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transforming single‑band static 
fSS to dual‑band dynamic fSS 
using origami
Akash Biswas, constantinos L. Zekios & Stavros V. Georgakopoulos*

frequency selective surfaces (fSSs) have been used to control and shape electromagnetic waves. 
previous design approaches use complex geometries that are challenging to implement. With the 
purpose to transform electromagnetic waves, we morph the shapes of fSS designs based on origami 
patterns to attain new degrees of freedom and achieve enhanced electromagnetic performance. 
Specifically, using origami patterns with strongly coupled electromagnetic resonators, we transform a 
single‑band fSS to a dual‑band fSS. We explain this transformation by showing that both symmetric 
and anti‑symmetric modes are excited due to the strong coupling and suitable orientation of the 
elements. Also, our origami FSS can fold/unfold thereby tuning (i.e., reconfiguring) its dual-band 
performance. Therefore, the proposed FSS is a dynamic reconfigurable electromagnetic structure 
whereas traditional fSSs are static and cannot change their performance.

Origami is the art of paper folding that can transform planar sheets to 3D geometries, and it has recently inspired 
scientists and engineers in different disciplines. Using its geometrical and structural properties, innovative 
designs of mechanical metamaterials have been introduced throughout the last 10 years1–20. For instance, Eidini 
et al.1 studied the mechanical properties and origami folding techniques of a specific pattern (i.e., Miura-Ori), 
showing its applicability to a wide range of applications from mechanical metamaterials to deployable structures. 
Hongbin et al.7 showed that by using the self-locking and reconfiguration mechanisms of origami patterns, 
mechanical metamaterials with programmable properties can be developed. Boatti et al.8 obtained a wide range 
of thermal expansion coefficients by using origami metamaterials. By using origami topologies, Fang et al.10 
successfully constructed various types of two and three dimensional Bravais lattices that can undergo through 
diffusion-less phase transformations when they are rigidly folded. Treml et al.11 used an origami waterbomb as 
an experimental platform to demonstrate a 1-bit mechanical storage device that writes, erases and rewrites itself 
in response to a time-varying environmental signal.  Miura21 introduced the concept of large membranes in space 
(deployable solar panel), thereby proving the applicability of origami patterns and providing new mechanical 
performance. These previous works have clearly demonstrated that origami patterns can alter the performance 
of structures and provide new mechanical performance.

Similarly, reconfigurable electromagnetic structures based on origami geometries have also been introduced 
and extensively  explored22–26. In electromagnetic structures, the phenomenon of reconfiguration is well known 
from antennas to filters. By changing an antenna’s length, shape or spacing of its radiating elements, we can alter 
its resonant frequency, radiation pattern, and other EM  characteristics27,28. Le et al.18 investigated a programmable 
metamaterial based on ternary foldable origami in the gigahertz regime, providing four transformable modes cor-
responding to four different functions of electromagnetic reflector and frequency-selective absorbers. Liu et al.22,26 
investigated origami bifilar and multi-radii monofilar helical antennas that can operate in different frequency 
bands. Yao et al.24 designed a two-arm Nojima origami conical spiral antenna that can morph from a planar 
dipole to a conical spiral. Nauroze et al.23 designed an origami structure loaded with electrical components that 
can be reconfigured over continuous-state ranges from folded to unfolded configurations. Fuchi et al.25 studied 
the transmission characteristics of a folded surface loaded with a periodic arrangement of split ring resonators.

Frequency selective surfaces (FSSs) are spatial filters comprised of periodically organized electromagnetic 
elements that are strongly coupled. The type of element used in a FSS design defines its  performance27. Many 
sophisticated techniques have been used to appropriately guide and control acoustic  waves29, and electromag-
netic waves in both the  microwave30–39 and the  photonic40,41 regimes. Zhou et al.29 presented a multi-band dou-
ble negative acoustic metamaterial based on coupled Helmholtz resonators that exhibits multiple alternatively 
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double-positive and double-negative passbands. Ferreira et al.30 achieved a dual-band frequency selectivity, 
in which the upper resonance frequency can be tuned independently of the first one. Phon et al.31 presented a 
multifunctional active frequency selective surface based on the switching responses of active components. Kern 
et al.33 introduced a multiband artificial magnetic conductor design using FSS screen that have fractal or nearly 
fractal unit cell geometries. Ranjbar et al.34 achieved a wide range of polarization transformations over broad 
bandwidths, as well as multiple bands by cascading subwavelength dielectric gratings. Cheng et al.35 proposed a 
near-perfect dual-band circular polarizer based on bi-layer twisted, split-ring resonators. Xu et al.36proposed a 
two-layer chiral metamaterial inspired from fractals, which forms chirality over triple bands. Lin et al.37 proposed 
a dual-band and high efficiency reflective cross-polarization converter based on an anisotropic metasurface for 
linearly polarized electromagnetic waves. Kim et al.38 proposed a new family of multilayer impedance-matched 
chiral metasurfaces that offer arbitrary polarization control at two different frequencies. Londoño et al.39 pro-
posed a special class of Huygen’s surfaces that is able to manipulate transmitted wave fronts, while exhibiting high 
transparency over a broad range of frequencies. As it can be observed from the aforementioned works, it is highly 
important to develop FSS designs that operate in multiple frequency bands. Even though all these  works30–39 have 
presented novel FSSs, their designs exhibit high complexity. It is indeed very challenging to design FSSs of low 
complexity that operate in multiple frequency bands and exhibit low fabrication costs. To address this challenge, 
a novel FSS is introduced here by combining origami mathematics with electromagnetics.

Origami FSSs have been already  introduced23,42–46. Fuchi et al.42,43 introduced foldable frequency selective 
surfaces that can be tuned by changing their folding states. Specifically,  in42 dipoles were printed on Miura-Ori 
tessellations showing a resonance shift up to 10% when their inter-element distances were changing by folding. 
Also,  in43 a similar study was performed using Jerusalem cross resonators that showed a resonance shift up to 
19% of the resonant frequency. Sessions et al.44 also examined origami inspired FSSs focusing on the dependence 
of the operational frequency and polarization on folds. Recently,  in45 the authors designed an origami FSS to 
maintain its frequency response across multiple fold angles. Finally, Nauroze et al. used additive manufacturing 
techniques to  design23,46 multilayer FSSs on Miura-Ori patterns that exhibited increased bandwidth compared 
to single-layer FSSs. These published works on origami FSSs, have primarily studied only the effects of folding 
on their performance. Here we reveal and explain an electromagnetic phenomenon that occurs in our proposed 
origami FSS. Our analysis shows that origami transforms a single-band static FSS to a dynamic dual-band FSS by 
conforming periodically spaced electromagnetic resonators to a Miura-Ori folding pattern, thereby transforming 
a traditional single-band FSS to a dual-band one. This is an important finding as it proves that by conforming the 
shape of electromagnetically coupled elements to origami patterns, we can create new transformations of EM 
waves and develop new FSS designs with enhanced electromagnetic performance. This phenomenon is independ-
ent of the frequency of operation and can be observed in microwaves, photonics and optics; therefore, it can be 
used in various applications across the available electromagnetic spectrum. To demonstrate our findings, a loop 
resonator is used in the origami FSS examined here. This FSS is simulated, fabricated and experimentally tested. 
Finally, the proposed origami FSS, as it is expected, is a dynamic reconfigurable structure since it can fold/unfold 
thereby tuning its dual-band performance depending on its folding state.

Figure 1.  (A) Numerical models with Floquet ports; On the left, three Master/Slave boundary conditions 
(original Miura-Ori unit cell). On the right two Master/Slave boundary conditions (modified Miura-Ori unit 
cell). Transmission coefficient for the two different configurations of our unit cell for: (B) TE polarization. (C) 
TM polarization.
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phenomenon explanation
Full-wave EM analysis is performed using ANSYS HFSS to compare the responses of the standard FSS and the 
proposed origami FSS. To save computational time and resources, since the geometry under study is a periodic 
structure only the unit cell is simulated. Unlike previous  analyses23, the unit cell is appropriately defined so that 
we minimize the computational cost of the simulation. Instead of defining a unit cell of 3 periodic boundary 
surfaces (Fig. 1A left), we define a modified unit cell (Fig. 1A right) with only two periodic surfaces emulating 
the 2D periodicity of our design.

This modification of the studied unit cell accelerates the simulation process 3 times (Table 1), in the case 
where a workstation of 2×Intel Xeon silver 4114 Processors (10 cores, 13.74 MB Cache, 2.20 GHz) and 256 GB 
(DDR4, 2,666 MHz ECC RDIMM) is used. Figure 1B,C show that the transmission coefficient is identical for 
the two different configurations of our unit cell. To demonstrate the effect of the origami pattern on the peri-
odic arrangement of the resonators, different Miura-Ori topologies loaded with ring resonators are modeled as 
shown in Fig. 2.

Figure 2A,B illustrate the simulated transmission coefficients of the standard FSS (the unit cell of its geometry 
is shown in Fig. 2C), and two example designs of the proposed origami FSS (the unit cells of their geometries 
are shown in Fig. 2D,E. The responses in Fig. 2A,B show that for both TE and TM polarizations a single-band 
FSS is transformed into a dual-band one by conforming the standard square-loop resonator (corresponding 
to the case with γ = 90◦ ) to the Miura-Ori pattern (corresponding to the cases with γ  = 90◦ ; specifically, the 
two example cases of γ = 80◦ and γ = 45◦ are shown in Fig. 2). Figures 3 and 4 confirm this by comparing the 
electric field distributions of the origami FSS with distorted loops ( γ = 45◦ ) and the standard FSS with square 
loops ( γ = 90◦ ) . Specifically, Fig. 3A shows that the standard FSS with square loop filters the incident field at 

Table 1.  Computational demands for the simulation of the original and modified Miura-Ori unit cell, 
respectively.

Simulation setup Computational time (h) Memory demand (GB)

6 sided rhombic-loop FSS unit cell
(original Miura-Ori unit cell) 3 6.23

4 sided rhombic-loop FSS unit cell
(modified Miura-Ori unit cell) 1 5.6

Figure 2.  (A) Transmission coefficient for TE polarized incident waves; as the relative angle between the 
elements changes a second resonance appears. (B) Transmission coefficient for TM polarized incident waves; 
as the relative angle between the elements changes a second resonance appears. (C) Unit cell of standard square 
loop FSS. (D) Proposed origami FSS unit cell with distorted square loops that conform to the Miura-Ori design 
γ = 80◦ . (E) Proposed origami FSS unit cell with distorted square loops that conform to the Miura-Ori design 
γ = 45◦.
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only 2 GHz, whereas the origami FSS filters the incident field at both 2 GHz and 2.8 GHz, for a TE incident 
wave. Similarly, Fig. 4A shows that the standard FSS with square loop has only one stop band and filters the 
incident field at both 1.8 GHz and 2 GHz, whereas the origami FSS produces two distinct stop band frequency 
ranges by filtering the incident field at 2 GHz and 1.6 GHz and one band pass frequency range around 1.8 GHz 
for TM incident wave.

In general, it is well known that when the square loop resonator, or any rhombus, is placed in a periodic 
FSS configuration, where all the elements and their sides are parallel to each other, a single resonant behavior 
is  achieved27. This resonance is independent of the shape of the resonator and is identical with the resonance of 
the square loop (Fig. 2C), which corresponds to the blue curves in Fig. 2A,B, when γ = 90◦ . Also, the shape of 
the loop only affects the polarization response of the impinging wave for different angles of incidence. However, 
our origami FSS design (see two example cases for γ = 80◦ and γ = 45◦ in Fig. 2D,E and their corresponding 
transmission coefficients in Fig. 2A,B) achieves for the first time a dual-band performance by orienting the 
resonators so that they conform to the Miura-Ori pattern (see Supplementary Movie 1 Online). Figure 2D,E 
show that for these two cases the sides of the loops are parallel to the folding lines of the Miura-Ori pattern.

To understand why this happens, we isolate two tightly coupled loops and we define two unit-vectors to 
describe their orientation: �u along the symmetry axis of the two shapes and �v perpendicular to �u , as shown in 

Figure 3.  Electric field distribution for TE mode excitation for: (A) γ = 0◦ corresponding to standard square 
loop FSS, which exhibits single-band filtering performance and (B) γ = 30◦ corresponding to the proposed 
origami FSS, which exhibits dual-band filtering performance.
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Fig. 5A,B. In this configuration, these two elements behave as coupled loops and as coupled V-antennas47,48. 
Depending on the polarization of the electromagnetic field, symmetric and anti-symmetric modes are excited.

To analyze the EM behavior of our FSS, eigenvalue analysis is performed to provide physical  insight49. The 
tightly-coupled rhombic loops support two eigenmodes of opposite symmetry, which are excited simultaneously 
with the fundamental eigenmodes of the typical uncoupled loop. Thus, an incident electric field, which is parallel 
to the axis of symmetry of the coupled loops (i.e., �Eu ), excites both the V-dipole symmetric mode and the loop 
mode, as shown in Fig. 5A. Also, an incident field, which is perpendicular to the axis of symmetry (i.e., �Ev ), 
excites both the V-dipole anti-symmetric mode and the loop mode, as shown in Fig. 5B. In summary, depend-
ing on the field orientation, the symmetric/antisymmetric and loop modes are simultaneously excited. For a 
loop with side length, h, (e.g., h = 37.5mm in Fig. 2), a loop resonance is observed when the circumference is 
equal to one wavelength, i.e., �loop = 4h , where �loop is the effective  wavelength28. In addition, depending on the 
orientation of the field, the symmetric and anti-symmetric modes are observed. In the anti-symmetric mode, the 
current distribution at each arm approximates that of an individual antenna of length �anti-sym = 4sin(γ ) · h for 
the case of an �Ev impinging wave (see Fig. 5C right). In the symmetric mode, the current distribution at each arm 
approximates that of an individual antenna of length �sym = 4(cos(γ )/2+ 1)h for the case of an �Eu impinging 
wave (see Fig. 5C left). Figure 5C shows the frequency dependence of the V-dipole in terms of the angle γ for 
the TE and TM polarizations. For example according to the equations mentioned, for the case of γ = 45◦ , the 

Figure 4.  Electric field distribution for TM mode excitation for: (A) γ = 0◦ corresponding to standard square 
loop FSS, which exhibits single-band filtering performance and (B) γ = 30◦ corresponding to the proposed 
origami FSS, which exhibits dual-band filtering performance.
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Figure 5.  (A) Current distribution for an �Eu impinging wave that excites both the first-order loop mode and the symmetric V-dipole 
mode of the two tightly-coupled rhombic loops. The small distance between the rhombic loops allows their slanted sides to strongly 
couple and create a V-dipole configuration. (B) Current distribution for an impinging wave that excites both the first-order loop mode 
and the anti-symmetric V-dipole mode of the two tightly-coupled rhombic loops. The small distance between the rhombic loops 
allows their slanted sides to strongly couple and create a V-dipole configuration. (C) Resonant frequency dependence of the V-dipole 
in terms of the angle γ for an �Eu impinging wave (left) and a �Ev impinging wave (right), respectively. (D) Current distributions of the 
first-order loop modes and symmetric and anti-symmetric V-dipole modes based on eigenanalysis at the corresponding frequencies. 
The current intensities of the dominant loop modes are as expected larger than the current intensities of the V-dipole modes.



7

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:13884  | https://doi.org/10.1038/s41598-020-70434-y

www.nature.com/scientificreports/

loop mode resonates at floop ≃ 2 GHz, the symmetric mode at fsym ≃ 1.5 GHz and the anti-symmetric mode 
at fanti−sym ≃ 2.8 GHz, respectively, which coincide with the results of the full-wave simulation as shown in 
Fig. 2A,B. Figure 5D also shows the current distributions of the tightly coupled loops of Fig. 2E based on our eige-
nanalysis, which prove the existence of symmetric, anti-symmetric, and loop modes at the expected frequencies.

As shown above by using the origami pattern and utilizing the strong coupling of the rhombic resonators 
we transform a single band FSS to a dual-band FSS. A simulation study is performed to examine the effects of 
the coupling between the resonators to the dual-band response. In this study, the size of the resonators is kept 
constant (aiming to achieve the same frequency band of operation) and the gap between them is varied, as shown 
in Fig. 6. Essentially, as the gaps between the resonators become wider, the resonators become smaller compared 
to the facets. As it is shown in Fig. 6A as the resonators move further apart from case #1 towards case #3 the 
FSS forms a single stopband for both its TE (Fig. 6B) and TM (Fig. 6C) polarizations. Specifically, this transition 
from dual-band to single-band performance occurs when the distance between the resonators is ∼ �/3 , where 
� is equal to the circumference of one loop and as a wavelength corresponds to a frequency of 2 GHz. Also, 

Figure 6.  (A) Proposed origami FSS unit cell with distorted square loops ( a1 = a2 = a3 = 37.5mm and γ1 = γ2 
= γ3 = 45◦ ) that conform to the Miura-Ori for different inter-element spacing. (B) Transmission coefficient for 
TE polarized incident waves for cases #1, #2, and #3 with w1 = 0.04� , w2 = 0.14� and w3 = 0.27� , respectively. 
(C) Transmission coefficient for TM polarized incident waves for cases #1, #2, and #3 with v1 = 0.04� , 
v2 = 0.17� and v3 = 0.34� , respectively.

Figure 7.  (A) Typical square loop resonator. (B) Equivalent circuit model of square loop resonator.
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along with the dual- to single-band transformation a frequency shift is observed for our band of operation. This 
frequency shift is expected since as the gap between the resonators widens, their mutual capacitance decreases. 
This can be easily understood using the equivalent circuit model of a typical square loop resonator that has been 
extensively studied  in27,50,51 and is shown in Fig. 7 for completeness.

experiments of a Miura‑ori fSS
For an experimental demonstration, we fabricated an FSS with conductive rhombic loops that conform to a 
Miura-Ori design of 45◦ unit-cell pattern (Fig. 8). The prototype was constructed using traditional printed 
circuit board (PCB) fabrication on a 60× 56.6 cm2 polyimide substrate of relative permittivity ǫr = 3.4 , relative 
permeability µr = 1 and thickness of 50 µm (Fig. 8B).

The dimensions were appropriately chosen so that a large FSS can be created that minimizes the effect of 
edge diffraction and spillover. The thickness of the substrate was thoroughly investigated to ensure our design 
provides optimal mechanical performance when it is folded, i.e., reduce stresses to avoid cracking. It was found 
that a substrate thickness of (50−120µm) provided the best performance when folded. Notably, the thicker the 
substrate is the more stable and rigid the structure becomes. However, this comes at the expense of stiffness at 

Figure 8.  Rhombic loop FSS on a Miura-Ori geometry. (A) 4× 3 FSS film in an arbitrary folded angle showing 
the unit cell at different folding states. From top to bottom: flat unit cell at folded angle ψ = 0◦ , folded unit cell 
at folded angle ψ = 30◦ . and folded unit cell at folded angle ψ = 60◦ . (B) Fabricated FSS on polyimide substrate 
in its flat state (top) and folding state for ψ = 30◦ (bottom).

Figure 9.  Measurement setup of the proposed origami FSS. (A) Schematic diagram of the setup with two 
absorbing walls left and right, and two wideband horns that can illuminate the device under test (DUT). The 
DUT is setup so that it can be rotated in the azimuth plane around its axis of symmetry. (B) Setup for the 
unfolded state ψ = 0◦ . (C) Setup for a folded state ψ = 30◦.



9

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:13884  | https://doi.org/10.1038/s41598-020-70434-y

www.nature.com/scientificreports/

the creases, which eventually can introduce cracks in the substrate after several folding-unfolding cycles. The FSS 
was measured in our lab using two horn antennas (an ETS Lindgren 3115 that operates in the range 0.75–18 GHz, 
and a SAS-571 that operates in the range 0.70–18 GHz), two absorbing walls that operate at the 0.6–18 GHz 
frequency range and a four port N5222B series PNA network analyzer that operates in the frequency range 
10 MHz–26.5 GHz (Figs. 9, 10). Figure 9 presents our measurement setup. The schematic diagram in Fig. 9A 
demonstrates the connection of the two horns (transmitter–receiver) with the PNA, while the FSS is free to rotate 
azimuthally on its own axis. The ETS Lindgren horn was used as a transmitter and the SAS-571 Double-Ridge 
Guide horn as a receiver. The transmitter and receiver can be interchanged. To ensure that the FSS provides a 
performance that is similar to the one of an infinite array, the distance of the two horns was chosen to be 1� 
(300 m) at the frequency of 1 GHz. Figure 10A,B,C show closer view of measurement setup.

Figure 11 shows the simulated and measured FSS’s transmission coefficient at its flat (ψ = 0◦) and folded 
(ψ = 30◦) states for TE and TM polarized waves with different angles of incidence (0◦, 15◦, 30◦, 45◦) . These 
results clearly illustrate the dual-band performance of this FSS, which is observed in both measurements and 
simulations. Measurements and simulations are in good agreement. Specifically, the shaded areas in Fig. 11 
highlight the FSS’s stopband frequency range (a stopband is defined as the frequency range where the transmis-
sion coefficient is less than −10 dB ) that remain intact as the wave’s incident angle varies from 0◦ to 45◦ . We also 
measured this FSS at a folded state to illustrate that this FSS can reconfigure its performance while maintaining 
its dual-band behavior through folding (see Fig. 11B). As Fig. 11B shows, when the Miura-Ori FSS is folded at 
ψ = 30◦ , the two frequency stopbands move in opposite directions for the case of TE waves, whereas the stop-
bands move in the same direction and towards lower frequencies for the case of TM waves. Figure 11C shows 
the variation of the FSS’s resonant frequencies (i.e., center frequencies of the two stopbands) versus the origami 
structure’s folding angle.

Discussion
Origami FSSs and other electromagnetic structures with tunable properties have been previously proposed 
and studied by various  researchers23,42–46. Also, it has been proven that the mechanical and EM performance of 
origami designs can be changed by varying their folding angle. However, before this work, it had not been clear 
how to properly design/select a pattern to achieve a certain electromagnetic behavior. In this work, not only 
we reveal a new phenomenon, but we also prove that enhanced electromagnetic performance can be achieved 
by utilizing an origami configuration with appropriately oriented electromagnetic resonators. Specifically, by 
conforming strongly coupled resonators to a Miura-Ori pattern, a single-band FSS is transformed to a dual-band 
one. This finding informs us how to properly design an origami pattern to meet a certain target performance. 
For our specific case of a frequency selective surface, we know that resonators must be closely spaced so they 
can resonate as a spatial  filter27. Also, as we showed with our analysis, the resonators must be periodically and 
spatially modulated so that they can introduce dual-band behavior (see Fig. 2E,D). Specifically, as we change the 
angle γ of the origami pattern (see Fig. 2A,B), the second resonance appears and disappears. This phenomenon is 
explained in our manuscript through the appearance of the resonances and anti-resonances between the coupled 
resonators. This finding brings us to the realization that origami EM tessellations (i.e., designs that modulate 
periodically spaced resonators) can introduce new phenomena by appropriately exciting resonances and anti-
resonances. The choice of the origami pattern will determine the EM performance (e.g., if an FSS’s performance 
will be single-band or multi-band). However, the exploration of different patterns and corresponding resonator 
designs is out of the scope of this work. We expect though that novel electromagnetic structures, such as FSS, 

Figure 10.  Close view of the FSS measurement setup. (A) TE mode setup for ψ = 0◦ folding. (B) Perspective 
view of the prototype with ψ = 30◦ folding. (C) TM mode setup for ψ = 0◦ folding and for 45◦ incident angle.
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phased arrays, polarization converters, absorbers, can be developed by conforming EM periodic structures to 
various origami patterns and tessellations.

Figure 11.  Simulated and measured transmission coefficient for TE and TM polarizations. The horizontal dash 
line corresponds to − 10 dB while the shaded areas signify the stopband frequency ranges of the FSS. The dual-
band performance is maintained for different folding angles and for impinging waves with different incident 
angles ( θ ). (A) FSS is flat ψ = 0◦ . (B) FSS is folded ψ = 30◦ . (C) Variation of the FSS’s resonant frequencies (i.e., 
center frequencies of the two stopbands) versus the folding angle, ψ.
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Methods. We fabricated the single-layer Miura-Ori-FSS using polyimide substrate of thickness 50µm and of 
ǫr = 3.4 and µr = 1 . Two identical prototypes of size 60× 56.6 cm2 were fabricated using a traditional PCB fab-
rication method. Each prototype consists of 48 unit cells. The Miura-Ori-FSS was manually folded at ψ = 30◦ . 
To measure the FSS the prototype was mounted on a foam-board of ǫr = 1.03 . Both the flat and folded states 
were measured for different angles of incidence by rotating the FSS in the azimuth plane, around its axis of sym-
metry (Fig. 9C).

Supplementary Movie.
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