
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:13351  | https://doi.org/10.1038/s41598-020-70360-z

www.nature.com/scientificreports

Programming experience 
associated with neural efficiency 
during figural reasoning
Birgit Helmlinger1, Markus Sommer1, Martina Feldhammer‑Kahr1, Guilherme Wood1,2, 
Martin E. Arendasy1 & Silvia E. Kober1,2*

In the present study, we investigated neural processes underlying programming experience. 
Individuals with high programming experience might develop a form of computational thinking, 
which they can apply on complex problem-solving tasks such as reasoning tests. Therefore, N = 20 
healthy young participants with previous programming experience and N = 21 participants without 
any programming experience performed three reasoning tests: Figural Inductive Reasoning (FIR), 
Numerical Inductive Reasoning (NIR), Verbal Deductive Reasoning (VDR). Using multi-channel EEG 
measurements, task-related changes in alpha and theta power as well as brain connectivity were 
investigated. Group differences were only observed in the FIR task. Programmers showed an improved 
performance in the FIR task as compared to non-programmers. Additionally, programmers exhibited 
a more efficient neural processing when solving FIR tasks, as indicated by lower brain activation and 
brain connectivity especially in easy tasks. Hence, behavioral and neural measures differed between 
groups only in tasks that are similar to mental processes required during programming, such as 
pattern recognition and algorithmic thinking by applying complex rules (FIR), rather than in tasks 
that require more the application of mathematical operations (NIR) or verbal tasks (VDR). Our results 
provide new evidence for neural efficiency in individuals with higher programming experience in 
problem-solving tasks.

There is a general agreement that computational thinking (CT) is one of the most essential skills in the context 
of the twenty-first century’s steadily progressing digitalization. This postulation originates from a viewpoint 
article published by Wing in 2006, where she postulated that CT, alongside reading, writing, and arithmetic, 
is a fundamental skill that everybody should learn, not only computer scientists (1, p. 33). Wing’s article drew 
general attention to CT, triggering a huge wave of research, especially in the field of education2,3. Additionally, 
a series of training programs were developed to help children4 as well as adults5,6 to acquire higher levels of CT.

Although the number of basic research and training studies on the topic of CT is rising, there is still no con-
sensus about its definition3,7,8. In a recent review article, Shute et al.3 tried to find the similarities between the sev-
eral definitions and defined CT as “the conceptual foundation required to solve problems effectively and efficiently 
(i.e., algorithmically, with or without the assistance of computers) with solutions that are reusable in different con-
texts” (3, p. 142). Hence, CT is associated with a set of skills including algorithmic and logical thinking, problem-
solving as well as efficient and innovative thinking3,9. These mental processes are also involved in programming. 
Hence, CT and programming skills are strongly interrelated but not equivalent3,10,11. It is assumed that successful 
programming and coding requires CT skills (e.g., abstraction, decomposition, algorithmic thinking, debugging, 
iteration, and generalization), “but considering CT as knowing how to program may be too limiting” (3, p. 142). 
Most researchers agree with this assumption that the two constructs are related, but not identical12,13. However, 
since CT is required in programming1,3,10,11,14, CT assessment is often based on programming environments15. 
Similarly, programming interventions have been used to increase CT skills in many studies3,16.

Thus, since CT skills are required for programming1,3,10,14, we assume that individuals with high program-
ming experience develop a form of CT, which they can apply on complex problem-solving tasks that go beyond 
mere programming, such as reasoning tests. Therefore, we decided to investigate two groups, one with no pro-
gramming experience and one group with prior programming experience, while performing tasks that require 
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problem-solving, algorithmic and logical thinking as well as efficient and innovative thinking. The tasks we used 
here were part of a fluid intelligence test. Fluid intelligence (Gf = reasoning) is, besides crystallized intelligence 
(Gc), one of the two facets of general intelligence (G). While fluid intelligence refers to the ability to solve novel 
reasoning problems, which requires skills such as comprehension, problem-solving, and learning, crystallized 
intelligence refers to knowledge that comes from prior learning and past experiences17. Fluid intelligence was 
assessed using three subtests of the Intelligence-Structure-Battery 2 (INSBAT 2:18), namely, figural inductive 
reasoning (FIR), numerical inductive reasoning (NIR), and verbal deductive reasoning (VDR). For a compre-
hensive description of these tasks please see the methods section. Empirical studies indicated that higher CT and 
programming skills come along with higher reasoning skills14,19–21. Training of CT skills as well as programming 
skills has been shown to lead to an improvement in figural reasoning tasks but not in numerical or verbal reason-
ing tasks13,14,20,22,23. Figural reasoning skills even turned out to be one of the best predictors of learning outcomes 
when learning a programming language such as Python, while numeracy only explained a relatively small portion 
of variance in programming learning outcomes21. This indicates that figural reasoning is particularly relevant 
for programming and might also play a central role in CT.

Besides differences in performance between programmers and non-programmers in complex problem-solving 
tasks, such as represented in reasoning tests, we are further interested in differences in neural processes underly-
ing programming experience when performing such tasks. From a neuroscientific viewpoint, there are only a 
few studies that investigated neural correlates of programming experience or CT, respectively. Using EEG meas-
urements, Park, Song and Kim (2015) investigated the relation between cognitive load related to programming 
experience and CT24. Generally, an increase in cognitive load while performing cognitive tasks is associated with 
changes in two distinct EEG frequency bands: a task-related decrease in alpha (8–12 Hz) power (event-related 
desynchronization, ERD) and a task-related increase in theta (4–8 Hz) power (event-related synchronization, 
ERS)25–29. The aim of the study by Park et al.24 was to compare the effects of two different programming courses 
(programming courses based on Scratch vs. programming courses based on Scratch + additional CT teaching) 
on university students’ problem-solving ability and cognitive load while working on problem-solving tasks. 
The group with additional CT teaching showed higher improvement in CT-based problem-solving tasks than 
the other group. As for the EEG assessment, no significant differences in cognitive load were observed between 
groups. However, EEG was only recorded over two frontopolar electrode positions, limiting the significance of 
the EEG results. Although no group differences in cognitive load were observed according to the EEG results, the 
authors reported that the group with additional CT teaching tended to approach the problems more efficiently, as 
indicated for instance by improved strategic thinking, simultaneous thinking, and the use of recursive solution 
strategies during the problem-solving processes24. In line with that, there is strong evidence that people with 
higher cognitive abilities (e.g., individuals with higher intelligence) show more efficient, thus, lower cortical acti-
vation when performing cognitively demanding tasks (such as reasoning tasks) than people with lower cognitive 
abilities. Furthermore, it is suggested that neural efficiency does not only indicate lower cortical activation, but 
also more locally focused activation in task-relevant brain areas30–34. Concerning brain connectivity measures, 
prior studies report conflicting results that either increased or reduced brain connectivity each might be a sign 
of neural efficiency35–37. In summary, higher programming skills might lead to a more efficient neural processing 
when performing reasoning tasks.

A more efficient neural processing in programmers than in non-programmers might be related to a stronger 
automation of critical skills needed to solve such complex reasoning tasks. According to the dual-process theory, 
mental activity involved in performing reasoning and decision making tasks, for instance, is categorized in two 
main types of processing: type I processes including more automatic and capacity-free processes (fast, high 
capacity, independent of working memory) and type II processes including more controlled and capacity-limited 
processes (slow, low capacity, heavily dependent on working memory)38,39. Note that type I and type II processes 
are highly interdependent. Type I and type II processes are associated with activation in distinct brain networks. 
Type II processes are linked to frontal executive functions (top-down control) while type I processes are thought 
to result from relative hypofrontality40–42. Type II processes reflect the activity of a supervisory attention system, 
specialized in monitoring and regulating the activity in other cognitive/neural systems43. Hence, differences in 
brain activation and connectivity between programmers and non-programmers when solving reasoning tasks 
might be caused by a stronger involvement of type I processes in programmers and a stronger involvement of 
type II processes in non-programmers.

In the present study, we compare individuals with and without previous programming experience while solv-
ing figural, numerical, and verbal reasoning tasks with different levels of complexity (three levels of difficulty) in 
(1) behavioral performance and (2) neural processing. We expect that programmers, who might have developed 
a form of CT, which is required to program successfully1,3,10,11,14, show a better performance in the reasoning 
tasks than non-programmers. This group difference in behavioral performance should be larger in tasks requir-
ing figural reasoning13,14,20,22,23.

Additionally, we expect that group differences in behavior go along with group differences in neural correlates 
underlying cognitive processing. In accordance with the neural efficiency theory as well as the dual-process 
theory, we hypothesize that programmers, who should show a superior performance especially in figural rea-
soning, display more efficient neural processing probably due to a more effortless and automatic task processing 
(type I processes) as compared to non-programmers30–34. A more efficient neural processing should be seen in 
a less pronounced alpha ERD33,44 and a less pronounced theta ERS45. Concerning brain connectivity, we also 
expect differences between groups while solving reasoning tasks 35–37. Since we assume that non-programmers 
show a stronger involvement of type II processes when solving reasoning tasks, it might be that this group shows 
a stronger connectivity between frontal brain areas and more parietal brain areas due to a stronger executive 
control41,46.
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Exploratively, we assess mental strategies used by participants to solve the reasoning tasks. Verbal reports may 
provide insight into various strategies for solving problems and might be related to differences in brain activity47.

Methods
Participants.  In the present study, we compared two groups of university students, namely students with 
and without prior programming experience. To assess the level of programming experience prior to the EEG 
measurement and to find two homogenous groups (comparable in age and gender), 273 potential participants 
filled out a short electronic questionnaire (22 questions). In this questionnaire, we asked for information about 
programming experiences within the school education, the study career, further education, during their leisure 
time, or any other possible occupation. The last question (“expertise-rating”) asked participants to self-rate their 
current programming knowledge on a visual analogue scale from layman (= 0) to expert (= 10). To be eligible 
for the programming group (“programmers”), participants had to state a value of 5 or higher in the expertise-
rating. If a value of 0 was entered, and participants did not state to have obtained programming experience in 
any of the other questions, participants were considered for the non-programmers’ group (“non-programmers”; 
descriptive statistics of the expertise-rating in programmers’ group: Mmale = 6.92, SDmale = 1.51; Mfemale = 6.25, 
SDfemale = 0.89). There is evidence that programming experience can be reliably assessed using such self-estima-
tion ratings48. Finally, two exclusion criteria were applied for all participants: i) skin intolerances of the electrode 
paste; and ii) neurological diseases.

The final sample that completed the EEG measurement consisted of 41 university students (22 men, 19 
women) between 20 and 39 years (M = 24.95 years, SD = 3.94). Twenty participants were in the programmers’ 
group (12 men, 8 women, mean age = 25.40 years, SD = 3.98), twenty-one participants were non-programmers 
(10 men, 11 women, mean age = 24.52 years, SD = 3.96). Table A1 of the Supplementary Material summarizes 
prior programming experience and education of both groups in more detail. All volunteers gave their written 
informed consent. The study was approved by the local ethics committee of the University of Graz, Austria (GZ. 
39/11/63 ex 2018/19) and is in accordance with The Code of Ethics of the World Medical Association (Declaration 
of Helsinki) for experiments involving humans49. Volunteers were paid for their participation (24€).

Assessment of reasoning.  Reasoning (Gf: fluid intelligence) was measured by means of three subtests 
taken from the Intelligence-Structure-Battery 2 (INSBAT 2:18). This intelligence test battery is widely used in 
German-speaking countries and is based on the Cattell–Horn–Carroll model (CHC-model:50,51). INSBAT 2 
assesses the second stratum factors fluid intelligence (Gf), crystallized intelligence (Gc), quantitative knowledge 
(Gq), visual processing (Gv), and long-term memory (Glr) by means of two to three subtests. All subtests were 
constructed using automatic item generation (AIG:52,53) on the basis of a cognitive processing model, which out-
lines the cognitive processes test-takers use to solve these tasks in addition to the item design features linked to 
these cognitive processes. All subtests were calibrated by means of the 1PL Rasch model54 and have been shown 
to exhibit good construct and criterion validities (for an overview:18). In the present study only the three sub-
tests (FIR: figural inductive reasoning, NIR: numerical inductive reasoning, VDR: verbal deductive reasoning) 
measuring fluid intelligence (Gf) were used. These three subtests were chosen based on factor analytic evidence 
indicating that individual differences in commonly used fluid intelligence tasks are best modeled by a general 
fluid intelligence factor and modality-specific factors (e.g., reflecting figural reasoning; cf.55–57).

In INSBAT, all subtests are commonly administered as computerized adaptive tests (CAT:58) with a target 
reliability corresponding to Cronbach’s α = 0.70. Due to our EEG paradigm, however, it was more appropriate 
to administer these three subtests as fixed-item linear tests. Furthermore, the present research design required 
the use of an approximately equal number of items that exhibit low, medium, and high difficulties (i.e. levels of 
complexity). To achieve these two aims, a total of k = 7 items of low, medium, and high difficulty (three complexity 
levels) were randomly drawn from the current item pool. This yielded a total of k = 21 items for each of the three 
subtests. The same 21 items were presented in the same order for all participants per task (FIR, NIR, VDR). All 
three tests were computerized using the program PsychoPy59. For each of the three subtests, participants had a 
maximum of 30 min to complete the fixed-item linear test forms. As soon as an answer was given, a fixation cross 
was displayed in the center of the screen for nine seconds, followed by the next item. Participants were instructed 
that the test would be terminated if duration exceeded 30 min. For one participant (non-programmer), the FIR 
was stopped manually because the time was exceeded. In Fig. 1 example items for each task are illustrated.

Figural inductive reasoning (FIR).  In this subtest, participants had to infer the rules governing figural matrices 
and to complete the matrices by applying these rules. They were presented with k = 21 3 × 3-matrices. The first 
eight cells of each matrices were filled with geometrical figures (e.g. rectangles, circles, etc.) while the bottom 
right field was always empty. The number and arrangement of the geometrical figures followed certain rules that 
had to be inferred to solve the test item (for further details:60–62). Respondents were presented with six response 
options, including the response option “none of the answer alternatives is correct.”. This response option was 
included to prevent respondents from resorting to response elimination to solve the test items62. They were 
asked to press one of six keys on a conventional keyboard to indicate which answer alternative they considered 
to be the correct solution. The test items were constructed by means of AIG on the basis of cognitive processing 
models for figural matrices (e.g.63,64). Prior research indicated that these items measure fluid intelligence and 
exhibit a g-factor saturation comparable to commonly used figural matrices tests such as the Ravens matrices 
(cf.18,60,61,65). Furthermore, item design features linked to cognitive processes involved in solving figural matrices 
tests have been shown to account for 91.8% of the differences in the 1PL item difficulty parameters18,62. Thus, 
there is evidence on the construct validity of the figural matrices items used in the present study.



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:13351  | https://doi.org/10.1038/s41598-020-70360-z

www.nature.com/scientificreports/

Numerical inductive reasoning (NIR).  In this subtest, the task of the participants was to discover the rules that 
govern a number series, and to continue the number series by applying these rules. They were administered 
k = 21 number series consisting of seven numbers each, constructed under certain rules, and four response alter-
natives in addition to the response alternative “none of the answer alternatives is correct.” to prevent response 
elimination (for further details:52). Similar to the figural matrices test the items of this subtest were constructed 
on the basis of cognitive processing models for number series tasks (e.g.66,67) using AIG. Prior research indi-
cated that the number series task used in this study measures fluid intelligence and exhibit a g-factor saturation 
comparable to the Ravens matrices (cf.18,52,65). In addition, item design features linked to cognitive processes 
hypothesized to be involved in solving number series have been shown to account for 88.2% of the differences in 
the 1PL item difficulty parameters18,52. Taken together these results argue for the construct validity of the number 
series used in the present study.

Verbal deductive reasoning (VDR).  This subtest consisted of k = 21 syllogism tasks. Each test item consisted 
of two statements (premises) and four possible conclusions in addition to the response alternative “none of the 
conclusions is logically valid.”. The participants were instructed to assume that the premises were true, and to 
indicate, which of the four possible conclusions—if any—follows logically from the given premises. As outlined 
by Arendasy, Sommer, and Gittler18 the items were constructed by means of AIG on the basis of current cogni-
tive processing models for syllogistic reasoning tasks (e.g.68–70) by systematically manipulating the item design 
features figure of the syllogism, cognitive complexity of the premises, plausibility, and falsification difficulty. 
Prior research indicated that these item design features and the cognitive processes linked to them accounted for 
83.2% of the differences in the 1PL item difficulty parameters18. Furthermore, factor analytic research indicated 

Figure 1.   Example items of the three reasoning tasks of the Intelligence-Structure-Battery 2 (INSBAT 2:18). All 
three items are examples for medium complex items. In the Figural Inductive Reasoning (FIR) task, the left side 
shows a 3 × 3-matrix with one missing field. The right side shows 6 possible response options (correct answer 
for this example item: C). In the Numerical Inductive Reasoning (NIR) task, a sequence of numbers that has 
to be continued is shown in the first row and the five response options are underneath (correct answer for this 
example item: B). In the Verbal Deductive Reasoning (VDR) task, the two statements are presented on top, the 
four possible conclusions and the fifth response option are shown underneath (correct answer for this example 
item: D).
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that this subtest measures fluid intelligence and exhibits a high g-factor saturation, which argues for the con-
struct validity of this measure (cf.18,52,65).

After completing each of the three reasoning tasks, participants were asked to report the strategies they used 
to solve the items by filling in a blank box on a sheet of paper. They were free to decide whether they wanted to 
write down whole sentences or just some keywords. Participants were allowed to describe as many strategies as 
they wanted.

EEG recording and data analysis.  EEG was recorded with 60 active electrodes (placed in accordance 
with the 10–20 EEG placement system71) using two BrainAmp 32 AC EEG amplifiers from Brain Products 
GmbH (Gilching, Germany). The ground was placed at Fpz, the linked references were placed on the left and 
right mastoid. Ocular artifacts were recorded with three EOG electrodes placed at the left and right temples 
and the nasion. The impedances of all EEG and EOG electrodes were kept below 25 kΩ. The sampling rate was 
500 Hz. We used a 70 Hz low pass filter, a 0.01 Hz high pass filter, and a 50 Hz Notch filter.

Before the start of the INSBAT tasks, resting measurements with open and closed eyes were performed (one 
minute each). Analysis and results of these resting measurements can be found in Supplementary Material B.

For EEG data analysis, we used the Brain Vision Analyzer (version 2.01, Brain Products GmbH, Gilch-
ing, Germany). First, the raw data were inspected visually to remove major muscle artifacts. Following this, 
eye-movement artifacts were removed semi-automatically by Independent-Component-Analysis (ICA, Info-
max). Additionally, a semi-automatic artifact correction was performed with the following criteria: within a 
100 ms interval, only voltage fluctuations between 0.5 and 50 µV and amplitudes between −150 and 150 µV were 
allowed72,73. All epochs with artifacts were excluded from the EEG analysis.

Alpha- (8–12 Hz) and theta band power (4–8 Hz) were extracted by means of the Brain Vision Analyzer’s 
built-in function of complex demodulation72,74. To analyze task-related power changes in the reasoning tasks, 
we calculated the percentage power changes from a baseline (i.e. the time before stimulus-onset) to an active 
phase (i.e. the time during which the stimulus was processed). This is represented by the following equation 
((active phase – baseline)/baseline*100)29. Therefore, decreases in power compared to the baseline result in 
negative values, representing event-related desynchronization (ERD), and increases in power in positive values, 
representing event-related synchronization (ERS). An ERD is caused by a decrease and an ERS is caused by an 
increase in synchrony of the underlying neuronal populations, respectively29. An ERD in the alpha frequency 
range (relative task-related power decrease from baseline to an active phase, suppression of alpha oscillations) is 
associated with neural activation since alpha oscillations are related to an inactive resting state as well as active 
inhibition of brain areas where alpha oscillations are pronounced strongly29,75. The alpha rhythm is predominant 
in healthy humans and most pronounced over posterior regions (e.g., parietal, occipital) of the brain25,28. An 
alpha ERD can be seen while performing a variety of tasks such as perceptual, judgement, memory, or motor 
tasks. Generally, an increase of task complexity or attention results in an increased magnitude of alpha ERD (for 
an overview see29). In contrast, a task-related increase in theta power (theta ERS) is generally associated with 
encoding of new information, episodic memory, and working memory28. Theta is mainly seen in the frontal 
midline area25,28. In the present study, we especially focused on alpha and theta frequencies since different stud-
ies showed that changes in these two EEG frequencies are reliable indicators for changes in task difficulty or 
cognitive load in a variety of task demands25,27,28.

For calculating ERD/ERS values in the present study, the active phase was defined as the time between 
stimulus onset (first presentation of an item on the screen) and response of the participant (pressing a response 
key). The baseline interval for each item was 6,000 ms before stimulus onset to stimulus onset. Both baseline 
and active phase were again split into segments of two seconds and each segment that contained an artifact was 
excluded from further processing. The power in all remaining 2-s segments was averaged per EEG channel. Note 
that only correctly answered items were analyzed. ERD/S values were averaged separately for each reasoning 
task (FIR, NIR, VDR) and complexity level (low, medium, high). Additionally, single electrode positions were 
merged to regions of interest (ROIs). For alpha ERD/ERS, ten parieto-occipital electrodes (5 each) were merged 
to two ROIs: left parietal (P1, P3, P5, PO3, PO7) and right parietal (P2, P4, P6, P04, P08) ROI. For theta ERD/
ERS, electrodes AFz, Fz, and FCz were merged to one fronto-central ROI.

To analyze EEG coherence, the active phase of correctly answered items of the reasoning tasks was cut in 
artifact-free 2-s epochs. A FFT transformation was performed per epoch (Hanning window, 10%). Then, the 
magnitude-squared coherence was calculated for the channel pairs connecting fronto-parietal areas (left: AF3, 
F3, FC3 with PO3, O1; middle: AFz, Fz, FCz with POz, Oz; right: AF4, F4, FC4 with PO4, O2) and average 
coherence values in the frequency range of 4–8 Hz and 8–12 Hz were extracted per reasoning task (FIR, NIR, 
VDR) and complexity level (low, medium, high). Coherence is a frequency domain measure of the functional 
coupling or similarity between signals assessed at two different electrode positions. The magnitude-squared 
coherence estimates the linear relationship of two signals at each frequency bin on the basis of cross- and auto-
spectra of the involved signals72. Values can range from 0 (no similarity/functional coupling between signals 
assessed at two different brain areas) to 1 (maximum similarity/functional coupling between signals assessed at 
two different brain areas).

Statistical analysis.  To analyze possible group differences in the performance of the three reasoning tasks, 
the number of correctly answered items in each of the three tests (FIR, NIR, VDR) was compared using analyses 
of covariance (ANCOVAs). These ANCOVAs were performed with Group (programmers, non-programmers) 
as a between-subjects factor and Complexity (low, medium, high) as a within-subjects factor. Age and sex of the 
participants were used as covariates in the analyses because sex and age might have an influence on brain activa-
tion as well as performance in reasoning or working memory tasks28,76,77. Reaction times were not investigated 
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in the present study, because participants were not asked to answer as quickly as possible, but only to try to solve 
all items of a task within 30 min.

The subjectively reported mental strategies, displaying how the participants have solved the reasoning tasks, 
were divided into different categories (Table 2)78. Note that each participant could report more than only one 

Table 1.   Means (M) and standard errors (SE) for the number of correct responses per group (programmers, 
non-programmers), reasoning task (FIR, NIR, VDR), and complexity level (low, medium, high). FIR figural 
inductive reasoning, NIR numerical inductive reasoning, VDR verbal deductive reasoning. low low complexity, 
medium medium complexity, high high complexity. Superscripted letters indicate significant differences 
revealed by the post-hoc tests for the interaction effect Complexity*Group.

Programmers Non-programmers

N M SE N M SE

FIR

Low 20 5.65c, d 0.18 20 5.40 e, f 0.23

Medium 20 4.80a, c 0.28 20 2.95a, e 0.31

High 20 4.10b, d 0.36 20 2.60b, f 0.38

NIR

Low 20 6.20 0.25 21 6.00 0.23

Medium 20 4.95 0.27 21 4.24 0.41

High 20 3.10 0.27 21 2.48 0.35

VDR

Low 20 5.15 0.18 21 4.76 0.22

Medium 20 5.75 0.22 21 5.48 0.25

High 20 4.30 0.36 21 3.52 0.34

Table 2.   Relative frequencies of reported mental strategies (per group and task) used to solve the three 
reasoning tasks (FIR, NIR, VDR) per group (programmers, non-programmers) and results of statistical 
comparisons of absolute frequencies of the reported mental strategies between the three tasks (merged for 
programmers and non-programmers). FIR figural inductive reasoning, NIR numerical inductive reasoning, 
VDR verbal deductive reasoning. Pr Programmer, N-Pr non-programmer. Superscripted letters indicate 
significant differences between groups per task.

Mental strategy

FIR NIR VDR Χ2

df P Cramer’s-VPr N-Pr Pr N-Pr Pr N-Pr

Number of objects 0.30 0.48 0.00 0.00 0.00 0.00 36.79 2 0.000 0.547

Position of objects 0.40 0.52 0.00 0.00 0.00 0.00 44.94 2 0.000 0.604

Shape of objects 0.55 0.71 0.00 0.00 0.00 0.00 65.94 2 0.000 0.732

Rotation of objects 0.20 0.14 0.00 0.00 0.00 0.00 14.85 2 0.001 0.347

If–then/or operations 0.05 0.00 0.00 0.00 0.00 0.00 2.02 2 0.365 0.128

Pattern recognition 0.75 0.67 0.50 0.33 0.15 0.00 34.46 2 0.000 0.529

Numerical operations + /-/*/ ÷ / Magnitudes 0.10 0.10 0.80 0.81 0.20 0.10 56.28 2 0.000 0.676

Finding differences in response options 0.20a 0.00a 0.00 0.00 0.00 0.00 8.27 2 0.016 0.259

Logical thinking 0.05 0.14 0.10 0.14 0.20 0.29 3.86 2 0.145 0.177

Analyzing rows and columns 0.40 0.38 0.00 0.00 0.00 0.00 36.79 2 0.000 0.547

Rejecting wrong answers step by step 0.40 0.19 0.20b 0.00b 0.40 0.19 5.92 2 0.052 0.219

Guessing 0.15 0.19 0.15 0.19 0.10 0.05 2.18 2 0.336 0.133

Detecting rules/similarities 0.30 0.29 0.40 0.43 0.00 0.00 20.67 2 0.000 0.410

Characteristics of neighboring numbers 0.00 0.00 0.25 0.52 0.00 0.00 36.79 2 0.000 0.547

Abstract thinking 0.00 0.00 0.00 0.00 0.10 0.05 6.15 2 0.046 0.224

Deductive reasoning 0.00 0.00 0.00 0.00 0.30 0.33 29.07 2 0.000 0.486

Visual imagery of premises/solutions 0.00 0.00 0.00 0.00 0.20 0.24 19.42 2 0.000 0.397

Going through premises backwards 0.00 0.00 0.00 0.00 0.10 0.00 4.07 2 0.131 0.182

Tautology 0.00 0.00 0.00 0.00 0.05 0.00 2.02 2 0.365 0.128

Attention to words "none", "no one", "all", "some", etc 0.00 0.00 0.00 0.00 0.05 0.05 4.07 2 0.131 0.182

No strategy 0.00 0.00 0.00 0.00 0.00 0.05 2.02 2 0.365 0.128
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strategy per task. Absolute frequencies of the reported mental strategies were statistically compared between 
tasks (FIR, NIR, VDR) as well as between groups within each task using χ2 tests.

To analyze possible group differences in ERD/S values, several ANCOVAs for each of the three reasoning 
tests (FIR, NIR, VDR) were carried out. ANCOVAs were conducted separately for alpha ERD/S and frontal theta 
ERD/S as dependent variables. Similar to the behavioral analyses, the between-subjects-factor Group (program-
mers, non-programmers) and the within-subjects factor Complexity (low, medium, high) were included in all 
ANCOVAs. For frontal theta ERD/S, no additional within-subjects factor was used. For alpha ERD/S, another 
within-subjects-factor concerning the ROIs (left, right) was added. Age and sex of the participants were used 
as covariates.

To analyze possible group differences in coherence values, several ANCOVAs for each of the three reasoning 
tests (FIR, NIR, VDR) were carried out. ANCOVAs were conducted separately for coherence in the alpha and 
theta frequency range as dependent variables. The ANCOVA models comprised the between-subjects-factor 
Group (programmers, non-programmers) and the within-subjects factors Complexity (low, medium, high) and 
Hemisphere (left, middle, and right fronto-parietal connections). Age and sex of the participants were used as 
covariates.

For all analyses, degrees of freedom for each analysis were adjusted using the Greenhouse–Geisser procedure 
to correct for violations in sphericity if necessary. Significance level was set at 0.05, except for multiple t-tests 
(e.g. differences in possible confounders and post-hoc tests). Adjustment for multiple comparisons was done 
with Holm–Bonferroni method.

Results
Behavioral results.  For the FIR task, the ANCOVA revealed a significant main effect of Group 
(F(1,36) = 16.22, p < 0.0001, ηp

2 = 0.31) with programmers showing generally more correctly answered items 
than non-programmers. Additionally, a significant Complexity*Group interaction was found (F(2,72) = 7.01, 
p < 0.01, ηp

2 = 0.16). Post-hoc comparisons revealed that programmers performed significantly better than non-
programmers in the medium (p < 0.001) and highly complex tasks (p = 0.004), but not in the low complex tasks 
(p = 0.537). The covariates sex and age had no significant effects. Means and SE of all behavioral results are shown 
in Table 1.

The ANCOVA for the number of correctly answered NIR items revealed a significant main effect of Com-
plexity (F(1.65,61.20) = 6.38, p < 0.01, ηp

2 = 0.15). Post-hoc comparisons showed that all participants, regardless 
of their group membership, correctly answered more low than medium and highly complex items, and more 
medium than highly complex items (all p < 0.001, Table 1). The covariates were non-significant. The ANCOVA 
for the VDR task revealed no significant results (Table 1).

Mental strategies used to solve the reasoning tasks.  Table 2 summarizes the relative frequencies of 
mental strategies reported per group when solving the three reasoning tasks (FIR, NIR, VDR) per group (pro-
grammers, non-programmers) and the results of the statistical comparisons. There were no large differences in 
the mental strategy report between programmers and non-programmers (Table 2). Programmers only reported 
the use of the strategy “Finding differences in response options” during the FIR task (χ2(1) = 4.65, p < 0.05, Cram-
er’s V = 0.337) and “Rejecting wrong answers step by step” during the NIR task (χ2(1) = 4.65, p < 0.05, Cramer’s 
V = 0.337) more often than non-programmers. Hence, programmers and non-programmers reported the use of 
the single mental strategies per task with a largely comparable frequency. Therefore, absolute frequencies of the 
reported mental strategies were statistically compared between the three tasks for the merged data of program-
mers and non-programmers. During the FIR task, participants reported to use many different strategies focusing 
on the elements of the items (number, position, shape, rotation of objects). Systematically analyzing the rows 
and columns of the items was also only reported for the FIR task. Pattern recognition was also more frequently 
reported after the FIR task than after the NIR and VDR task. In contrast, the use of numerical operations was 
most frequently reported for the NIR task. In this task, analyzing the characteristics of neighboring numbers was 
reported, too. Detecting rules or similarities was equally often used for the FIR and NIR task, but this strategy 
was not used for the VDR task. Abstract thinking, deductive reasoning, and visual imagery of solutions was only 
reported for the VDR task. The reported solution strategies are in line with the cognitive processes hypothesized 
to be involved in solving these tasks (cf. methods section). Furthermore, the results are also consistent with prior 
studies indicating that item design features linked to these cognitive processes account for 83.2% to 91.8% of the 
differences in the 1PL item difficulty parameters of the three reasoning tests (for an overview:18). 

Task‑specific EEG power changes.  Table 3 summarizes the alpha ERD/S values for each reasoning task 
and each complexity level per group.

The ANCOVA model for ERD/S values during the FIR task revealed a significant main effect Complex-
ity (F(1.66,53.03) = 3.43, p < 0.05, ηp

2 = 0.10), a significant interaction Complexity*Group (F(1.66,53.03) = 5.44, 
p < 0.05, ηp

2 = 0.15), and a significant interaction Hemisphere*Group (F(1,32) = 6.81, p < 0.05, ηp
2 = 0.18). Post-hoc 

comparisons revealed that both programmers and non-programmers showed more pronounced alpha ERD with 
increasing task complexity (Low vs. Medium: p = 0.001; Low vs. High: p < αHolm, Medium vs. High: p = 0.017; 
Table 3). In terms of the interaction Complexity*Group, post-hoc comparisons indicated that only programmers 
showed lower ERD in low complex tasks compared to medium (p < 0.001) and highly complex tasks (p < 0.001) 
and lower ERD in medium compared to highly complex tasks (p = 0.026) (Table 3, Fig. 2). No such complexity-
specific differences were found in non-programmers (Table 3, Fig. 2). Post-hoc comparisons regarding the 
interaction between Group and Hemisphere found that in non-programmers, alpha ERD was higher in the left 
than in the right hemisphere (p = 0.007). No significant difference between the two hemispheres was found for 
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programmers. Moreover, no differences between programmers and non-programmers were found in any of the 
two hemispheres (Table 3). The covariates had no significant effects.

For alpha ERD/S during the NIR task, the ANCOVA only revealed a significant interaction of 
Hemisphere*Group (F(1,33) = 13.23, p < 0.01, ηp

2 = 0.29). Post-hoc comparisons revealed that, within the left 
hemisphere, non-programmers showed significantly higher ERD than programmers (p = 0.039). Additionally, 
non-programmers showed significantly higher ERD in the left than in the right hemisphere (p = 0.003, Table 3).

No significant results were observed for alpha ERD/S in the VDR task (Table 3).
Results of the analysis of theta ERD/S can be found in Supplementary Material C.

Table 3.   Means (M) and standard errors (SE) for parieto-occipital alpha ERD/S (in %) per hemisphere 
(left, right), group (programmers, non-programmers) and complexity level (low, medium, high) of each 
task (NIR, FIR, and VDR). FIR figural inductive reasoning, NIR numerical inductive reasoning, VDR verbal 
deductive reasoning. Superscripted letters indicate significant differences revealed by the post-hoc tests for the 
interaction effect Complexity*Group.

Programmers Non-Programmers

Left Right Left Right

N M (SE) M (SE) N M (SE) M (SE)

FIR

Low 19 − 36.64 (6.22)a,b − 38.35 (5.55)d, e 17 − 56.07 (6.29) − 51.52 (6.65)

Medium 19 − 52.11 (5.93)a, c − 54.50 (6.04)d, f 17 − 61.05 (6.16) − 56.24 (6.12)

High 19 − 59.75 (3.90)b, c − 58.88 (5.03)e, f 17 − 64.56 (4.27) − 58.62 (5.26)

NIR

Low 18 − 43.99 (4.16) -46.80 (4.49) 19 − 58.73 (5.25) − 52.08 (5.21)

Medium 18 − 52.08 (4.41) − 54.23 (4.16) 19 − 60.69 (4.38) − 57.01 (4.26)

High 18 − 51.79 (5.01) − 57.01 (4.04) 19 − 63.34 (4.11) − 57.51 (4.63)

VDR

Low 20 − 31.35 (7.50) − 35.21 (7.59) 21 − 39.62 (7.17) − 32.70 (7.50)

Medium 20 − 45.78 (5.57) − 46.74 (5.92) 21 − 52.23 (6.29) − 47.34 (6.57)

High 20 − 41.16 (6.40) − 40.88 (6.98) 21 − 55.19 (5.02) − 51.02 (5.37)

Figure 2.   Topographical plots of alpha ERD/S. Topoplots showing alpha ERD/S in programmers and non-
programmers in the three complexity levels (low, medium, high) of the Figural Inductive Reasoning task. Only 
negative values are displayed (ERD). Lower values represent a more pronounced ERD (red), higher values a less 
pronounced ERD (yellow).
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Brain connectivity.  Table 4 summarizes the alpha coherence values for each reasoning task and each com-
plexity level per group and hemisphere.

For the FIR task, the ANCOVA revealed a significant main effect Complexity (F(2,64) = 4.65, p < 0.05, 
ηp

2 = 0.12). Post-tests revealed that both programmers and non-programmers showed more pronounced alpha 
coherence values with increasing task complexity (Low vs. Medium: p = 0.002; Low vs. High: p = 0.005, Medium 
vs. High: ns.; Table 4). The main effect group was not significant (F(1,32) = 2.87, p = 0.10, ηp

2 = 0.08), however, 
there was a trend that programmers (M = 0.06, SE = 0.01) show a lower alpha coherence than non-programmers 
(M = 0.08, SE = 0.01). Although the interaction effect Group*Complexity was not significant (F(2,64) = 1.31, 
p = 0.26, ηp

2 = 0.04), explorative post-t-tests revealed that groups differed significantly in coherence values in 
the low complexity condition, where non-programmers show higher alpha coherence than programmers (left: 
p = 0.008; middle: p = 0.04; right: p = 0.02). No group differences were observed in the medium and high com-
plexity condition (Table 4).

In the NIR task, the ANCOVA only revealed a significant main effect of Hemisphere (F(1.57, 51.82) = 4.40, 
p < 0.05, ηp

2 = 0.12). However, post-hoc tests revealed no significant differences in alpha coherence values between 
left, middle, and right fronto-parietal connections (Table 4).

The ANCOVA for alpha coherence during the VDR task revealed no significant results (Table 4).
Results of the analysis of theta coherence can be found in Supplementary Material D.

Discussion
In the present study, we investigated neural processes underlying reasoning (i.e., fluid intelligence) in program-
mers, who might have developed a form of CT, which is required to program successfully1,3,10,11,14, and individuals 
with no previous programming experience. Programmers showed higher behavioral performance levels as well 
as a more efficient neural processing in the figural reasoning task compared to non-programmers. No differences 
in behavior or indices of neural efficiency were observed in the verbal or numerical reasoning tasks. These results 
are discussed in more detail below.

Performance differences in figural reasoning tasks.  In the figural reasoning task, programmers per-
formed significantly better than non-programmers in the medium and highly complex conditions. No such 
group differences were observed in the numerical or the verbal reasoning tasks. In the NIR, we observed a 
general effect of task complexity. All participants, regardless of their group, correctly answered more low than 
medium or highly complex items and more medium than highly complex items. These findings are compatible 
with factor-analytical studies showing that individual differences in these three tasks are best explained by a 
general fluid intelligence factor and modality-specific factors55–57.

Our results are in line with previous findings showing that higher programming skills as well as higher CT 
skills come along with higher figural reasoning skills14,19,20. While all three reasoning tests used in the present 
study require problem-solving abilities, which are highly interrelated with both, programming and CT3,11,20,79, 
FIR specifically requires figural, rather than numerical or verbal processing14. Intervention studies in which CT 
and/or programming skills were trained led to an improvement in figural reasoning tasks but not in numerical 
or verbal reasoning tasks13,14,20–23. For instance, Ambrosio et al.14 showed that the grades of college students at 
the end of their first programming course correlated with their spatial reasoning ability (similarly to FIR task 
in the present study) at the beginning of the course. Likewise, a meta-analysis on programming interventions 

Table 4.   Means (M) and standard errors (SE) for fronto-parietal coherence in the alpha frequency range per 
hemisphere (left, middle, right), group (programmers, non-programmers) and complexity level (low, medium, 
high) of each task (NIR, FIR, and VDR). FIR figural inductive reasoning, NIR numerical inductive reasoning, 
VDR verbal deductive reasoning. Superscripted letters indicate significant differences revealed by the post-hoc 
tests for the interaction effect Complexity*Group.

Programmers Non-Programmers

Left Middle Right Left Middle Right

N M (SE) M (SE) M (SE) N M (SE) M (SE) M (SE)

FIR

Low 19 0.038 (0.005)a 0.044 (0.009)b 0.044 (0.008)c 17 0.071 (0.011)a 0.073 (0.012)b 0.078 (0.012)c

Medium 19 0.059 (0.009) 0.074 (0.011) 0.076 (0.009) 17 0.081 (0.011) 0.094 (0.016) 0.092 (0.014)

High 19 0.062 (0.007) 0.077 (0.011) 0.077 (0.012) 17 0.074 (0.011) 0.093 (0.013) 0.087 (0.011)

NIR

Low 19 0.046 (0.010) 0.048 (0.008) 0.047 (0.008) 18 0.057 (0.009) 0.056 (0.010) 0.059 (0.012)

Medium 19 0.048 (0.013) 0.055 (0.012) 0.048 (0.010) 18 0.067 (0.016) 0.067 (0.015) 0.057 (0.015)

High 19 0.066 (0.010) 0.072 (0.012) 0.068 (0.014) 18 0.070 (0.010) 0.080 (0.013) 0.072 (0.011)

VDR

Low 20 0.078 (0.010) 0.079 (0.009) 0.073 (0.009) 21 0.071 (0.008) 0.076 (0.008) 0.067 (0.006)

Medium 20 0.067 (0.007) 0.072 (0.008) 0.072 (0.010) 21 0.086 (0.010) 0.091 (0.008) 0.086 (0.008)

High 20 0.089 (0.014) 0.097 (0.017) 0.087 (0.015) 21 0.129 (0.019) 0.130 (0.019) 0.122 (0.021)
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discovered a positive influence of the interventions on spatial skills, which include spatial reasoning13. Studies, 
where CT was measured directly (e.g. using a CT test), also found this connection in both adults20 and children23. 
Román-González et al.23 found a relationship between CT and spatial ability, but no relationship between CT 
and numerical ability. Boom et al.20, detected a high correlation between college students’ CT skills, assessed 
by items of the Bebras challenge, and FIR, as assessed by a similar test as the one we used in the present study. 
Román-González et al.23 demonstrated that both reasoning and spatial abilities were significant predictors of 
good performance in their CT test for Spanish school students (grade 5 to 10).

Both FIR and NIR are tests on inductive reasoning and, thus, the difference between the two tests is that only 
NIR requires numerical processing, which is not assumed to be a part of CT3. Therefore, the distinction between 
CT and numerical abilities3,14,23 might explain why programmers outperformed non-programmers in FIR, while 
performing equally well in NIR. Similarly, verbal processing is important in VDR80–82, which does not seem to 
be highly interrelated with programming and related CT skills22,23.

Differences in mental strategies.  The analysis of the mental strategies reported by our participants to 
solve the reasoning tasks support that, too. When comparing the mental strategies reported by our participants 
to solve the FIR and the NIR items, it seems as if the NIR items are primarily solved by applying basic mathemat-
ical operations, while solving the FIR items required more the use of many different rules (number-, position-, 
shape-, rotation of objects, etc.), algorithmic thinking (e.g., if–then operations), and pattern recognition, which 
is comparable to mental processes involved in programming83. Our results indicate that the ability of figural rea-
soning is closely related to programming experience and, thus, could be a fundamental component of CT skills, 
which are required for programming14,23,84.

Programmers and non-programmers reported comparable mental strategies to solve the three reasoning tasks. 
However, the report of a strategy does not reveal anything about its quality or effective usage.

Differences in brain activity.  Only programmers showed differences in brain activity between the three 
complexity levels of the FIR task. Programmers showed decreases in brain activity with decreases in task com-
plexity. This was indicated by a lower alpha ERD in low complex tasks as compared to medium and highly 
complex FIR tasks and a lower alpha ERD in medium compared to highly complex FIR tasks. No such com-
plexity-specific differences were found in non-programmers. Hence, the superior behavioral performance in the 
FIR task in programmers compared to non-programmers goes along with a more efficient allocation of neural 
processing. Programmers seem to need less neural resources to solve the easier FIR tasks while the non-pro-
grammers are already more strongly activated during the easy FIR tasks, although no differences between groups 
were present in behavioral measurements. Similar results have already been observed in earlier studies35,85. Dop-
pelmayr et al.85, for instance, compared students regarding their brain activity while working on the RAVEN test, 
which is similar to FIR in the present study. Based on their performance in the test, students were divided into 
two groups (higher IQ and lower IQ). While the group with higher IQ showed significantly less upper alpha ERD 
in easy tasks, no group difference was observed in more difficult tasks. These results were found in several other 
studies included in a comprehensive review by Neubauer and Fink35. Usually, in these studies the results were 
explained in such a way that better performing individuals are able to increase brain activation with increasing 
task demands and are willing to invest more effort in complex tasks, being aware that they could solve them35,85. 
Our results are in line with the neural efficiency theory that individuals with higher cognitive skills show a less 
pronounced or more specific brain activation during task performance30,31,33,34,45,86. Neubauer et al.35,77,87 also 
mentioned that neural efficiency has been most consistently found during reasoning and figural-spatial informa-
tion processing, which might explain why we have only found indicators for neural efficiency in the FIR but not 
in the NIR or VDR task35,77,87.

A more efficient neural processing in programmers might be a sign that programmers showed a stronger 
involvement of automatic, capacity-free type I cognitive processes, especially in easy FIR tasks, while non-
programmers activated more cognitive-demanding type II processes leading to a stronger brain activation. 
Hence, programmers might have been more likely to process simple patterns and did not need extensive logi-
cal reasoning to decide upon the correct answer in easy FIR tasks. The lower brain activation in programmers 
during easy FIR tasks might be a sign for the use of more efficient brain pathways, which the non-programmers 
might also develop with increasing programming experience. However, our results support the assumption of 
a dual-process model of reasoning in which programming experience might lead to a better balance between 
executive and associative processes38,39,42.

An additional discussion of further EEG results can be found in Supplementary Material E.

Differences in brain connectivity.  The results of the connectivity analysis also indicate a more efficient 
neural processing during figural reasoning in programmers than in non-programmers. Although the interac-
tion effect Group*Complexity was statistically non-significant, we found a trend towards programmers showing 
lower alpha coherence during easier figural reasoning tasks than non-programmers. This might be a further 
sign for a higher neural efficiency in programmers than in non-programmers. Programmers seem to need less 
neural resources as indicated by a reduced fronto-parietal brain connectivity than non-programmers in easier 
tasks with the same behavioral performance. Our finding of an involvement of a fronto-parietal network in 
figural reasoning tasks is in line with prior findings88–90. Generally, it is assumed that the prefrontal cortex exerts 
supervisory control over posterior parietal regions91. A higher fronto-parietal connectivity in non-programmers 
when solving reasoning tasks might indicate that frontal areas exerted a stronger supervisory control (type II 
processes) over parietal areas during this task, while a lower fronto-parietal connectivity in programmers might 
indicate that posterior systems operated more automatically without the need of frontal executive control in 
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this group, supporting the assumption that programmers show a stronger involvement of type I cognitive con-
trol processes during reasoning41,46,89,91. In contrast to the present finding, Neubauer and Fink35 found a higher 
functional brain connectivity in higher intelligent individuals than in lower intelligent individuals. However, 
Neubauer and Fink35 used another measure of brain connectivity, namely the phase locking value PVL (magni-
tude squared coherence). The PVL is a non-linear measure of phase synchronization independent of the signal 
amplitude. The magnitude-squared coherence is a linear method incorporating phase and amplitude informa-
tion. Linear and non-linear measures provide different, but complementary information92. Therefore, the results 
of the present study and the study by Neubauer and Fink35 are not directly comparable. The results of the connec-
tivity analysis have to be interpreted with caution, since the ANCOVA revealed no significant interaction effect. 
However, the results of the post-hoc t-tests point to a more efficient brain connectivity that is adapting with task 
complexity in programmers than in non-programmers.

Both groups showed an increase in alpha and theta coherence with increasing task complexity. Hence, a 
stronger functional fronto-parietal connectivity was observed in more difficult than in less difficult figural rea-
soning tasks. This indicates that with increasing task complexity, frontal areas need to exert stronger supervi-
sory control over parietal areas89,91. Prior studies also showed a lower brain connectivity in easier than in more 
complex tasks36,37.

For theta ERD/S and theta coherence, no meaningful group differences were observed (see Supplementary 
Material C & D). Prior EEG studies that investigated neural efficiency effects also primarily report on effects in 
the alpha frequency range and not in theta32–35,44,45,77,87,93.

Limitations and conclusions.  We found evidence for stronger neural efficiency probably due to a stronger 
involvement of automatic, capacity-free type I cognitive control processes in individuals with programming 
experience than in non-programmers. We assume that programming requires CT skills. Behavioral and neural 
differences between groups were found only in figural but not in numerical or verbal reasoning tasks. This indi-
cates that programming skills are mainly associated with mental processes involved in figural reasoning but not 
in numerical reasoning or verbal reasoning. Results of the verbal strategies reported to solve the specific reason-
ing tasks support that, too.

One limitation of the present study is that we did not assess CT directly using CT tasks. However, due to the 
lack of a widely accepted definition of CT and the resulting shortage of standardized assessment tools3,94, we 
decided to compare between individuals with and without considerable programming experiences. According 
to previous literature, programming experience is a strong indicator for CT3,13,95, although programming and 
CT is not equivalent (i.e. CT is assumed to exceed programming)3,10,11. We cannot draw any conclusions about 
neural underpinnings of CT directly based on the present data.

Since we compared participants with and without considerable programming experience, the observed group 
differences might be attributed to differences in programming experience. Nevertheless, future studies might 
consider comparing experts and novices, for example, students from higher versus lower semesters of the same 
study course, or comparing individuals in their behavioral performance and neural processing before and after 
acquiring programming experience.

Another point is that we did not directly test participants’ programming skills, but assessed the amount of pro-
gramming experience by self-estimation ratings13,48,96. However, there is evidence that programming experience 
can be reliably assessed using such self-estimation ratings48. Additionally, given the high amount of program-
ming experience of the programmer group and the lack of programming experience in non-programmers, it is 
reasonable to assume that both groups differed considerably concerning their programming skills.

For the analysis of the EEG data, we only included correctly answered items. Hence, especially for the analysis 
of medium and highly complex FIR items, less trials were included in the EEG analysis for non-programmers 
than for programmers. This might lead to differences in measurement precision between groups. However, sig-
nificant differences in alpha ERD were observed within the programmer group across complexity levels, where 
the difference in the amount of included trials was not so strong. Additionally, it cannot be assumed that items 
were processed properly if they were not answered correctly. Therefore, we decided to report only on the EEG 
results of correctly answered items in the present study.

Another limitation of the present study might be the sample size. With the present design, only large effects 
of f > 0.40 can be revealed. However, the present sample size is comparable to the sample size of previous EEG 
studies that investigated neural efficiency during cognitive tasks reporting on large effects, too (e.g.,33,47,87,93).

To conclude, the present study provides further evidence that individuals with programming experience 
might develop a form of CT, which they can apply on complex problem-solving tasks such as reasoning tests. 
Since CT is applied in programming, this could provide important information about the concept of CT, which 
is regarded as a fundamental skill of the twenty-first century3,13–15.

Data availability
Data that support the findings of this study are available on request from the corresponding author (S.E.K.) after 
contacting the Ethics Committee of the University of Graz (ethikkommission@uni-graz.at) for researchers who 
meet the criteria for access to confidential data. These ethical restrictions prohibit the authors from making the 
data set publicly available.
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