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Detecting shielded explosives 
by coupling prompt gamma 
neutron activation analysis 
and deep neural networks
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Mohammed Hossny5

prompt Gamma neutron Activation Analysis is a nuclear-based technique that can be used in 
explosives detection. it relies on bombarding unknown samples with neutrons emitted from a neutron 
source. these neutrons interact with the sample nuclei emitting the gamma spectrum with peaks 
at specific energies, which are considered a fingerprint for the sample composition. Analyzing these 
peaks heights will give information about the unknown sample material composition. Shielding 
the sample from gamma rays or neutrons will affect the gamma spectrum obtained to be analyzed, 
providing a false indication about the sample constituents, especially when the shield is unknown. 
Here we show how using deep neural networks can solve the shielding drawback associated with 
the prompt gamma neutron activation analysis technique in explosives detection. We found that 
the introduced end-to-end framework was capable of differentiating between explosive and non-
explosive hydrocarbons with accuracy of 95% for the previously included explosives in the model 
development data set. It was also, capable of generalizing with accuracy 80% over the explosives 
which were not included in the model development data set. our results show that coupling prompt 
gamma neutron activation analysis with deep neural networks has a good potential for high accuracy 
explosives detection regardless of the shield presence.

Explosives  detection1–4 has been an open-end problem since World War I (WWI)5. Due to the recent tech-
nological advancements and intelligence of organized terrorist groups around the globe, they were capable of 
hacking lots of traditional explosives detection techniques. That being said, researchers have been working on 
alternative explosives detection systems that can outperform conventional methods relying on sniffing dogs 
and X-ray  machines6. Hence, many researchers have been paying attention to alternative techniques in explo-
sives detection. Most of the research was focusing on chemically detecting explosives such as using chemically 
modified multiplexed mode with nanoelectrical devices arrays as a method for super sensitive explosives iden-
tification and  discrimination7. Others were capable of identifying dinitrotoluene at room temperature using a 
reduced graphene-based oxide gas sensor when modified with a peptide  receptor8. Research effort demonstrated 
the capabilities of microporous polymer networks as easily and low-cost manufactural devices for explosives 
 detection9. Appreciating the huge analytical power of machine learning in clustering, regressing, and classification 
of data, some research has been conducted in using various machine learning techniques in analyzing sensors’ 
data for explosives detection in different environments. Some researchers worked on visualizing explosives by 
three-dimensional voxel radar using convolutional neural  networks10. In addition, Deep learning was imple-
mented in detecting explosives using handheld ground penetrating radar (GPR)11. Multilayer perceptron models 
(MLPs) from the artificial neural networks (ANNs) family of artificial intelligence was coupled with pulsed fast 
thermal neutron activation (PFTNA) technique for detecting  explosives12. It also showed an accuracy of 97% 
in forecasting the presence of explosives and drugs when coupled with images obtained from thermal neutrons 
 tomography13.
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Nuclear based techniques for explosives detection were introduced in  19864. In the past 20 years, lots of 
researchers focused on using those techniques in explosives detection for aviation security  purposes14. Prompt 
gamma neutron activation analysis (PGNAA) was studied extensively due to its vast potential and applicability. 
PGNAA is a quantitative isotopic identification technique. A PGNAA system broadly consists of a neutrons 
source, unknown sample (target to be investigated), and a detector  array15. When the target is bombarded with 
the neutron beam, neutrons interact with the target nuclei, emitting the gamma spectrum that includes peaks 
at certain  energies3. These energies represent the fingerprints of the target isotopic composition. Analyzing 
the heights of the peaks emitted at each energy yields the quantitative information about the sample material 
 composition16. One of the main advantages of PGNAA in explosives detection is that the irradiation and detec-
tion process occur  simultaneously17. Hence, PGNAA showed extremely high efficiency in identifying explosives, 
along with reducing the time needed for luggage investigation in airports and on borders. This will reduce the 
delay time in the passengers’  queue18. PGNAA has one major drawback, which is shielding the target to be 
 investigated19,20. Once the target is shielded, whether the shield is for neutrons or gamma rays, the shield distorts 
the gamma spectrum read by the detectors, as illustrated in Fig. 1. Hence, the system will not be able to recog-
nize the peak heights correctly, resulting in the false prediction of the target isotopic composition. One other 
drawback of using PGNAA in explosives detection is the need for a skilled operator to build a decision based 
on the system’s  results21. Using machine learning regressors and classifiers such as K-nearest neighbor (KNN) 
regressors and decision tree classifier to analyze the gamma spectra resulted in 92% accuracy in differentiating 
between explosive and non-explosive  hydrocarbons22.

The shielding issue was discussed in multiple studies. Some researchers focused on the shield thickness, and 
others focused on studying the neutron shield effect on the explosives detection  capabilities23–26. In this article, 
we show how coupling deep neural networks with the PGNAA technique can significantly help to solve the 
shielding issue. This coupling will result in an end-to-end automated framework that will reduce the need for a 
skilled operator to analyze the gamma spectra read by the detectors array.

In this work, the proposed end-to-end framework consisted of four regressors feeding one classifier. The initial 
input was gamma energy peaks heights, and the output was whether the combination of those peaks represents 
a hydrocarbon explosive or not, as illustrated in Fig. 2. The methodology of developing this framework develop-
ment consisted of three main steps; (1) data generation, (2) regressors development, and (3) classifier develop-
ment. The framework consisted of a pipeline which is a sequence of data manipulation steps starting with raw 
data and ending with predicted values with minimal error. These steps include data cleaning, feature selection, 
feature reduction, building the model, testing the model, tuning the model and predicting the final outcome.

Data generation
Due to the sensitivity of the research topic, we used synthesized data instead of experimental data. We used 
the PGNAA technique in acquiring information about the unknown hydrocarbon sample. Since the proposed 
framework is developed for differentiating between explosive and non-explosive hydrocarbons regardless of 
the shield presence. Hence, we focused on the gamma energy peaks representing hydrogen (H), carbon (C), 
nitrogen (N), and oxygen (O), as listed in Supplementary Table 127,28. For the data generation, we used a Monte 
Carlo based computational tool for radiation transport calculations (MCNP  Code29) to mimic the neutron 
interactions with the samples and gamma spectra read by the detector  array30. The simulated setup is replicating 
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Figure 1.  Sample of PGNAA obtained gamma spectra for TNT when shielded with boron.
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the Romasha experimental setup located in Frank Laboratory at the Joint Institute for Nuclear Research (JINR) 
as demonstrated in Fig. 331. The Romasha setup consisted of an ING-27 D-T neutron generator that generates 
14.1 meV neutrons, six iron sheets collimator, and Ten BGO detectors located in a semicircle of 30 cm radius, as 
demonstrated in Fig. 3. Dimensions of the setup are listed in Supplementary Table 222,31. The gamma rays emitted 
due to neutron interactions with the sample travel in different directions. Hence, using detectors array in PGNAA 
setups is a standard procedure for detecting the emitted gamma spectrum. We modeled the neutrons emitted 
from the D-T neutron generator as point isotropic source of 14.1 meV energy. Hence, changing the orientation 
of the investigated sample will not affect the resulting gamma spectrum. We used our previously developed and 
validated MCNP model with validation metrics listed in Supplementary Table 322. In the developed MCNP model 
that we used in the data generation process, we didn’t consider the natural radioactivity background. Natural 
radioactivity on earth usually includes gamma radiation. The neutron background radiation is insignificant. 
Hence, it is usually neglected in the application design process. Regarding the gamma background radiation 
levels, it is a standard procedure for any setup that includes radiation detection, and the detectors are calibrated 
to remove the background gamma readings from the relevant energy channels. In our case, the relevant chan-
nels are listed in Supplementary Table 1. Using the validated MCNP model, we generated 1,478 samples for 
non-shielded and shielded explosive and non-explosive hydrocarbons with a variation of shield thicknesses 
from zero (not-shielded) to three cm shield. Twenty-two different hydrocarbon explosives were included in the 
data generation process, their chemical composition (in mass fractions), densities ( ρ in g/cm3), volume (Vol in 
 cm3), and masses (M in g) are listed in Table 1. The shields studied were boron (B), light water  (H2O), borated 
light water (BW), polyethylene (Poly), borated polyethylene (BP), lead (Pb), iron (Fe), and steel, the generated 

Figure 2.  Proposed end-to-end framework.

Figure 3.  (a) Real image of the ROMASHA setup located in Frank laboratory in JINR, (b) ROMASHA setup 
MCNP model developed for data generation.
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data breakdown is listed in Supplementary Table 4. We chose random weight fractions of H, C, N, and O for 
non-explosive hydrocarbon samples to represent the randomness in hydrocarbon materials compositions that 
exist in the ordinary luggage to be investigated. To cross-validate the whole pipeline using the leave-one-out 
method, we divided the generated 1,478 samples into 11 datasets. We separated the final test data set by exclud-
ing two explosive hydrocarbons with all of their shield variations (50 samples), and 50 random non-explosive 
hydrocarbons with random shield variations from each data set. Hence, each development data set consisted of 
1,378 samples. Average standard deviation scores associated with the generated data are listed in Supplementary 
Table 5. In this proof of concept, the obtained gamma spectrum is per source neutron and per second. Also, the 
gamma spectra input features were normalized between zero and one as a pre-processing measure necessary 
for the model development stage. Hence, the provided results are for irradiation per second. That being said, we 
believe that increasing the irradiation time and D-T neutron generator intensity of  109 to  1012 n/cm2 s during 
the practical deployment will provide better results. Using a prescreening device such as the X-ray machines will 
reduce the total screening time by permitting the movement of suspicious baggage to another convoy, which 
leads to the D-T neutron generator detection  system23. In practice assuming 10% of the baggage are suspicious 
and using a high-intensity neutron generator. This will reduce the time of the multibarrier screening process 
and ensure an efficient detection of both shielded and unshielded illicit materials. The presence of the X-ray 
prescreening device will also help to direct the neutron generator specific to locations in the parcel and reduce 
the time for the second screening  process23.

Regressors development
A regressor is a method that generates a model capable of predicting the numerical dependent variable and mini-
mize the error between the predicted value and the actual value for the whole range of the dependent variables 
and the whole space of the independent variables. We developed four deep neural network regressors to predict 
the weight fractions of H, C, N, and O in the investigated samples, respectively. The input for each regressor was 
the 11 gamma energy peak heights read by the ten detectors in the detector array. Hence, the total number of 
input features was 110 features. Outputs of the four regressors were the H, C, N, and O weight fractions, respec-
tively. Training and test size represented 80% and 20% of each development data set from the data generated, 
respectively. Hence, we cross-validated each of the developed models across five folds. In each fold, training and 
test samples were chosen randomly. We used the mean squared error (MSE), mean absolute error (MAE), and 
the coefficient of determination  (R2) as the quality metrics for the developed regressors, as listed in Table 2. The 
 R2 score is a regression metric that evaluates the quality of fit, and it measures the percentage of the correctly 
predicted numerical values in comparison to the whole dataset. Although the oxygen weight fraction regressor 
had the highest test MAE, we considered the regressors responsible for predicting the H, and C elements weight 
fractions showed the worst and less bad quality metrics as they had the highest differences between training 
and test MAEs. This indicates a higher tendency to overfit the regression process. The reason behind this is the 
existence of light water, and polyethylene as shields within the data generated samples. The issue associated with 

Table 1.  Studied explosives chemical compositions.

Explosive ρ (g/cm3) Vol  (cm3) H C N O M (g)

Ammonium Picrate 1.72 500 0.025 0.293 0.228 0.455 860

AN 1.72 500 0.050 0.000 0.350 0.600 860

Cl-20 2.04 500 0.014 0.164 0.384 0.438 1,020

DMNB 0.45 500 0.070 0.409 0.159 0.360 225

EGDN 1.49 500 0.026 0.158 0.184 0.632 745

Guanidine nitrate 1.44 500 0.050 0.098 0.459 0.393 720

HMTD 1.57 500 0.057 0.346 0.135 0.460 785

HMX 1.91 500 0.027 0.162 0.378 0.432 955

Hydrazine nitrate 1.64 500 0.053 0.000 0.442 0.501 820

Mannitol hexanitrate 1.73 500 0.018 0.159 0.186 0.637 865

NG 1.6 500 0.022 0.159 0.185 0.634 800

NM 1.14 500 0.049 0.200 0.230 0.525 570

PETN 1.77 500 0.025 0.190 0.177 0.607 885

Picric acid 1.76 500 0.013 0.314 0.183 0.489 880

RDX 1.858 500 0.027 0.162 0.378 0.432 929

TATB 1.93 500 0.023 0.279 0.326 0.372 965

TATP 1.2 500 0.081 0.486 0.000 0.432 600

Tetryl 1.73 500 0.017 0.293 0.244 0.446 865

TNAZ 1.84 500 0.021 0.188 0.292 0.500 920

TNB 1.76 500 0.014 0.338 0.197 0.451 880

TNT 1.65 500 0.022 0.370 0.185 0.423 825

UN 1.59 500 0.040 0.097 0.340 0.520 795
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these two particular shields is the existence of H and C within the shield material composition. Putting aside the 
fact that H and C are considered excellent neutron shields. Neutron interactions with H and C in those shields 
will also, add to gamma energy peaks’ heights of H, and C read by the detectors array. This will not only distort 
the resulting gamma spectrum due to neutron shielding, but this will also provide misleading H, and C energy 
peaks’ heights that do not represent H and C weight fractions in the investigated sample. Although O exists in 
light water, it is a neutron transparent element, and thus, it has a low probability of interaction with neutrons. That 
being said, the regressor predicting the O weight fractions showed regression quality metrics better than that of 
H and C regressors. On the other hand, the regressor responsible for the prediction of N weight fraction showed 
the least MSE, MAE, and the highest  R2 scores. This was due to the absence of N in any of the investigated shields.

Classifier development
A classifier is a method that builds a model capable of identifying different categorical data items according to 
the set of features associated with them. In the last stage of our pipeline, we developed a classifier to differenti-
ate between explosive and non-explosive hydrocarbons regardless of whether the investigated hydrocarbon 
was shielded or not. The input for the classifier was the output of the four regressors. The classifier’s output was 
whether the regressed weight fractions of H, C, N, and O represent an explosive or non-explosive hydrocarbon. 
Similarly to the regressors’ development, training and test data sizes represented 80% and 20% from each devel-
opment data set from the data generated, respectively. The classifier was also cross-validated over five folds. We 
used accuracy, precision, recall, and F1 scores as the developed classifier’s quality metrics. Accuracy measures 
how many of the predicted classes for the categorical values were correctly classified in comparison to the whole 
data set. The accuracy metric can be misleading if the data was unbalanced. Also, it is not statistically significant. 
Precision represents the ratio between the predicted true positives and all the positively predicted instances (true 
positives and false positives). While the recall score is the ratio between the predicted true positive instances and 
the true number of positives that should have been scored (true positives and false negatives). Finally, F1-score 
is the harmonic mean for precision and recall. Considering that precision and recall are negatively proportional 
for most of the models, the high harmonic mean implies a robust model that can predict the true positive, true 
negative, false positive and false negatives properly. We trained the classifier through feeding the regressed weight 
fraction values of H, C, N, and O rather than the original values to reduce the error propagation possibility. The 
developed classifiers showed 95% for all weighted mean quality metrics. Details of each developed classifier 
quality metrics are listed in Table 3.

pipeline performance
In summary, we developed 11 pipelines, each pipeline consisted of four regressors to predict the weight frac-
tion values of H, C, N, and O respectively and a classifier to determine whether the investigated sample was an 
explosive hydrocarbon or not. During the development of each pipeline, one of the 11 development data sets 
was chosen. Finally, we tested each pipeline twice, once on the development data set, and the other through the 
corresponding final test data set (data that has not been included in the model development data set neither in 

Table 2.  Average metrics for the four developed regressors.

Model name Training MSE Training MAE Training  R2 Test MSE Test MAE Test  R2

Hydrogen 0.001 0.025 0.955 0.003 0.036 0.888

Carbon 0.003 0.038 0.868 0.004 0.043 0.836

Nitrogen 0.002 0.029 0.926 0.002 0.032 0.905

Oxygen 0.004 0.047 0.872 0.004 0.048 0.859

Table 3.  Classification metrics for the 11 developed classifiers.

Model number Accuracy Precision Recall F1-score

Model 1 0.931 0.931 0.932 0.931

Model 2 0.964 0.964 0.965 0.964

Model 3 0.946 0.946 0.946 0.946

Model 4 0.942 0.942 0.942 0.942

Model 5 0.942 0.942 0.943 0.942

Model 6 0.953 0.953 0.953 0.953

Model 7 0.960 0.960 0.960 0.960

Model 8 0.957 0.957 0.957 0.957

Model 9 0.960 0.960 0.960 0.960

Model 10 0.949 0.950 0.950 0.949

Model 11 0.946 0.946 0.946 0.946

Average 0.950 0.950 0.950 0.950
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training or testing). As expected, testing the pipelines on the development data sets resulted in the same weighted 
mean accuracy, precision, recall, and F1 scores as that of the classifiers’ development scores (95%). On the other 
hand, when we tested the pipelines on the final test data sets, classification quality metrics’ weighted mean scores 
dropped to 80%, 79%, 85%, and 80% for the accuracy, precision, recall, and F1 scores respectively. These scores 
represent the pipeline capability of generalization over unknown explosives and non-explosives regardless of the 
shield existence or not. Detailed classification metrics scores for the development data set test, and the final test 
data set test are listed in Tables 4 and 5, respectively. We noticed from the test performed on the final test data 
sets that the average false alarm rate is 2%.

conclusions
From the above discussion, we concluded that the developed end-to-end framework scored higher classification 
metrics for previously included explosives in the training process. Due to the nature of security problems, and 
since there is a finite number of explosives, it is possible to include all the known explosives in the regressors 
and classifiers training. However, some of the developed pipelines were capable of detecting 920 g of trinitro-
azetidine (TNAZ) with accuracy of 84%, 800 g of nitroglycerin (NG) and 825 g of trinitrotoluene (TNT) with 
accuracy of 88%, 880 g of Picric acid, 865 g of trinitro-phenylmethyl nitramine (tetryl), and 795 g of urea nitrate 
(UN) with accuracy of 92%, and finally 885 g of pentaerythritol tetranitrate (PETN) with accuracy of 100%. The 
aforementioned explosives were not included in neither the training nor test of their corresponding develop-
ment data sets. However, by testing the minimum detectable mass for the PETN across three cm of the studied 
shields. The pipeline was capable of detecting minimum mass of 708 g of PETN for the shields water, borated 
water, iron, lead, and boron. Also, it was capable of detecting 177, 354, and 531 g of PETN when shielded with 
three cm of borated polyethylene, polyethylene, and steel respectively. Thus, coupling deep neural networks with 
the PGNAA technique showed huge potential in overcoming the neutron and gamma shielding drawback of the 
PGNAA technique in explosives detection and security applications. We believe that including more massive 
data sets that include experimental data that includes more parameters can significantly improve the efficiency 
of the proposed pipeline in explosives detection. Future work may include studying actual luggage with vari-
ous hydrocarbon compounds placed around the shielded sample (whether it was explosive or not). We used 
the polyethylene and borated polyethylene shields as they are considered neutron absorbers that can be used 

Table 4.  Development data set test classification metrics for the 11 developed pipelines.

Model number Accuracy Precision Recall F1-score

Model 1 0.946 0.947 0.947 0.946

Model 2 0.964 0.964 0.964 0.964

Model 3 0.945 0.945 0.946 0.945

Model 4 0.951 0.952 0.952 0.951

Model 5 0.928 0.929 0.930 0.928

Model 6 0.947 0.947 0.948 0.947

Model 7 0.947 0.947 0.948 0.947

Model 8 0.940 0.940 0.941 0.940

Model 9 0.959 0.959 0.959 0.959

Model 10 0.940 0.940 0.941 0.940

Model 11 0.933 0.934 0.934 0.933

Average 0.946 0.946 0.947 0.946

Table 5.  Final test data set test classification metrics for the 11 developed pipelines.

Model number Accuracy Precision Recall F1-score

Model 1 0.810 0.804 0.851 0.810

Model 2 0.650 0.607 0.766 0.650

Model 3 0.680 0.653 0.762 0.680

Model 4 0.760 0.745 0.838 0.760

Model 5 0.850 0.847 0.885 0.850

Model 6 0.840 0.836 0.879 0.840

Model 7 0.950 0.950 0.950 0.950

Model 8 0.730 0.715 0.792 0.730

Model 9 0.720 0.703 0.786 0.720

Model 10 0.860 0.857 0.890 0.860

Model 11 0.930 0.930 0.932 0.930

Average 0.800 0.786 0.848 0.800
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in shielding the investigated sample. They also provide insights about the ability to proceed with this work to 
investigate samples surrounded by items usually placed in ordinary luggage.

Received: 24 May 2020; Accepted: 30 July 2020
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