2282 0.8239 − 0.1051 0.8692 − 0.1615 0.6151 0.1724 0.4544

HIC15 0.1434 0.8239 0.0487 0.9188 − 0.1959 0.4992 − 0.0301 0.9422

GSI 0.1522 0.8239 0.1155 0.8692 − 0.0794 0.8589 − 0.0099 0.9611

HITsp 0.0345 0.8916 − 0.1221 0.8692 − 0.0383 0.9070 0.2633 0.2391

Peak

LA 0.0854 0.8239 0.0279 0.9188 − 0.0684 0.8744 0.1527 0.5033

RA 0.1856 0.8239 0.0328 0.9188 − 0.1067 0.7662 0.1467 0.5052

HIC15 0.1861 0.8239 0.1582 0.8692 − 0.0487 0.9070 0.2113 0.3490

GSI 0.1927 0.8239 0.1959 0.8692 − 0.0082 0.9678 0.2452 0.2709

HITsp 0.0810 0.8239 0.0197 0.9213 − 0.0443 0.9070 0.2742 0.2251

CUW 

LA 0.1450 0.8239 0.2124 0.8692 0.5556 0.0412 0.6256 0.0049

RA 0.1407 0.8239 0.1845 0.8692 0.5238 0.0412 0.6327 0.0049

HIC15 0.1680 0.8239 0.1856 0.8692 0.4592 0.0555 0.5747 0.0077

GSI 0.1872 0.8239 0.2047 0.8692 0.4811 0.0515 0.5692 0.0077

HITsp 0.1319 0.8239 0.1856 0.8692 0.5468 0.0412 0.6300 0.0049

TBH

LA 0.1987 0.8239 0.1609 0.8692 0.3689 0.1605 0.5665 0.0077

RA 0.1954 0.8239 0.1363 0.8692 0.3372 0.1843 0.5364 0.0101

HIC15 0.2950 0.8239 0.1067 0.8692 0.2167 0.4445 0.5222 0.0113

GSI 0.2879 0.8239 0.1144 0.8692 0.2271 0.4305 0.5052 0.0144

HITsp 0.1658 0.8239 0.1352 0.8692 0.3514 0.1684 0.5868 0.0077

TUA 

LA 0.0903 0.8239 0.1286 0.8692 0.5161 0.0412 0.5599 0.0077

RA 0.0750 0.8239 0.0854 0.8692 0.4669 0.0555 0.5506 0.0084

HIC15 0.0980 0.8239 0.0925 0.8692 0.3623 0.1605 0.4915 0.0161

GSI 0.1253 0.8239 0.1341 0.8692 0.4122 0.1007 0.5238 0.0113

HITsp 0.0722 0.8239 0.1089 0.8692 0.4915 0.0515 0.5594 0.0077

TBH + TUA 

LA 0.0564 0.8306 − 0.0350 0.9188 0.2485 0.4305 0.4707 0.0206

RA 0.0624 0.8306 − 0.0777 0.8692 0.2326 0.4305 0.4702 0.0206

HIC15 0.1308 0.8239 − 0.0843 0.8692 0.1264 0.7139 0.4308 0.0364

GSI 0.1040 0.8239 − 0.0772 0.8692 0.1253 0.7139 0.4056 0.0497

HITsp 0.0159 0.9368 − 0.0881 0.8692 0.2403 0.4305 0.4975 0.0155
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and heterogeneous nature of this injury suggests group-based level analysis may be a sub-optimal approach for 
studying RHI induced WM changes, which can be minimized with SPREAD. In addition, this pattern of injury 
may result from the varying location of impacts among athletes, which minimizes the likelihood of producing 
similar changes between athletes on DTI. To some extent, these findings explained why some earlier studies failed 
to establish a clear association between RHI and brain structural changes. The changes are spread out among the 
entire WM region and different subjects could have quite different changes, so traditional region of interest-based 
methods could not identify a common region of  injury41,42. The other advantage SPREAD has provided is the 
ability to localize injury without requiring a predefined map of brain regions from a specific brain atlas, which 
allows us to visualize and describe longitudinal WM changes on a more individual level.

The significant correlations between helmet impact metrics and WM changes suggest a dose–response link 
between RHI and WM changes. The use of helmet data helps create a stronger link because the helmet data is 
collected prospectively during the time interval WM changes are occurring and being quantified by DTI. Sev-
eral studies have shown similar patterns when testing the association between helmet impact metrics and WM 
changes observed on  DTI17,23,24,26,33. The initial studies done by Bazarian and Davenport showed these associa-
tions using unweighted helmet impact  metrics14,26. In comparison, the strength of the associations improved 
when the helmet impact data were  weighted17,33. These studies suggest that other factors affect the biomechanical 
impact of a hit such as, time between hits, on the  WM17,33. Looking at our pattern of significant correlations, we 
found that both CUW and time-weighted metrics had significant correlations even after correcting for multiple 
comparisons. The cumulative helmet impact metrics being significant suggests these sub-acute WM changes are 
a result of the compounding effects of a full season of RHI and not associated with a single extreme hit or the 
average hit experienced by an athlete. More specifically, that time weighted helmet impact metrics were significant 
suggest that the concept of neuronal vulnerability is important to understanding WM changes in humans, which 
has been demonstrated in animal  models43,44. When comparing CUW and time-based metric correlations, the 
CUW correlations were stronger; however, the differences in Spearman’s ρ were quite small. This finding does not 

Figure 4.  The relationship between the L∞ summary statistic and CUW rotational acceleration as an illustrative 
example. This figure depicts the association between the L∞ summary statistic and the most associative 
mechanical variable (RA using the CUW metric). The Spearman correlation coefficient was 0.633 with an 
adjusted p value of 0.0049.

Table 4.  Mean (SD) ImPACT and BESS performance among contact athletes (n = 28) pre and post-season.

Pre-season Post-season p value

Verbal memory score 87 (11) 90 (10) 0.118

Visual memory score 80 (15) 82 (11) 0.268

Visual motor speed 43 (6.3) 44 (6.7) 0.711

Reaction time 0.56 (0.07) 0.56 (0.09) 0.874

BESS total score 20 (9.3) 15 (5.6) 0.003
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discount the importance of time in understanding the relationship between RHI and WM damage, but suggests 
our weighting for the time factor could be optimized to the new SPREAD algorithm.

Our examination of clinical data revealed no appreciable declines. The only significant pre to post-season 
difference was for the BESS scores, which improved over time. This suggests that these clinical measures have 
a poor sensitivity for the sub-acute WM damage seen on neuroimaging, a finding that has been reported by 
 others45,46 In addition, both tests, especially the BESS test, are subject to training effects, making them less useful 
for detecting subtle neurologic changes that might be associated with sub-acute WM  change38. The high sensi-
tivity demonstrated by the SPREAD algorithm and its ability to localize injury provides unique opportunities 
for further research.

The SPREAD algorithm is uniquely suited to identifying the location of injury. Our development of the 
improved SPREAD (iSPREAD) method provides a more flexible algorithm for analyzing brain scans compared 
to the SPREAD  method22,47. iSPREAD uses nonlinear partial differential equation (PDE) modeling techniques 
to smooth the DTI images, which has better sensitivity and accuracy than SPREAD for detecting changes in 
regions with irregular shapes. It also has the capability to fit more sophisticated longitudinal models that involve 
scans with nonlinear temporal trends collected at many time points. Those advantages do come with much higher 
computational cost and several more tuning parameters in the PDE solver. In the future, we are committed to 
simplifying the iSPREAD algorithm and providing clinical researchers several practical combinations of tuning 
parameters via thorough simulation studies. The revised SPREAD method was implemented as an R package, 
which is freely available at https ://githu b.com/ygu42 7/iSPRE ADR.

Future efforts to demonstrate the ability or our iSPREAD method to detect neuroimaging changes might 
focus on using more sophisticated methods of weighting helmet impact data, such as using machine learning. 
Another extension would be to utilize the helmet impact location data to help better predict and describe the 
region of change seen on DTI. Clinically, the ability to measure helmet data could allow the development of 
threshold values identify athletes who need to temporarily refrain from contact before they develop potentially 
irreversible or long-term WM changes. This could help lead to improved helmet design as well as protocols to 
minimize the harmful effects of RHI.

This study is not without limitations. Three of our athletes in our analysis sustained a mid-season concussion, 
which may provide a confounder to our conclusions; however, the association between the WM changes and 
physical impacts was not a result of any outliers and the analytic methods used (Spearman’s rank correlation 
test) was robust to outliers in the data. RHI can be viewed as a spectrum of injuries, with one end being very 
mild sub-concussive contacts and the other end being clinically defined concussions. In this sense, our current 
analysis having both concussed and non-concussed athletes may reflect the full extent to which playing foot-
ball impacts the health of players. Another limitation of our study was the relatively small number of subjects 
recruited (n = 28). The fact that we were able to show significant associations between the WM changes and hel-
met impact data despite the small sample size, suggested that using computational methods that are designed to 
make personalized longitudinal analyses such as, SPREAD. An investigator may be able to detect useful signals 
from a population with high level of between-subject variation. Should the utility of SPREAD be validated in 
a future prospective study with a larger sample size, it may potentially change the current research and clinical 
practice of mTBI in a profound way.

From this study, we can derive three conclusions. The first conclusion is that sub-acute WM changes can 
be detected by the SPREAD method at the subject-level. Second, we conclude that qualitatively this injury is 
highly diffuse and heterogeneous among individuals so traditional ROI-based methods may be under-powered. 
Thirdly, we have shown a significant dose–response relationship between the amount of head trauma a player 
experiences and the WM changes seen on DTI.
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