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A comparative analysis of artificial 
neural networks and wavelet 
hybrid approaches to long‑term 
toxic heavy metal prediction
peifeng Li1, pei Hua2,3, Dongwei Gui4, Jie niu5, peng pei6, Jin Zhang5* & peter Krebs1

the occurrence of toxic metals in the aquatic environment is as caused by a variety of contaminations 
which makes difficulty in the concentration prediction. In this study, conventional methods of back-
propagation neural network (Bpnn) and nonlinear autoregressive network with exogenous inputs 
(NARX) were applied as benchmark models. Explanatory variables of Fe, pH, electrical conductivity, 
water temperature, river flow, nitrate nitrogen, and dissolved oxygen were used as different input 
combinations to forecast the long-term concentrations of As, Pb, and Zn. The wavelet transformation 
was applied to decompose the time series data, and then was integrated with conventional methods 
(as WNN and WNARX). The modelling performances of the hybrid models of WNN and WNARX were 
compared with the conventional models. All the given models were trained, validated, and tested by 
an 18-year data set and demonstrated based on the simulation results of a 2-year data set. Results 
revealed that the given models showed general good performances for the long‑term prediction of 
the toxic metals of As, Pb, and Zn. The wavelet transform could enhance the long-term concentration 
predictions. However, it is not necessarily useful for each metal prediction. Therefore, different models 
with different inputs should be used for different metals predictions to achieve the best predictions.

Due to the nature of ubiquity, toxicity at a trace level, and hard biodegradation, elevated metals in aquatic envi-
ronments are a global  concern1,2. A long-term exposure of toxic metals by the ingestion of the contaminated water 
and fish can cause chronic  diseases3,4. For example, Arsenic (As) destroys the redox capacity of cells, affects the 
normal metabolism, causes tissue damage and body disorders, and even directly causes poisoning death when 
ingested in small  quantities5. Lead (Pb) affects nerves, digestion, urinary, reproductive and developmental, car-
diovascular, endocrine, immune, bone, and other organ systems. More serious is that Pb affects the growth and 
mental development of infants and young children, impairs brain function such as  cognition6. In addition, a high 
level of Zinc (Zn) weakens immune function, leads to iron deficiency anaemia, affects the function of the diges-
tive system, and causes damage to blood  vessels7. Due to the special significance to water quality, As, Pb, and Zn 
are included in the priority pollutant list by the United States Environmental Protection Agency. Therefore, it is 
essential to understand the environmental behaviours of toxic metal in rivers to protect the drinking water intake.

Traditionally, the toxic metals in trace levels were required to be routinely sampled and determined in the 
laboratory. However, there are some constraints for the environmental managers to adequately and timely receive 
the metal contents and respond to the metal pollution, such as (i) expense of field monitoring, (ii) staffs avail-
ability and resources, (iii) field safety issues, and (iv) large time intervals between data collection, reporting and 
public  notification8. Therefore, to decrease the cost of aquatic environmental monitoring and provide an early-
warning proactive approach to metal pollutions, a forecasting approach is essential.
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Regarding the modelling approach, a variety of models have been used to forecast the levels of toxic metals. 
On two categories of models were commonly classified as physical principles based on mechanical  models9, 
and historical data based numerical  models10. Mechanical models of water quality require detailed information 
and principles about the  processes11. Considerable parameters for model setup, simulation, and post-processing 
gained from a large number of trials are  needed12. However, to forecast the fate of metals in surface water, 
mechanical models require water, sediment, and related data to describe the complex biological, physical, and 
chemical processes that influence metals’ behaviours, which are not generally available for most surface  waters13. 
Therefore, machine learning based numerical models could be more beneficial because the models could be 
transferred and applied from one point to another with relative ease and  convenience14.

In terms of machine learning technology, artificial neural networks (ANNs) have received wide attention in 
recent years, being implemented and popularized with the development of the computer  age15. ANNs showed 
advantages over traditional multiple regression models especially when the underlying functions and data sets are 
highly complex and  nonstationary16. Besides, back-propagation neural network (BPNN) and nonlinear autore-
gressive exogenous (NARX) models are typical time series prediction approaches. They were successfully applied 
to forecast the environmental factors of rainfall  patterns17, river  flows18, suspended sediment  concentrations19, 
river  levels20, and dissolved oxygen (DO)21, etc. It was applied to predict heavy metal concentrations in the 
aquatic environment, and even works when the underlying function cannot be expressed in terms of any known 
mathematical functions. More explicit,  Alizamir22 developed and employed the feedforward ANN to forecast Pb 
and Zn concentrations in groundwater of Asadabad plain. The models were trained with the data collected from 
the field and then utilized as prediction tools.  Ke23 established a non-linear regression-based model to forecast 
the contents of Cd, Pb, Cu, Zn, As, and Cr in Xiangjiang River, China. Verification showed that this model had 
high precision, and the spatial variation of the predicted metal content was consistent with the actual conditions. 
Although the success of these earlier studies shows the beneficial of ANN modelling to the short- and long-term 
forecasts in many areas, it has certain limitations and problems in dealing with non-stationary data sets (i.e., 
statistical properties fluctuate over time).

Wavelet transform is an effectual tool for handling non-stationary data sets, which has been spread for time 
series and spatial data analysis over a few past  decades24. A necessary feature of wavelet analysis is the ability to 
decompose the original data sets into high- and low-frequency contributions (i.e., fine and coarse features in the 
data) for further  analysis25. Therefore, the hybrid methods of wavelet-ANN (WANN), including wavelet-BPNN 
and wavelet-NARX, have been reported by recent studies for the occurrence forecasting of daily river  discharge26, 
suspended  sediment27, rainfall  runoff28, and  droughts29, etc. However, these methods have less application in the 
metal concentrations prediction for surface water management.

Therefore, to mitigate the occurrence of metal pollutions, and eventually facilitate the minimization of the 
adverse effect of toxic metal to the aquatic environment, this study examines and compares the performance 
of conventional and hybrid neural network models for characterizing the toxic. Specific questions would be 
addressed in this study: (1) the effect of inputs selection and division on the performance of conventional and 
hybrid models of BPNN, NARX, WNN, and WNARX with time-series data; (2) the evaluation for long-term 
forecasts with a high degree of confidence as quantified by standard metrics such as the coefficient of determina-
tion and root-mean-square errors; and (3) the selection of the optimum approaches and inputs for each metal 
prediction with the best performance.

Materials and methods
Study area and water quality data. The Elbe River is one of the most important rivers in Europe. It 
crosses Germany (65.5% of the total length), the Czech Republic (33.7%), Austria (0.6%), and Poland (0.2%). It 
takes tasks including flood management, urban water supply, and navigation. The Elbe River basin, comprised 
of the Elbe River and its tributaries, has an area of 148,268 km2 and sustains the consumption of about 25 mil-
lion  people30.

The water quality data was recorded from 1998 to 2017 at Schmilka station ( 50◦53′ N 14◦13′ E ) in the Elbe 
River as shown in Fig. 1. Weekly time-series data of Fe, Pb, Zn, and As were measured from one-week mixture 
samples by River Basin Community Elbe office (Flussgebietsgemeinschaft Elbe Geschäftsstelle). The daily time 
series data of pH, electrical conductivity (EC), water temperature (WT), river flow, nitrate nitrogen  (NO3–N), 
and DO were transferred to the weekly time series by mean of the seven consecutive days. The methods men-
tioned in the following sections were implemented based on the wavelet analysis and neural network toolboxes 
in MATLAB 2019a (The Mathworks Inc., Natick, MA).

The recorded data was classified into computing and simulating categories. The data from 1998 to 2015 was 
classified into the computing part. While the data between 2016 to 2017 was used for simulating the training 
networks. The computing part was categorized into three sets of training, validation, and testing sets. Besides, to 
evaluate the effectiveness of different combinations of data sets, the raw data was distributed as different modes 
shown in Table 1.

Input identification. Due to the complexities of metals’ behaviour, a larger input data size and more input 
parameters may not necessarily ensure fewer errors at the test phase, though it may perform less error at the 
training  phase31. Therefore, identifying the best input combination is the first step of the model establishment. 
Iron (Fe) is the most abundant element in Earth and the environment levels of Fe were usually regarded as non-
toxic. It is usually combined with the other elements in hundreds of minerals. In other words, the occurrence 
of Fe is strongly linked to the other  metals32. Therefore, for a better modelling effect, Fe was selected as an input 
parameter. Besides, the values of pH, EC, WT, flow,  NO3–N, and DO of the given river were considered as the 
candidates of the input parameters.
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As shown in Table 2, considering the statistical analysis of the Person correlation coefficients and significance 
analysis, several optimal input combinations were chosen to estimate the toxic metals according to the following 
conditions: (1) the p-value less than 0.05 indicating the relatively strong relationship between the inputs and 
targets, (2) the absolute correlation coefficients between the inputs and studied variables are relatively higher.

Wavelet transform. Wavelet transform method is commonly used to perform time-localized filtering in 
both time and frequency  domains33. It expresses the asymmetric and unstable input time-series signals as the 
sum of the sub-signals and characterized as the continuous and discrete wavelet transforms (CWT and DWT)34. 
In this study, the wavelet transform was used for decomposing the time series data. It is based on a mother wave-
let function that constructs a family of wavelets of a finite interval shown as below:

where a is a scale or frequency parameter, b is the shift parameter, f (t) is the time series, and ψ(t) is the complex 
conjugate function of mother wavelet ψ(t).

According to the discretization of the hydrometeorological time series data, the DWT is preferred in most 
hydrological forecasting problems. The DWT operates on two sets of functions viewed as high- and low-pass 
filters to produce discrete wavelet coefficients (DWC). For an input signal x , the first step produces two sets of 
DWCs: high pass approximation coefficients, A1 (low frequency), and low pass detail coefficients, D1 (high fre-
quency). The next step splits the approximation coefficient A1 into two parts using the same scheme, replacing 

(1)W(a, b) =
1
√
a

−∞
∫

+∞
f (t)ψ

(

t − b

a

)

dt

Figure 1.  Location of Schmilka station. This figure shows the location of the measuring point. Environmental 
Systems Research Institute (ESRI). (2018). ArcGIS Release 10.6. Redlands,CA.

Table 1.  Different modes for data distribution.

Mode Train volume (years) Validation volume (years) Test volume (years)

1 16 1 1

2 15 2 1

3 14 3 1

4 13 4 1
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x by A1 , and produces A2 and D2 , and so on. The wavelet decomposition of the input x analysed at level n has 
the structure of [ An,Dn,Dn−1, . . . ,D2,D1]35.

Back-propagation neural network (BPNN) model. BPNN is a supervised self-learning algorithm 
designed to minimize the mean square error between the computed output of the network and desired  output36. 
As shown in Fig. 2, BPNN was formed by one input layer, one or more hidden layers, and one output layer. In 
this research, BPNN was trained with the Levenberg–Marquardt (LM) algorithm. It is a classic back-propagation 
algorithm that uses heuristics, relies on numerical optimization techniques to minimize and accelerate the cal-
culation process, leading to a faster  training37. The optimal number of hidden neurons for BPNN was deter-
mined by trial and error procedures.

Table 2.  Person correlation coefficients and significance analysis.

As Pb Zn Fe Flow pH WT NO3–N EC Do

As
Pearson Corr 1

p-value –

Pb
Pearson Corr – 1

p-value – –

Zn
Pearson Corr – – 1

p-value – – –

Fe
Pearson Corr 0.755 0.818 0.614 1

p-value 0 0 0 –

Flow
Pearson Corr 0.161 0.418 0.174 0.534 1

p-value 1.32E−06 0 1.72E−07 0 –

pH
Pearson Corr − 0.260 − 0.084 − 0.118 − 0.091 − 0.048 1

p-value 2.66E−15 0.01 4.15E−04 0.01 0.15 –

WT
Pearson Corr 0.172 − 0.030 0.031 − 0.102 − 0.420 0.064 1

p-value 2.33E−07 0.38 0.35 0 0 0.06 –

NO3–N
Pearson Corr 0.052 0.177 0.279 0.209 0.441 − 0.089 − 0.582 1

p-value 0.13 1.68E−07 0 6.06E−10 0 0.01 0 –

EC
Pearson Corr 0.048 − 0.158 0.084 − 0.193 − 0.498 − 0.173 − 0.111 0.184 1

p-value 0.15 2.13E−06 0.01 6.70E−09 0 1.95E−07 9.59E−04 5.47E−08 –

Do
Pearson Corr − 0.246 0.020 − 0.059 0.088 0.442 0.342 − 0.881 0.538 −0.033 1

p-value 8.75E−14 0.54 0.08 0.01 0 0 0 0 0.32 –

Figure 2.  Topology of neural network.Fig. 1. This figure shows the basic structure of the neural network model.
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In the feed-forward process, it was supposed that the input layer of the BP network has n nodes, the hidden 
layer has q nodes, the output layer has m nodes, the weight between the input and hidden layers is vki , and the 
weight between the hidden and output layers is wkj . The transfer function of the hidden layer is f1(·) , and the 
transfer function of the output layer is f2(·) . Then the output of the hidden layer node zk is:

The output of the output layer node yj is:

The function could be chosen by tansig, logsig, and purelin in MATLAB 2019a.
In the back-propagation process, using the squared error function, the error Ep of the Pth sample is obtained:

where tPj  is the expected output value.
The Levenberg–Marquardt algorithm uses this approximation to the Hessian matrix in the following Newton-

like update:

where J is the Jacobian matrix that contains first derivatives of the network errors for the weights and biases; E is 
a vector of network errors; µ is a scalar and its initial value is 0.001; I is the identity matrix; and �w represents 
the adjustment of current weight value.

In this study, an adopted one-hidden-layer network was applied. The number in the hidden layer was esti-
mated by the empirical formula given in Eq. (6)38:

where N is the number of neurons in the hidden layer; n is the number of input variables; m is the number of 
output variables; and a is a number between 0 to 10. The optimal value of a is determined by trial and error. The 
optimum neuron number of the hidden layer was determined by gradually varying the number of nodes in the 
hidden layer through trial and error.

Nonlinear autoregressive exogenous (NARX) model. NARX is a nonlinear autoregressive model 
with exogenous inputs developed to predict the indicators. The model studies the relationship of the target value 
of a time series as well as current and past values of the exogenous series which influence the series of interest. 
It can be defined algebraically by:

where, y(t) is the target values, and u is the externally related variables. In this scheme, y(t − 1) to y
(

t − ny
)

 
represent the past time series of the target. u(t − 1) to u(t − nu) denotes the past information about u , which 
helps predict the target values. f  represents the nonlinear function approximated based on a feed-forward neural 
network.

Toto determine the inputs lag of the NARX model from the metal factors measured at the station, the cross-
correlation between the factors and the autocorrelation of toxic metal was examined and checked. The lag for 
the U inputs was defaulted to one-week before the target according to the lag analysis based on the auto- and 
cross-correlations of the metal variables. The feedback loop performs multi-step-ahead prediction after the 
training process of the model. The closed-loop of the NARX network is established in the simulation process.

Wavelet and BPNN (WNN) hybrid model. WNN is an advanced neural network proposed in  199239, 
with the combination of wavelet and traditional BP neural network (n input nodes, q hidden nodes, m output 
nodes) which replaces the activation function of BP neural network hidden layer by wavelet basis function 
ψ(x)

(

i = 1, 2, ..., q
)

 . The basic model of  WNN40 is:

where, 1 ≤ j ≤ q , 1 ≤ i ≤ m , Aj = diag
(

a−1
1j , L, a

−1
nj

)

 ; b′j =
[

a−1
1j b1j , L, a

−1
nj bnj

]T
 ; a is the scale parameter; and b 

is the translation parameter.
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vkixi

)

, i = 1, 2, . . . q
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(7)y(t) = f
(

y(t − 1), y(t − 2), . . . , y
(

t − ny
)

, u(t − 1), u(t − 2), . . . , u(t − nu)
)

(8)yi =
q

∑

j=1

Cjiψ

(

Ajx− b
′
j

)



6

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:13439  | https://doi.org/10.1038/s41598-020-70438-8

www.nature.com/scientificreports/

This combination maintains the advantages of the BP neural network and overcomes insufficient accuracy of 
prediction results due to local extremum based on the ability of the wavelet transform to extract local information 
by amplifying the signal to optimize the weight and threshold of the BP neural network.

Wavelet and NARX (WNARX) hybrid model. A WNARX model is an integrated model combining two 
algorithms of the NARX and the wavelet transform. The wavelet decomposition coefficients of the water quality 
data are transported into the NARX model to set up a forecast hybrid model. For the WNARX model inputs, 
the original water quality time series is decomposed into various detail components at different resolution levels 
using the high- and low-pass filtering approaches. The prediction results are summarised as:

where,yi and xi represents the divided signal of the separated input. It is recommended that the number of wavelet 
levels L = int

[

log10(N)
]

 levels are needed for  transformation41, where N denotes the number of transformed 
data.

Model performance evaluation. The models’ performance was evaluated by error evaluation measure-
ments of the coefficient of determination (R2) and the root-mean-square errors (RMSE). R2 was used to assess 
the predictive ability and accuracy of the model as expressed in Eq. (10).

RMSE is the measure of the difference between the measured and forecast values expressed in Eq. (11).

A higher value of R2 and a lower value of RMSE indicates better fitness and a smaller discrepancy between 
the observation and prediction. Generally, the R2 greater than 0.6 and RMSE less than 10% of the range of target 
values are considered as the acceptable fitness between both  series42.

Results
Model establishment. Inputs selection. According to the previous studies, the occurrences of Fe, As, Pb, 
and Zn were usually linked with the industries  activities43. Therefore, Fe could exist as associated emissions with 
As, Pb, and Zn. Flow, as a common hydrological monitor parameter to study the water environment  capacity44, 
affects the accumulation speed of metals and the solubility of metals as the solvent  directly45–47. The pH value 
could influence the concentration of dissolved As, Pb, and Zn in water. Furthermore, pH and DO affect the form 
of As in  water48. The water temperature affects the dissolution of As, but no consistent effects were observed on 
Pb, Zn  concentration49. Pb and Zn, which could conduct electric current as metals, present intrinsic EC values 
 respectively50. Hence, EC could have a partial relationship with the concentrations of Pb and Zn. Therefore, pH, 
EC, WT, flow,  NO3–N, and DO, and Fe were considered as the candidates of the input parameters. As shown in 
Table 2, the input combinations considered for each metal perdition were: As forecasted with inputs of (1) Fe, 
flow, pH, WT, and DO; (2) Fe, pH, and DO; (3) Fe; Pb forecasted with inputs of (4) Fe, flow, pH,  NO3–N, and 
EC; (5) Fe and flow, (6) Fe; and Zn forecasted with inputs of (7) Fe, flow, pH,  NO3-N, and EC, (8) Fe and  NO3-N, 
and (9) Fe.

Model structure. The optimal architecture of the different models and their parameter variation were deter-
mined based on their characteristics after testing the different data sets. BPNN, NARX, WNN, and WNARX 
models with different inputs were compared in the simulation phase. The R2 and RMSE values for the simulation 
processes of all given models were denoted. It was apparent that all the performances of these scenarios show a 
range of differences because of the different inputs or model structures. To get an effective evaluation of BPNN, 
NARX, WNN, and WNARX models’ performance, the statistical results have been used as the criteria.

For BPNN, Figure S1-9 described the  R2 range of the separated scenarios with different parameter settings. 
As for BPNN, different data distribution and built-in parameter settings caused larger changes in the simulation 
process. Among them, the data distribution in BPNN has no obvious effect on the setting of purelin-purelin’s 
activation function, impossible to be further adjusted more accurately. The function logsig as the output layer 
leads to a lower prediction ability for the BPNN structure. The settings of tansig-tansig ensured the impact of 
data distribution on the fitting results, indicating that the structure of BPNN was relatively stable. These struc-
tures present a further potential for parameter adjustment. The  BPNN1 with 5 hidden neurons and mode 3 were 
respectively chosen to be the optimal structure for the As prediction. The  BPNN4 with 4 hidden neurons and 
mode 3, the  BPNN7 with 4 hidden neurons and mode 2 were set for Pb and Zn predictions, respectively. As 
for NARX, the close-loop structure was established to iterative forecasting in scenarios. Shown in Figure S10, 
 NARX1 with mode 3mode3,  NARX5 with mode 3 and  NARX9 mode 4, these different data allocations, were 
applied to As, Pb, and Zn predictions by comparing the different modes. However, different input contaminants 
were chosen for different metal predictions.

(9)y(t) =
L

∑

i=1

fi

(

yi(t − 1), yi(t − 2), . . . , yi
(

t − ny
)

,
xi(t − 1), xi(t − 2), . . . , xi(t − nu)

)

(10)R2 = 1−
∑

(

Xforecast − Xmeasured

)2

∑

(Xmeasured − Xmeanmeasured)
2

(11)RMSE =

√
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(

Xforecast − Xmeasured

)2
/

N
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As for WNN, the structures of the model mimicked the final scheme of the BPNN, with the morlet wavelet 
replacing the tansig, logsig and purelin function as the activation function. In this model, the different number 
of hidden neurons present little effect on the optimal results judged by  R2 described by Figure S11. The highest 
R2 for As was  WNN3 under mode 3 with 4 hidden neurons;  WNN5 mode 2 with 7 hidden neurons for Pb; and 
 WNN7 mode 2 with 6 hidden neurons for Zn. For WNARX, the Daubechies (db3) function with three-level 
decomposition was found to be the optimal wavelet for series analysis. Actually, the computing process of 
WNARX model was first to decompose the time series of the inputs data and then integrate it into the NARX 
calculation. As shown in Figure S12, the model  WNARX6 and  WNARX9 with mode 3 had the best simulations 
for Pb and Zn. Besides, it has a relatively good simulation for As under  WNARX2 with mode 4, with the optimal 
value of  R2 in mode 4.

As given in Table 3, the optimal model with the best combination of inputs in this study considering the 
values of  R2 and RMSE are : (1) WNARX with inputs of Fe, pH, and DO for the prediction of As  (WNARX2), 
(2) WNN with inputs of Fe, Flow, pH, NO3-N, and EC for the prediction of Pb  (WNN5), (3) WNN with inputs 
of Fe, Flow, pH,  NO3–N, and EC for the prediction of Zn  (WNN7). the values of  R2 and RMSE of  WNARX2, 
 WNN5,  WNN7 larger than 0.63 and less than 10% of the fluctuation ranges (with 5.1 µg/L for As, 14.7 µg/L for 
Pb, and 86.2 µg/L for Zn respectively).

Performance analysis of the optimal scenarios. Trend analysis. As shown in Fig. 3, all scenarios 
presented a certain fitting ability in the trend prediction. It suggests that in the prediction of As, the input data 
selection was more appropriate. Compared with other models, the prediction curves of WNN models were more 

Table 3.  The structure and the performance statistics prediction.

Metal Model Scenario Input R2 RMSE

As

BPNN

BPNN1 Fe, Flow, pH, WT, DO 0.550 0.383

BPNN2 Fe, pH, DO 0.415 0.376

BPNN3 Fe 0.442 0.163

NARX

NARX1 Fe, Flow, pH, WT, DO 0.537 0.512

NARX2 Fe, pH, DO 0.468 0.499

NARX3 Fe 0.279 0.255

WNN

WNN1 Fe, Flow, pH, WT, DO 0.122 0.279

WNN2 Fe, pH, DO 0.101 0.026

WNN3 Fe 0.439 0.178

WNARX

WNARX1 Fe, Flow, pH, WT, DO 0.321 0.475

WNARX2 Fe, pH, DO 0.631 0.300

WNARX3 Fe 0.335 0.278

Pb

BPNN

BPNN4 Fe, Flow, pH,  NO3–N, EC 0.703 1.290

BPNN5 Fe, Flow 0.666 0.807

BPNN6 Fe 0.632 0.794

NARX

NARX4 Fe, Flow, pH,  NO3–N, EC 0.621 1.006

NARX5 Fe, Flow 0.622 0.919

NARX6 Fe 0.611 0.777

WNN

WNN4 Fe, Flow, pH,  NO3–N, EC 0.648 0.764

WNN5 Fe, Flow 0.691 0.714

WNN6 Fe 0.614 0.816

WNARX

WNARX4 Fe, Flow, pH,  NO3–N, EC 0.013 3.306

WNARX5 Fe, Flow 0.039 1.085

WNARX6 Fe 0.602 0.761

Zn

BPNN

BPNN7 Fe, Flow, pH,  NO3–N, EC 0.780 6.702

BPNN8 Fe,  NO3–N 0.714 5.033

BPNN9 Fe 0.632 3.499

NARX

NARX7 Fe, Flow, pH,  NO3–N, EC 0.385 9.280

NARX8 Fe,  NO3–N 0.345 5.538

NARX9 Fe 0.575 4.067

WNN

WNN7 Fe, Flow, pH,  NO3–N, EC 0.768 3.428

WNN8 Fe,  NO3–N 0.700 3.425

WNN9 Fe 0.613 2.884

WNARX

WNARX7 Fe, Flow, pH,  NO3–N, EC 0.034 10.188

WNARX8 Fe,  NO3–N 0.006 13.727

WNARX9 Fe 0.637 3.407
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stable, which showed that the wavelet analysis could reduce the noise after processing the input data series. The 
NARX model showed a better fitting effect in the downtrend stage. It indicates that the iterative prediction model 
has a certain prediction effect on the downward fluctuation trend in As compared with BPNN. The optimized 
model was set up based on a combination of wavelet and NARX algorithm, which retained the advantages of 
NARX and the stabilized ability of wavelet. In addition, the selection of input data by  WNARX2 not only avoided 
the interference of too much data in  WNARX1 on the As results (No. 15-20 and No. 55-71). It also avoided the 
disadvantage of single data in  WNARX3, allowing the result to predict the fluctuation trend relatively smoothly 
in As concentration.

As shown in Fig. 4, the prediction effects of BPNN, NRRX, and WNN models were similar, but the fitting 
deviations of WNARX were relatively large. It indicates that the amplification effect of the input wavelet was not 
suitable for NARX model prediction, even leading to negative effects. Besides, the red trend line represented by 
scenario 4 was significantly more volatile than the other trend lines. It shows that for toxic metal Pb prediction, 
5 inputs could affect the accuracy of prediction. In fact, the optimal BPNN and WNN models showed similar 
effects on the prediction of Pb with  R2 values around 0.7. It might be due to the operation of WNN model had 
a better performance in RMSE values. Then,  WNN5 was selected as the optimal model. Besides, regarding the 
extreme points, the prediction effect of Pb was the best. It shows that the discharge, distribution, and degrada-
tion of Fe and Pb in rivers were similar. Therefore, Fe was a good reference value for Pb prediction in rivers.

As shown in Fig. 5, Zn fluctuated mostly in long sequences among the three heavy metals. BPNN model had 
the best performance in the simulating process judged by  R2 values, reaching the  R2 as 0.78. However, the stability 

Figure 3.  Comparison of the forecasting values and the measured values for As. This figure shows the different 
prediction results for As of the settings of the best model parameters in each model algorithm, indicating the 
concentrations of As changes within 2 years’ measurement. The red represents the situation with inputs: Fe, flow, 
pH, WT, and DO, the green represents the situation with inputs: Fe, pH, and DO, and the yellow represents the 
situation with inputs: Fe.
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ability of WNN could achieve better converge the divergence effect brought by multiple inputs. In other words, 
the wavelet function as the activation function does not lose the sensitivity for its prediction of extreme values 
but show better adjustment for daily values. Therefore, the best WNN model could obtain lower RMSE values by 
keeping the  R2 values of 0.77. NARX and WNARX models showed a large difference in the predictions and both 
showed negative values in scenario 7. It indicates that both multi-input and NARX models were not suitable for 
the prediction of Zn. Therefore,  WNN7 was chosen as the most optimized model.

Scatter analysis. It can be seen from Fig. 6 that the yellow spots represent that the distribution with only Fe 
concentration as input had a significantly lower slope than the other two-liner fits. In other words, a single con-
centration input for the prediction of As was not desirable. The distributions of spots of  WNARX1 and  WNARX3 
were more scattered than those of  WNARX2. The slopes of the linear fits of  WNARX1 and  WNARX3 were lower 
than those that of  WNARX2. Thus,  WNARX2 was still the optimal choice.

From Fig. 7, the slopes of the linear fits of  WNARX4 and  WNARX5 were close to 0, indicating that there is 
almost no correlation between the data. The slope of the fitted line of  BPNN4 performed better than the other two, 
closest to bisector. For the other models, the linear fits of the WNN models processed by wavelet functions keep 
almost the same slopes. Considering the concentrated scatters of WNN ranged from 0 to 3 20 μg/L showing the 
best performance in predicting the concentration of Pb. Therefore,  WNN5 was regarded as an acceptable scenario.

Figure 4.  Comparison of the forecasting values and the measured values for Pb. This figure shows the different 
prediction results for Pb of the settings of the best model parameters in each model algorithm, indicating the 
concentration of Pb changes within 2 years’ measurement. The red represents the situation with inputs: Fe, flow, 
pH,  NO3–N, and EC, the green represents the situation with inputs: Fe and flow, and the yellow represents the 
situation with inputs: Fe.
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From the display in Fig. 8, the fitting effect of WNARX models was relatively poor. Considering the effect 
of BPNN, more input data could adjust the data close to the bisector. However, the WNN model could process 
the same input data more concentratedly. It shows that WNN is the model that could decrease the range of the 
prediction of Zn concentrated between 0 and 20 μg/L. Thus,  WNN7 used the most data input and was the most 
suitable model for daily prediction.

Discussion
In terms of As prediction models, when Fe was included as an input, their R2 is significantly smaller than the Pb 
and Zn models of the same input, but WNARX has a significant improvement over NARX. Moreover, Fe, pH, 
and DO were the best inputs for WNARX models, the model also shows a better regression effect compared 
to the others. It shows that the wavelet decomposition can extract the division signals of the inputs’ series, and 
these signals have a positive effect on the long-term prediction of As content in water. As for Pb, its performances 
in  BPNN4 and  WNN5 were similar. But due to the relatively lower RMSE value of the WNN model, this study 
selected WNN as the best model for Pb prediction. At the same time, these two approaches performed better 
predication when including Fe and flow as input data. It indicates that the higher correlation coefficient of Fe 
and flow with Pb will have a better performance. Considering the results of Zn, the BPNN and WNN model 
showed the optimal regression. According to the lower RMSE values, it denotes that wavelet, as the activation 
function in the neural network, could extract local information by processing the signal. As for WNARX, mul-
tiple inputs caused anomalies in the fitting effect. It implies that the wavelet divided signals were not suitable for 
the predictions of Pb and Zn.

Figure 5.  Comparison of the forecasting values and the measured values for Zn. This figure shows the different 
prediction results for Zn of the settings of the best model parameters in each model algorithm, indicating the 
concentration of Zn changes within 2 years’ measurement. The red represents the situation with inputs: Fe, flow, 
pH,  NO3–N, and EC, the green represents the situation with inputs: Fe and  NO3–N, and the yellow represents 
the situation with inputs: Fe.
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Consequently, according to the models (BPNN, NARX, WNN, and WNARX) used as for the time series 
predictions for different targets, different combinations of inputs and models were considered as the algorithm 
to forecast the different metals concentrations in the river. These findings provide a new perspective for the long-
term prediction of heavy metals in natural rivers. In addition, the improvement noted in our study was that the 
results analysed based on the supernumerary 2-years simulation instead of the test series of the training process. 
This study, therefore, indicates that the optimal models have practical application value and generalization. Our 
results provide compelling evidence for long-term prediction of As, Pb, and Zn concentrations and suggest that 
this approach appears to be effective in fields of water quality prediction.

Although our hypotheses were supported statistically, the results present a certain fitness between the fore-
casted and measured values. There are still many unanswered questions about the specific extreme value content 
prediction. Future work should, therefore, include follow-up work designed to find out other factors that influ-
ence the drastic changes in metal concentrations and whether they continue to be useful to improve accuracy. 
Besides, according to the previous studies, the physical model of WASP has been applied to simulate the spatial 
distribution of heavy metals in  estuary51, another physical model Delft3D-WAQ also could be used to simulate 
the heavy  metal52. Although these models require detailed information, and a large number of data set were 
needed for the model set up and validation, a further comparison between physical models and our proposed 
models is useful and valuable for a deep understanding of the metals’ behaviors in the aquatic environment.

Figure 6.  Scatter plots of As. The figure shows the scatters distributions under different scenarios for As and the 
linear fit of different scenarios. Meanwhile, the color choice keeps the same as Fig. 4.
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conclusion
To address the issues of long-term toxic metals’ prediction, models of BPNN, NARX, WNN, and WNARX were 
employed in this study using the hybrid concepts of wavelet transform and artificial neural networks. The efficacy 
and fitness of the models were evaluated for their application in surface waters. The results revealed that: (1) the 
given models showed good performances for the long-term prediction of the toxic metals of As, Pb, and Zn; (2) 
the wavelet transform can enhance the long-term concentration prediction of As, Pb, and Zn especially in the 
daily conditions; and therefore (3) different models and inputs were required for different metal predictions to 
guarantee the optimum results.

Figure 7.  Scatter plots of Pb. The figure shows the scatters distributions under different scenarios for Pb and the 
linear fit of different scenarios. Meanwhile, the color choice keeps the same as Fig. 5.



13

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:13439  | https://doi.org/10.1038/s41598-020-70438-8

www.nature.com/scientificreports/

Received: 13 May 2020; Accepted: 10 July 2020

References
 1. Zhang, J., Hua, P. & Krebs, P. The build-up dynamic and chemical fractionation of Cu, Zn and Cd in road-deposited sediment. Sci. 

Total Environ. 532, 723–732 (2015).
 2. Wang, Z. et al. Concentration decline in response to source shift of trace metals in Elbe River, Germany: a long-term trend analysis 

during 1998–2016. Environ. Pollut. 250, 511–519. https ://doi.org/10.1016/j.envpo l.2019.04.062 (2019).
 3. Albering, H. J., Van Leusen, S. M., Moonen, E., Hoogewerff, J. A. & Kleinjans, J. Human health risk assessment: a case study 

involving heavy metal soil contamination after the flooding of the river Meuse during the winter of 1993–1994. Environ. Health 
Perspect. 107, 37–43 (1999).

 4. Enitan, I. T., Enitan, A. M., Odiyo, J. O. & Alhassan, M. M. Human health risk assessment of trace metals in surface water due 
to leachate from the municipal dumpsite by pollution index: a case study from Ndawuse River, Abuja, Nigeria. Open Chem. 16, 
214–227 (2018).

 5. Graeme, K. A. & Pollack, C. V. Jr. Heavy metal toxicity, part I: arsenic and mercury. J. Emerg. Med. 16, 45–56 (1998).
 6. Malar, S., Vikram, S. S., Favas, P. J. & Perumal, V. Lead heavy metal toxicity induced changes on growth and antioxidative enzymes 

level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot. Stud. 55, 54 (2016).
 7. Fu, F. & Wang, Q. Removal of heavy metal ions from wastewaters: a review. J. Environ. Manag. 92, 407–418 (2011).
 8. Tian, W., Liao, Z. & Zhang, J. An optimization of artificial neural network model for predicting chlorophyll dynamics. Ecol. Model. 

364, 42–52 (2017).
 9. Wool, T. A., Ambrose, R. B., Martin, J. L., Comer, E. A. & Tech, T. Water quality analysis simulation program (WASP). User’s 

Manual, Version 6 (2006).
 10. Scharf, L. L. Statistical Signal Processing Vol. 98 (Addison-Wesley Reading, MA, 1991).
 11. Hua, P., Vasyukova, E. & Uhl, W. A variable reaction rate model for chlorine decay in drinking water due to the reaction with 

dissolved organic matter. Water Res. 75, 109–122 (2015).

Figure 8.  Scatter plots of Zn. The figure shows the scatters distributions under different scenarios for Zn and 
the linear fit of different scenarios. Meanwhile, the color choice keeps the same as Fig. 6.

https://doi.org/10.1016/j.envpol.2019.04.062


14

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:13439  | https://doi.org/10.1038/s41598-020-70438-8

www.nature.com/scientificreports/

 12. Frostick, L. E., McLelland, S. J. & Mercer, T. G. Users Guide to Physical Modelling and Experimentation: Experience of the 
HYDRALAB Network (CRC Press, Boca Raton, 2011).

 13. Allen, H. E., Luther, G. W. & Garrison, W. Metals in Surface Waters (CRC Press, Boca Raton, 1997).
 14. Tu, J. V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. 

J. Clin. Epidemiol. 49, 1225–1231 (1996).
 15. Mosavi, A., Dehghani, M. & Várkonyi-Kóczy, A. R. Deep learning and machine learning in hydrological processes, climate change 

and earth systems: a systematic review (2019)
 16. Bejou, D., Wray, B. & Ingram, T. N. Determinants of relationship quality: an artificial neural network analysis. J. Bus. Res. 36, 

137–143 (1996).
 17. Tokar, A. S. & Johnson, P. A. Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Eng. 4, 232–239 (1999).
 18. Kişi, Ö. River flow modeling using artificial neural networks. J. Hydrol. Eng. 9, 60–63 (2004).
 19. Rajaee, T., Mirbagheri, S. A., Zounemat-Kermani, M. & Nourani, V. Daily suspended sediment concentration simulation using 

ANN and neuro-fuzzy models. Sci. Total Environ. 407, 4916–4927 (2009).
 20. Leahy, P., Kiely, G. & Corcoran, G. Structural optimisation and input selection of an artificial neural network for river level predic-

tion. J. Hydrol. 355, 192–201 (2008).
 21. Ranković, V., Radulović, J., Radojević, I., Ostojić, A. & Čomić, L. Neural network modeling of dissolved oxygen in the Gruža 

reservoir, Serbia. Ecol. Model. 221, 1239–1244 (2010).
 22. Alizamir, M. & Sobhanardakani, S. Forecasting of heavy metals concentration in groundwater resources of Asadabad plain using 

artificial neural network approach. J. Adv. Environ. Health Res. 4, 68–77 (2016).
 23. Ke, N. The prediction model of heavy metal pollution in Xiangjiang River based on matlab. J. Anhui Agric. Sci. 9 (2012).
 24. Wang, W. & Ding, J. Wavelet network model and its application to the prediction of hydrology. Nat. Sci. 1, 67–71 (2003).
 25. Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteor. Soc. 79, 61–78 (1998).
 26. Sehgal, V., Tiwari, M. K. & Chatterjee, C. Wavelet bootstrap multiple linear regression based hybrid modeling for daily river 

discharge forecasting. Water Resour. Manag. 28, 2793–2811 (2014).
 27. Rajaee, T. Wavelet and ANN combination model for prediction of daily suspended sediment load in rivers. Sci. Total Environ. 409, 

2917–2928 (2011).
 28. Nourani, V., Komasi, M. & Mano, A. A multivariate ANN-wavelet approach for rainfall–runoff modeling. Water Resour. Manag. 

23, 2877 (2009).
 29. Mehr, A. D., Kahya, E. & Özger, M. A gene–wavelet model for long lead time drought forecasting. J. Hydrol. 517, 691–699 (2014).
 30. Matthies, M., Berlekamp, J., Lautenbach, S., Graf, N. & Reimer, S. System analysis of water quality management for the Elbe river 

basin. Environ. Model. Softw. 21, 1309–1318 (2006).
 31. Bray, M. & Han, D. Identification of support vector machines for runoff modelling. J. Hydroinf. 6, 265–280 (2004).
 32. Hong, N. et al. Quantitative source tracking of heavy metals contained in urban road deposited sediments. J. Hazardous Mater. 

393, 122362 (2020).
 33. Morlet, J., Arens, G., Fourgeau, E. & Glard, D. Wave propagation and sampling theory—part I: complex signal and scattering in 

multilayered media. Geophysics 47, 203–221 (1982).
 34. Cannas, B., Fanni, A., See, L. & Sias, G. Data preprocessing for river flow forecasting using neural networks: wavelet transforms 

and data partitioning. Phys. Chem. Earth A/B/C 31, 1164–1171 (2006).
 35. Nanda, T., Sahoo, B., Beria, H. & Chatterjee, C. A wavelet-based non-linear autoregressive with exogenous inputs (WNARX) 

dynamic neural network model for real-time flood forecasting using satellite-based rainfall products. J. Hydrol. 539, 57–73 (2016).
 36. Goh, A. T. Back-propagation neural networks for modeling complex systems. Artif. Intell. Eng. 9, 143–151 (1995).
 37. Beale, M. H., Hagan, M. T. & Demuth, H. B. Neural network toolbox user’s guide. The MathWorks Inc (1992).
 38. Fan, J., Wang, Z. & Qian, F. Research progress structural design of hidden layer in BP artificial neural networks. Control Eng. China 

12, 105–109 (2005).
 39. Zhang, Q. & Benveniste, A. Wavelet networks. IEEE Trans. Neural Netw. 3, 889–898 (1992).
 40. Alexandridis, A. K. & Zapranis, A. D. Wavelet neural networks: a practical guide. Neural Netw. 42, 1–27 (2013).
 41. Tiwari, M. K. & Chatterjee, C. Development of an accurate and reliable hourly flood forecasting model using wavelet–bootstrap–

ANN (WBANN) hybrid approach. J. Hydrol. 394, 458–470 (2010).
 42. Alexander, D. L., Tropsha, A. & Winkler, D. A. Beware of R 2: simple, unambiguous assessment of the prediction accuracy of QSAR 

and QSPR models. J. Chem. Inf. Model. 55, 1316–1322 (2015).
 43. World Health Organization. Guidelines for drinking-water quality. WHO chronicle (2011).
 44. Chen, L. et al. Water environmental capacity calculated based on point and non-point source pollution emission intensity under 

water quality assurance rates in a tidal river network area. Int. J. Environ. Res. Public Health 16, 428 (2019).
 45. Slooff, W. et al. Integrated criteria document arsenic. RIVM Rapport 710401004 (1990).
 46. Lenntech. Zinc (Zn) and water, <https ://www.lennt ech.com/perio dic/water /zinc/zinc-and-water .htm> (2020).
 47. Kim, E. J., Herrera, J. E., Huggins, D., Braam, J. & Koshowski, S. Effect of pH on the concentrations of lead and trace contaminants 

in drinking water: a combined batch, pipe loop and sentinel home study. Water Res. 45, 2763–2774 (2011).
 48. Association, T. W. Q. Arsenic Fact Sheet, <https ://www.lennt ech.com/perio dic/water /zinc/zinc-and-water .htm> (2013).
 49. Bonte, M., van Breukelen, B. M. & Stuyfzand, P. J. Temperature-induced impacts on groundwater quality and arsenic mobility 

in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production. Water Res. 47, 5088–5100 
(2013).

 50. Helmenstine, A. M. Table of electrical resistivity and conductivity. ThoughtCo. Sep. 24, 2018 (2018).
 51. De Smedt, F., Vuksanovic, V., Van Meerbeeck, S. & Reyns, D. in Trace Metals in the Westerschelde Estuary: A Case-Study of a Pol-

luted, Partially Anoxic Estuary 143–155 (Springer, Berlin, 1998).
 52. Negm, A. M., Bek, M. A. & Abdel-Fattah, S. Egyptian Coastal Lakes and Wetlands: Part II: Climate Change and Biodiversity, 72 

(Springer, Berlin, 2018).

Acknowledgements
The authors would like to gratefully thank the Saxony State Office for Environment, Agriculture, and Geology 
(Landesamt für Umwelt, Landwirtschaft und Geologie, LfULG) for providing the data and the Public Operating 
Company for Environment and Agriculture (Staatliche Betriebsgesellschaft für Umwelt und Landwirtschaft, 
BfUL) for measuring the data. This work was supported by the state-sponsored scholarship program provided 
by the China Scholarship Council (CSC) (No.: 201908080087) and Guangdong Basic and Applied Basic Research 
Foundation (No.: 2020A1515011130). The mentioning of trade names or commercial products does not consti-
tute endorsements or recommendations for use.

https://www.lenntech.com/periodic/water/zinc/zinc-and-water.htm
https://www.lenntech.com/periodic/water/zinc/zinc-and-water.htm


15

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:13439  | https://doi.org/10.1038/s41598-020-70438-8

www.nature.com/scientificreports/

Author contributions
P.L.: Writing- Original draft preparation, Methodology, Software. P.H.; D.G.; J.N.; P.P.: Writing- Reviewing 
and Editing. J.Z.: Conceptualization, Writing- Reviewing and Editing, Project administration. P.K.: Resources, 
Supervision.

competing interests 
The authors declare no competing interests.

Additional information
Supplementary information  is available for this paper at https ://doi.org/10.1038/s4159 8-020-70438 -8.

Correspondence and requests for materials should be addressed to J.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this license, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1038/s41598-020-70438-8
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A comparative analysis of artificial neural networks and wavelet hybrid approaches to long-term toxic heavy metal prediction
	Anchor 2
	Anchor 3
	Materials and methods
	Study area and water quality data. 
	Input identification. 
	Wavelet transform. 
	Back-propagation neural network (BPNN) model. 
	Nonlinear autoregressive exogenous (NARX) model. 
	Wavelet and BPNN (WNN) hybrid model. 
	Wavelet and NARX (WNARX) hybrid model. 
	Model performance evaluation. 

	Results
	Model establishment. 
	Inputs selection. 
	Model structure. 

	Performance analysis of the optimal scenarios. 
	Trend analysis. 
	Scatter analysis. 


	Discussion
	Conclusion
	References
	Acknowledgements


