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Classification of cervical neoplasms 
on colposcopic photography using 
deep learning
Bum‑Joo Cho1,2,3,4,10*, Youn Jin Choi5,6,10, Myung‑Je Lee2, Ju Han Kim3, Ga‑Hyun Son4,7, 
Sung‑Ho Park7, Hong‑Bae Kim7, Yeon‑Ji Joo7, Hye‑Yon Cho8, Min Sun Kyung8, 
Young‑Han Park9, Byung Soo Kang5, Soo Young Hur5,6, Sanha Lee5,6 & Sung Taek Park4,7*

Colposcopy is widely used to detect cervical cancers, but experienced physicians who are needed 
for an accurate diagnosis are lacking in developing countries. Artificial intelligence (AI) has been 
recently used in computer‑aided diagnosis showing remarkable promise. In this study, we developed 
and validated deep learning models to automatically classify cervical neoplasms on colposcopic 
photographs. Pre‑trained convolutional neural networks were fine‑tuned for two grading systems: 
the cervical intraepithelial neoplasia (CIN) system and the lower anogenital squamous terminology 
(LAST) system. The multi‑class classification accuracies of the networks for the CIN system in the 
test dataset were 48.6 ± 1.3% by Inception‑Resnet‑v2 and 51.7 ± 5.2% by Resnet‑152. The accuracies 
for the LAST system were 71.8 ± 1.8% and 74.7 ± 1.8%, respectively. The area under the curve (AUC) 
for discriminating high‑risk lesions from low‑risk lesions by Resnet‑152 was 0.781 ± 0.020 for the 
CIN system and 0.708 ± 0.024 for the LAST system. The lesions requiring biopsy were also detected 
efficiently (AUC, 0.947 ± 0.030 by Resnet‑152), and presented meaningfully on attention maps. These 
results may indicate the potential of the application of AI for automated reading of colposcopic 
photographs.

Cervical cancer is the fourth most common cancer in women worldwide, and the second most common cancer 
among females in developing  countries1. Screening is the principal prevention method aimed at reducing mortal-
ity rates. Screening includes certain steps, including population-based Papanicolaou (Pap) testing, colposcopy-
directed biopsy of suspicious lesions, and the treatment of confirmed pre-cancer  lesions2,3. In women with 
low-grade intraepithelial lesions (LSIL) or high-grade intraepithelial lesions (HSIL), the risk of pre-cancer is 
medium to high, and immediate referral for colposcopy is necessary. However, referring all women with atypical 
squamous cells of undetermined significance (ASC-US) is considered inefficient, as the risk of such cases being 
pre-cancerous is  lower4. Screening programs have been successful in the developed countries, leading to an 
approximately 80% decrease in the cervical cancer incidence over the past 4 decades. In contrast, the increase in 
cervical cancer incidence reported in developing  countries5 has been attributed to the unsuccessful implementa-
tion of screening programs. This, has been attributed to logistics in health systems, infrastructural inadequacies, 
and the lack of expert physicians capable of introducing screening programs and follow-up6.
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Colposcopy is an examination method, that identifies cervical lesions using low magnification microscopy 
under a strong light  source7. It visualizes the cervical epithelium and facilitates the collection of cervical biopsy 
specimens for obtaining a histopathological diagnosis. Previous studies have evaluated the accuracy of colpo-
scopic diagnoses and accompanying biopsies, finding a sensitivity of 70.9–98% and specificity of 45–90%8–11. 
However, the accuracy of colposcopic diagnosis is highly dependent on the physician’s skills, resulting in wide 
variability in its sensitivity and specificity between providers. This has raised concerns regarding the under-
diagnosis of lesions, including missing cervical  cancers12, or over-diagnosis of lesions, leading to over-treatment 
of low grade cervical lesions, increased risks of infections, patient discomfort, and financial  burdens13.

Recently, artificial intelligence (AI) using machine learning has made considerable advances in medicine, 
allowing automated disease diagnosis based on medical image  recognition14,15. Convolutional neural net-
work (CNN), a kind of an artificial neural network, has shown excellent promise in reading fundus and skin 
 photographs16,17. Machine learning has therefore been rapidly incorportaed in radiology, cardiology, gastroenter-
ology, and even reproductive  medicine18–21. Machine learning has already been introduced in colposcopic imag-
ing; however, available evidence on its specificity and sensitivity is limited, preventing its full use in this  field22,23.

This study had two aims. The primary aim was to develop a machine learning-based colposcopy model, that 
automatically classifies cervical neoplasms using two histopathologic systems: the classical cervical intraepithelial 
neoplasia (CIN) system and the lower anogenital squamous terminology (LAST)  system24. The secondary aim 
of this study was to evaluate the performance of machine learning models in identifying cervical lesions requir-
ing biopsies (neoplastic lesions vs. normal tissue). To our knowledge, this is one of the largest studies on the 
application of artificial intelligence to colposcopic photograph reading among biopsy-confirmed precancer cases.

Materials and methods
Study subjects. Colposcopic photographs of cervical neoplastic or normal lesions, that were pathologically 
confirmed between 2015 and 2018, were retrospectively collected from three university-affiliated hospitals: the 
Kangnam Sacred Heart Hospital, Dongtan Sacred Heart Hospital, and Seoul St. Mary’s Hospital. Data eligible 
for inclusion in the study were from women who were ≥ 18 years old, not pregnant, had no history of cervical 
surgery, and had Pap test results. All neoplastic lesions were pathologically confirmed by conization biopsy, and 
normal lesions were defined as those with normal Pap test results, which were colposcopically normal, as con-
firmed by two gynecologic oncologists (S.T.P and Y.J.C) without pathologic (biopsy or conization) evaluation. 
In addition, all neoplastic lesions underwent human papillomavirus (HPV) testing (Fig. 1A and Table 1). This 
study was approved by the institutional review boards of the Kangnam Sacred Heart Hospital (IRB file number: 
2018-01-031), Dongtan Sacred Heart Hospital (IRB file number: 2019-07-010), and Seoul St. Mary’s Hospital 
(IRB file number: KC18RESI0792) and complied with the principles of the Declaration of Helsinki. The need for 
informed consent was waived by the institutional review boards of the involved hospitals.

Binocular colposcopies with video monitoring systems were used for obtaining colposcopic photographs. 
After taking the photographs, colposcopy-directed biopsy and conization were performed by expert gyneco-
logic oncologists with over 6000 cases of experience, according to the guidelines of the American Society for 
Colposcopy and Cervical  Pathology4. All photographs were taken during colposcopic examination, before any 
operation or invasive procedure. After applying normal saline, the transformation zone and the region of inter-
est were evaluated after being washed with 3–5% acetic acid. Only white-light images were used in the present 
study; these were retrieved from the picture archiving and communication systems of the participating hospitals 
with resolutions of 640 × 480 pixels. Images not allowing proper classification, such as poor quality or unfocused 
images, were excluded from the study; all personal identifiers were removed.

Classification of cervical lesions. The collected images were reviewed by two gynecologic oncologists 
(S.T.P. and Y.J.C.), and only the image of the best quality was selected for each participant. Selected images 
were classified using two independent histopathologic systems: (1) the CIN system consisting of cervical cancer, 
CIN3, CIN2, CIN1, and normal, and (2) the LAST system including cervical cancer, HSIL, LSIL, and  normal24,25.

Binary classification models dichotomizing cervical lesions into high-risk vs. low-risk lesions were then 
designed for each system. The CIN high-risk lesions included CIN2, CIN3, and cancer (CIN2+), and the CIN 
low-risk lesions included CIN1 and normal lesions (CIN1−). The LAST high-risk lesions included HSIL and 
cancer (HSIL+), and the LAST low-risk lesions included LSIL and normal lesions (LSIL−).

Lastly, a binary decision model was developed to determine the need to biopsy for a cervical lesion (Need-
To-Biopsy system). The need to biopsy was defined as the lesion being classified as a neoplastic lesion by either 
the CIN or LAST system (CIN1+ or LSIL+). Therefore, the Need-To-Biopsy was defined as ‘not being normal’; 
therefore, there were only two classes in the Need-To-Biopsy system, namely, normal and Need-To-Biopsy, 
representing everything else except normal (Fig. 1B).

Construction of datasets. The dataset was divided into training and test datasets, with a proportion of 
85%: 15% by each class, as shown in Supplementary Table 1. This approach enabled testing of our model with the 
same ratio as the original dataset composition. After splitting the training and test datasets, data augmentation 
was performed for the training dataset to reduce class imbalance. Three different combinations of the training 
datasets were prepared using three different seed numbers for under-sampling, to check the robustness of the 
model. Lastly, the training set was further divided into the proper training dataset and the validation dataset for 
parameter tuning, at a ratio of 75:10. The datasets were mutually exclusive.

Pre‑processing of datasets. All images underwent automatic central cropping from the original resolu-
tion of 640 × 480 pixels to the new resolution of 480 × 480 pixels, removing 80 pixels for each right and left mar-
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gin. All images were then normalized using min–max normalization to decrease the differences in photographs 
sourced from different participating hospitals.

For the training dataset, data augmentation was performed for the less frequent classes to overcome the data 
imbalance  issue25. Data augmentation was customized for each training dataset built for each model by adding 
the rotated images of the training dataset. In the multi-class classification model for the CIN system, the cancer 
group was augmented six-fold by rotating the original images by 30°, 60°, 90°, 120°, and 150°. The CIN1 group 
was tripled by rotating the original images by 60° and 120°, and the normal group was doubled by rotating the 
original images by 90°. For the multi-class classification model of the LAST system, the normal and LSIL groups 
were quadrupled by rotating the original images by 45°, 90°, and 135°, and the cancer group was augmented 
tenfold. Finally, horizontal flipping, vertical flipping, and horizontal–vertical flipping were performed to aug-
ment the original data set four-fold.

Figure 1.  Participant enrollment diagram (A) and classification systems of cervical lesions (B).
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Training of the CNN models. Two CNN architectures were adopted, namely, the Inception-Resnet-v2 
model (https ://arxiv .org/abs/1602.07261 ) and Resnet-152 (https ://arxiv .org/abs/1603.05027 ) model. In summry, 
the Resnet-152 is an updated version of the Resnet model, and the Inception-Resnet-v2 is a modified version of 
the Inception-v3 model, which incorporates some ideas adopted in the Resnet model. The CNN models were 
pre-trained by ImageNet weights and fine-tuned using the colposcopic images in this study.

Five different models were constructed for different labeling systems described above: multi-class CIN system, 
binary CIN system, multi-class LAST system, binary LAST system, and the need to biopsy. For binary classifica-
tions, new models were trained after creating datasets, which consisted of two classes. We did not simply induce 
the results from multi-class classifiers by converting the output into binary classes. Categorical cross-entropy 
was used as the loss function in the multi-class classification, and binary cross-entropy was used for binary 
classification. All training was performed using the PyTorch platform. Hardware systems were equipped with 
NVIDIA’s GeForce GTX 1080ti GPUs and dual Xeon central processing units.

The model training consisted of three stages, with images of a decreased resolution of 400 × 400 at the first 
stage, 450 × 450 resolution at the second stage, and 480 × 480 resolution at the last stage. Each stage consisted of 
two steps: (1) loading pre-trained models, unfreezing only the last layers, and training cyclically, and (2) unfreez-
ing the entire layers and training cyclically with differential learning rates for the first few, middle, and last layers.

For each step, we performed the cyclic learning rate schedule proposed by Huang et al., but did not adopt 
the snapshot  ensemble26. In summary, the initial learning rate was chosen at 1e-3, which presented the lowest 
validation loss in the single learning rate range test before initiating  training27. The learning rate then followed 
a cosine annealing within one cycle, and returned to the initial learning rate at the start of the next cycle. Four 
cycles with a length of 1, 4, 16, and 64 were used in each step. In each cycle, early stopping was used to minimize 
validation loss. In performing step 2, three differential learning rates were used for different sublayers, and the 
initial learning rates were (1e−3)/9, (1e−3)/6, and 1e−3. Dropout was implemented with the dropout ratio of 0.5.

Class activation map (CAM). The attention map, or the CAM, was implemented to detect the region of 
 interest28. For each CNN architecture, the last few layers were removed before a convolution layer was added, 
and global average pooling and softmax layers were applied. Multiplying feature maps spatially pooled using 
global average pooling for each corresponding class feature weight was performed to present the magnitude of 
importance in determining the  class28. Up-sampling redirects to the localization in the original image. A class 
activation map was presented for each result using this  method28. We selected red color to indicate the most 
activated region.

Main outcome measures and statistical analysis. Class prediction of test datasets was performed 
with test-time augmentations (TTA) using four augmentations including original, horizontally-flipped, verti-
cally-flipped, and horizontally–vertically-flipped images. The goal of the TTA was to increase the prediction 
accuracy by using the images from different perspectives. Four predictions were made for a single image; the 
average of the four predictions was taken as the final prediction.

To evaluate the model performances, three different training datasets with different seed numbers were used. 
Using the test dataset, which was not used for training, the multi-class classification accuracy was evaluated for 
the CIN and LAST criteria system. For binary classification, the area under the receiver operating characteristic 
curve (AUC) was calculated. Also, the mean accuracy, sensitivity, specificity, positive predictive value (PPV), 
and negative predictive value (NPV) were calculated at the optimal cutoff point, maximizing Youden’s index, the 

Table 1.  Demographic characteristics of 791 women in this analysis. *Four women with cervical neoplasms 
did not have HPV results.

Characteristics No

Age, y (n = 791)

18–29 139

30–49 451

50–94 201

Pap result (n = 791)

Normal 159

ASC-US 147

AGC 13

ASC-H 109

LSIL 135

HSIL 223

Cancer 5

HPV result (n = 661)*

Negative 46

Positive (Not HPV16) 425

HPV16 190

https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1603.05027
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sum of sensitivity and specificity minus one. Continuous variables are expressed as means ± standard deviation. 
A p value of < 0.05 was regarded as statistically significant in all tests.

Results
Baseline characteristics. A total of 1,426 images from 791 patients (1.8 images per each subject) were 
initially included, from which the images of the best quality were selected. Finally, 791 images from 791 patients 
were included in the study. The participant enrollment diagram and classification system used in this study 
are presented in Fig. 1. The entire dataset comprised 43 (5.4%) cancer images, 311 (39.3%) CIN3 images, 211 
(26.7%) CIN2 images, 100 (12.6%) CIN1 images, and 126 (15.9%) normal images. In the LAST system, HSIL was 
the most frequent class (511, 64.6%), followed by normal. The data composition of the training and test datasets 
are shown in Supplementary Table 1. The test dataset comprised 116 images from 116 patients. One representa-
tive image is presented in Fig. 2. The associated augmented images are presented in Fig. 2B–D.

Classification performances in the CIN system. On classifying images into 5 categories by the CIN 
system, the mean overall accuracy of the CNN model in the test dataset was 48.6 ± 1.3% by the Inception-Resnet-
v2 model and 51.7 ± 5.2% by the Resnet-152 model. On tenfold cross-validation, the accuracy of each model was 
44.3 ± 2.1% by the Inception-Resnet-v2 model and 48.8 ± 1.9% by the Resnet-152 model. The mean per-class 
accuracies maximizing the Youden’s index for each class of the Resnet-152 model were 59.5 ± 9.7%, 56.6 ± 4.8%, 
60.0 ± 6.1%, 57.2 ± 4.5%, and 92.8 ± 1.8% for cancer, CIN3, CIN2, CIN1, and normal lesions, respectively. The 
confusion matrix of the best performing Resnet-152 model is presented with a heatmap in Fig. 3A.

On binary classification for high- and low-risk lesions based on the CIN system, the mean AUC was 
0.739 ± 0.024 by the Inception-Resnet-v2 model, and 0.781 ± 0.020 by the Resnet-152 model. The binary clas-
sification performances for the CIN, LAST, and the Need-To-Biopsy systems are presented in Table 2.

Classification performances in the LAST system. For the LAST system, the mean overall accuracy 
of 4-class classification was 71.8 ± 1.8% by the Inception-Resnet-v2 model and 74.7 ± 1.8% by the Resnet-152 
model. The mean accuracy in tenfold cross-validation was 72.0 ± 4.5% by the Inception-Resnet-v2 model and 
71.2 ± 4.9% by the Resnet-152 model. The mean per-class accuracies of Resnet-152 were 58.3 ± 13.4, 68.1 ± 0.9, 
63.8 ± 7.9, and 91.7 ± 3.0 for cancer, HSIL, LSIL, and normal lesions, respectively. The CNN model was mostly 
effective at detecting normal and HSIL lesions (Fig. 3B).

The mean AUC for differentiating high-risk lesions from low-grade lesions in the LAST system was 
0.685 ± 0.072 by the Inception-Resnet-v2 model and 0.708 ± 0.024 by the Resnet-152 model (Table 2). Notably, 
when only the Pap test results were used for the prediction of high-risk lesions, the mean AUC was 0.849 ± 0.014 
in the CIN system and 0.827 ± 0.015 in the LAST system.

Figure 2.  Representative examples of an original image (A) and the augmented images for cervical neoplastic 
lesion: a horizontally-flipped image (B), vertically-flipped image (C), and horizontally and vertically-flipped 
image (D).
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Determining the need to biopsy. In determining the need to biopsy (‘Need-To-Biopsy System’), the 
mean AUC for determining the requirement for biopsy was 0.932 ± 0.031 and 0.947 ± 0.030 by the Inception-
Resnet-v2 and Resnet-152 models, respectively (Table 2). The sensitivity and negative predictive value of the 
Resnet-152 model were 85.2 ± 3.2% and 97.0 ± 0.8%, respectively. The ROC curves of the best performing 
Resnet-152 models for differentiating high-risk lesions in the CIN and LAST system and for determining the 
requirement for biopsy, are presented in Fig. 4.

Classification analyses. The CAM was reviewed for samples. Representative samples of CAM for high- 
and low-risk lesions are presented in Fig. 5. The deep learning model detected the suspicious area appropriately 
in most high-risk cases. In the review of CAM results by two gynecologic oncologists (S.T.P and Y.J.C), the CAM 
appropriately detected high-risk lesions judged as 82.5% for the CIN system, 89% for the LAST system, and 
71.5% for the Need-To biopsy system.

Discussion
Machine learning is considered promising in disease diagnosis and treatment-related decision-making, par-
ticularly in areas without enough medical experts with sufficient  experience29. We investigated whether deep 
learning-based colposcopy can be used for disease diagnosis, and may lead to proper management decisions. 
In the present study, the mean accuracy for the CIN classification was 51.7 ± 5.2% by the Resnet-152 model; the 
mean AUC for differentiating high-risk (CIN2+) and low-risk (CIN1-) lesions reached 0.781 ± 0.020. The per-
class accuracy of the deep learning model was 59.5 ± 9.7%, 56.6 ± 4.8%, 60.0 ± 6.1%, 57.2 ± 4.5%, and 92.8 ± 1.8% 
for cancer, CIN3, CIN2, CIN1, and normal tissue, respectively. For the LAST system, the mean accuracy of the 
Resnet-152 model was 74.7 ± 1.8%, and the mean AUC distinguishing high-risk (HSIL+) and low-risk (LSIL-) 
lesions was 0.708 ± 0.024. In addition, the mean AUC to determine the need for biopsy reached 0.947 ± 0.030. Col-
lectively, these results suggest that machine learning-based colposcopy may be clinically applicable. The improved 

Figure 3.  Heatmap of the confusion matrix of the multiclass classification of cervical lesions on colposcopic 
photographs by the best-performing Resnet-152 model. (A) the CIN system (B) the LAST system. The figure 
was created using Python version 3.6.8, sklearn library version 0.21.2 and matplotlip library version 3.1.0.

Table 2.  Diagnostic performance of the machine learning models in the binary classification of cervical 
neoplasms on colposcopic photographs. PPV positive predictive value, NPV negative predictive value, AUC  
area under the curve, CIN cervical intraepithelial neoplasia, LAST lower anogenital squamous terminology.

Model Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) AUC 

High-risk lesions vs. Low-risk lesions in the CIN system

Inception-Resnet-v2 69.3 ± 4.8 66.7 ± 3.1 70.6 ± 6.1 47.2 ± 6.0 84.0 ± 1.8 0.739 ± 0.024

Resnet-152 68.9 ± 4.0 66.7 ± 3.1 69.9 ± 4.5 46.7 ± 5.0 84.2 ± 2.0 0.781 ± 0.020

High-risk lesions vs. Low-risk lesions in the LAST system

Inception-Resnet-v2 63.2 ± 9.4 62.9 ± 7.6 63.5 ± 10.3 42.7 ± 9.3 79.9 ± 6.1 0.685 ± 0.072

Resnet-152 66.9 ± 3.4 65.7 ± 2.9 67.9 ± 3.7 46.1 ± 3.9 82.3 ± 2.0 0.708 ± 0.024

Determining the need to biopsy

Inception-Resnet-v2 87.7 ± 0.5 83.3 ± 0.0 88.6 ± 0.6 57.0 ± 0.0 96.7 ± 0.0 0.932 ± 0.031

Resnet-152 87.7 ± 5.7 85.2 ± 3.2 88.2 ± 6.2 58.9 ± 15.4 97.0 ± 0.8 0.947 ± 0.030
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accuracy of the LAST system may be partly attributed to the fewer classes of the LAST system, as the classes 
in the CIN and LAST systems concur between systems, except that CIN2 may belong to either LSIL or HSIL.

The performance of human doctors in detecting cervical abnormalities on colposcopy have been reported to 
have 87–99% specificity and 26–87% sensitivity in previous  studies30. For the purpose of this study, we simplified 
the currently used classification systems to distinguish cervical neoplasms from normal tissue. We developed 
a ‘Need-To-Biopsy System’ focusing on detecting neoplastic lesions which need biopsy. The performance of 
the deep learning model for this classification showed a mean AUC of 0.947, with 85.2% sensitivity and 88.2% 
specificity. This may suggest that the deep learning model may support under-experienced clinicians in decid-
ing whether to perform a cervical biopsy or transfer the patient to a specialist. Notably, our Pap results provided 
better performance in detecting high-risk lesions than in previously reported results and our deep learning 

Figure 4.  Receiver operating characteristic curves of the best-performing Resnet-152 models for the binary 
classification of the CIN and LAST system, and for determining the need to biopsy.

Figure 5.  Class activation map for the classification of high-risk and low-risk cervical lesions on colposcopic 
photographs using a convolutional neural network based on (A) the CIN system or (B) the LAST system.
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models. This may be partly explained by the fact that patients are expected to have inferior outcomes in tertiary 
institutions.

Till date, studies on classifying cervical lesions using CNN or other machine-learning algorithms on col-
poscopic images have been very limited. A previous study by Sato et al. showed that images were classified by 
the established CNN into three groups, namely, CIN3, carcinoma in situ (CIS), and invasive cancer (IC), with 
an overall accuracy of ~ 50%22. This study suggested that machine learning-based colposcopy may be clinically 
feasible, but did not provide satisfactory accuracy. Another study by Simoes et al. showed an accuracy of 72.15% 
in classifying colposcopic images with 170 image data. Although the accuracy was better than the average of 
previous studies, their study focused on technical issues in image classification without focusing on the clinical 
 implications23. Recently, Hu et al. published a large-scale study deep learning based model using cervicog-
raphy. The study showed a better accuracy (AUC = 0.91) in identifying CIN2+  cases31, compared to our data 
(AUC = 0.781). Hu et al. used a faster RCNN model, that first localizes the cervix and then classifies the  lesion31. 
The localization step may have contributed to the improvement of performance. Nevertheless, the advantage of 
the faster R-CNN model might be reduced in analyzing colposcopy images, because the image only has a single 
region of interest (ROI), or the cervix, and the ROI is usually located centrally in most cases. Conversely, the 
CNN models we used (Resnet-152 and Inception-Resnet-v2) have been known to superior to the CNN model 
(VGG16) used by Hu et al. in the faster R-CNN. If a heavy model such as Resnet-152 was used as the backbone 
in the faster R-CNN, the performance might have been improved. Anyway, the differences in the performance 
between this study and the study by Hu et al.31 may be attributed to many factors including the localization pro-
cess of the CNN model, CNN architecture, dataset size, data composition, and the image quality used in analyses.

Our machine learning model classified the cervical neoplasms according to two existing systems that are 
in current clinical use, namely, the CIN and LAST systems; between the two, the LAST system was established 
more recently to decrease the subjectivity of the histopathological classification, using the p16 biomarker, and to 
overcome the low reproducibility associated with the CIN  system25. The LAST system is a 2-tiered system (HSIL 
and LSIL+ cancer and normal) and the CIN system is a 3-tiered system (CIN3, CIN2, and CIN1+ cancer and 
normal); their kappa statistic for reproducibility are 0.3–0.71 and 0.12–0.58,  respectively24. The present study 
is the first to compare the machine learning model with the LAST system; previous studies used the machine 
learning colposcopy models only with the CIN  system22,23,31.

In cases of suspected neoplastic lesions, distinguishing high- from low-risk lesions is important. In cases 
with low-risk cervical neoplasms, the cervical lesions may self-regress within 3 years. In contrast, most high-risk 
cervical neoplasms need  treatment32,33. As the primary goal of screening is to distinguish between LSIL and HSIL, 
we developed a binary risk assessment system, that distinguished high-risk cervical neoplasms (CIN system, 
CIN2+ and LAST system, and HSIL+) and low-risk cervical neoplasms (CIN system, CIN1− and LAST system, 
and LSIL−). The mean AUC for differentiating high- from low-risk lesions was 0.781 ± 0.020 for the CIN-based 
system, and 0.708 ± 0.024 for the LAST-based system. To the best of our knowledge, only one previous report 
using deep learning for dichotomized classification of images from colposcopy has been published till date. That 
study used the CNN for classification of cancer vs. non-cancer images, and showed 83% diagnostic accuracy of 
the  model34. However, that study used a different classification system from that system used in the present study; 
therefore, it is difficult to directly compare those results with the results from this study. Nevertheless, given 
that the purpose of screening is to detect early cervical neoplasms, we believe that the classification we used in 
the present study is more meaningful. Therefore, during colposcopic screening procedures, this algorithm may 
assist colposcopists to assess whether an ambiguous lesion requires biopsy. In the long-term, this approach may 
help prevent unnecessary biopsies.

The machine learning model used in this study has several strengths. First, the number of patients and images 
included in this study was the largest from all colposcopic machine learning models created till date. Previous 
studies have only included 51–158 subjects with 170–485 colposcopic  images22,23,35,36, whereas our study included 
791 subjects with 791 colposcopic images. Second, the colposcopic images were obtained from three medical 
centers (the Kangnam Sacred Heart Hospital, Dongtan Sacred Heart Hospital, and Seoul St. Mary’s Hospital). 
Third, our models attempted to reduce the false-positive rate by presenting the probability of lesions in all types 
of cervical neoplasms (based on the CIN and LAST systems), instead of providing a single definitive diagnosis. 
Moreover, binary classification with normal vs. neoplastic (requiring a biopsy) categories, and dichotomized 
classification with high-risk vs. low-risk classes could aid colposcopists accurately assess cervical lesions, and 
would help determine the necessity of a biopsy.

There are several limitations to our study. First, given the retrospective study design, there was a data imbal-
ance, which may have induced unsatisfactory specificity. The high performance for CIN2 classification may be 
attributed to the class imbalance in the dataset. Although data augmentation using image rotation was tried for 
the minority classes, the ultimate data imbalance issue would have still remained. Second, owing to the multi-
center design, there was heterogeneity in the image characteristics including contrast, brightness, tone, and 
quality among hospitals. Although we tried to normalize the images in the pre-processing stage, disparities may 
have persisted in the quality of images between hospitals. Third, in the automated central cropping process, part 
of the cervix may have been removed when it was located off-center in the image. Fourth, the limited data could 
partly account for the relatively poor performance. Our study is the largest to employ biopsy-confirmed applica-
tion of artificial intelligence to colposcopic photographs; however, it is not adequate for comparing with other 
area artificial intelligence research, that showed good results. A prospective study including a large population 
is needed to address these issues.
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Conclusions
In summary, the proposed machine learning model classifying colposcopic images, reached performance lev-
els comparable with those of experienced colposcopists, as assessed by previous studies. In addition, the deep 
learning model may support under-experienced clinicians in deciding whether to perform a cervical biopsy or 
transfer the patient to a specialist.
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