
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:13456  | https://doi.org/10.1038/s41598-020-70320-7

www.nature.com/scientificreports

Dimension reduction 
of thermoelectric properties 
using barycentric polynomial 
interpolation at Chebyshev nodes
Jaywan Chung*, Byungki Ryu & SuDong Park

The thermoelectric properties (TEPs), consisting of Seebeck coefficient, electrical resistivity and 
thermal conductivity, are infinite-dimensional vectors because they depend on temperature. 
Accordingly, a projection of them into a finite-dimensional space is inevitable for use in computers. 
In this paper, as a dimension reduction method, we validate the use of high-order polynomial 
interpolation of TEPs at Chebyshev nodes of the second kind. To avoid the numerical instability of high 
order Lagrange polynomial interpolation, we use the barycentric formula. The numerical tests on 276 
sets of published TEPs show at least 8 nodes are recommended to preserve the positivity of electrical 
resistivity and thermal conductivity. With 11 nodes, the interpolation causes about 2% error in TEPs 
and only 0.4% error in thermoelectric generator module performance. The robustness of our method 
against noise in TEPs is also tested; as the relative error caused by the interpolation of TEPs is almost 
the same as the relative size of noise, the interpolation does not cause unnecessarily high oscillation 
at unsampled points. The accuracy and robustness of the interpolation indicate digitizing infinite-
dimensional univariate material data is practicable with tens or less data points. Furthermore, since a 
large interpolation error comes from a drastic change of data, the interpolation can be used to detect 
an anomaly such as a phase transition.

A relationship between two physical properties is usually represented by a function of a real variable. If an ana-
lytic formula of the function is unavailable, the relationship cannot be completely described by a finite number 
of values since the function is an infinite-dimensional vector. Sharing the relationship for use in computers is 
also demanding because computers can handle only a finite number of values. The best remaining option is 
to project the infinite-dimensional data into a finite-dimensional space, and recover the data. As an example, 
physical properties from observations are given only at finite data points, and at other infinite data points, a 
presumption is made. The physical properties are often estimated by regression or linear interpolation. But 
regression does not preserve the observed data since it is a compromise between a regression model and the 
observed data. Furthermore, achieving high accuracy by regression is difficult because it requires the correct 
choice of a regression model. If the observed data is unreliable, regression may be preferable because a regression 
model alleviates anomalies. But here we assume the observed data is reliable and valuable. This is particularly 
true when the data is obtained from numerical simulations. On the other hand, linear interpolation is a simple 
method to find a curve preserving the observed data, but the curve is no longer differentiable. If one demands 
a smooth curve preserving the observed data, another approach is necessary. In this paper, we demonstrate an 
interpolation method to reconstruct a smooth curve from a finite number of data points, exemplified by ther-
moelectric material properties.

The thermoelectric effect1, a direct and reversible energy conversion between electricity and heat, is governed 
by three thermoelectric material properties (TEPs): Seebeck coefficient α , electrical resistivity ρ , and thermal 
conductivity κ . The performance parameters of thermoelectric power generation modules such as power out-
put and efficiency are numerically computable with a given set of TEPs2. However, since all the TEPs depend 
on temperature T, they are infinite-dimensional vectors as functions of a real variable T :α = α(T), ρ = ρ(T) , 
and κ = κ(T) . The infinite dimensionality of the TEPs hinders the numerical computations since computers 
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can accept only a finite number of values as input. Therefore it is unavoidable to describe the TEPs with a finite 
number of values, i.e., to project the infinite-dimensional material properties into a finite-dimensional space 
and reconstruct them.

One way to reduce the dimension is to extract TEP values at a finite number of temperature values. Then the 
full TEP curves are reconstructed by interpolation which preserves the raw data. Suppose n+ 1 sample values 
fj , j = 0, 1, . . . , n, of a TEP are extracted at n+ 1 distinct temperature values Tj , j = 0, 1, . . . , n where Tj ’s are 
strictly increasing: T0 < T1 < · · · < Tn . Among the many interpolation methods, here we focus on polynomial 
interpolation because it is computationally cheap, and the derivatives and integrals of polynomials are directly 
obtainable. The ease of differentiation can help to calculate significant transport properties such as the effective 
masses of electrons and holes. A well-known formula for polynomial interpolation is the Lagrange formula:

where ℓj is the Lagrange polynomial

which satisfies ℓj(Tj) = 1 and ℓj(Tk) = 0 for j  = k . The subscript n of the pn(T) denotes the degree of the 
polynomial.

A popular choice of Tj is equidistant nodes:

However, the polynomial interpolation at equidistant nodes generates superfluous oscillations near the bound-
ary of the interval [T0,Tn] for large n’s and even diverges as n → ∞ , as Runge3 first proved with the function 
f (x) = (1+ x2)−1 , x ∈ [−5, 5] . The Runge’s phenomenon arises naturally for many continuous curves. As an 
example, consider a Ag-doped Mg2Si0.6Ge0.4 thermoelectric material in4. The top of Fig. 1 shows the polynomial 
interpolation of the TEPs highly deviates from the exact curve near the boundaries of the temperature intervals.

To alleviate the Runge’s phenomenon, the choice of sample nodes Tj is critical; the density of sample points 
should follow an asymptotic density proportional to (1− x2)−1/2 when the interval of x is [−1, 1] . Hence the 
density should be higher near the boundaries of the interval than the inside. One of such a choice is Chebyshev 
nodes of the second kind:

A mathematical theory5 shows the Runge’s phenomenon would not be severe under the use of the Chebyshev 
nodes. The bottom of Fig. 1 shows that the polynomial interpolation at the Chebyshev nodes gives a substantially 
better result than the top of Fig. 1, overcoming the Runge’s phenomenon.

But still there is a computational issue in the Lagrange formula. When n is large, the direct computation of 
the Lagrange formula (1) is numerically unstable due to the high degree of the Lagrange polynomials (2); the 
numerator of ℓj(T) essentially contains the Tn term so even with a moderate T, the numerator becomes too large 
to evaluate for large n. We use the barycentric formula of polynomial interpolation6,7 as a numerically stable 
algorithm.

In this paper, using experimental thermoelectric data, we validate the use of the barycentric polynomial 
interpolation at the Chebyshev nodes of the second kind as an accurate dimension reduction method for ther-
moelectric material property curves. The interpolation is tested for 276 sets of TEPs acquired from published 
papers. Information on the TEP dataset can be found in Supplementary Information (SI). In the following section, 
the barycentric formula and its derivation are given. In subsequent sections, the accuracy of the interpolation on 
TEPs and module performance (figure of merit zT, power density, and efficiency) is studied. Then the effect of 
noise on the accuracy is tested. We conclude that the interpolation is accurate and robust for continuous TEPs, 
allowing its further application into various curves of scientific data.

Methods
Barycentric formula of polynomial interpolation.  Since the barycentric formula has not been 
emphasized in elementary numerical analysis, here we include its derivation by following8. Let us define 
ℓ(T) :=

∏n
k=0(T − Tk) and the barycentric weights by

Then obviously ℓj(T) = ℓ(T)
wj

T−Tj
 from (2). Hence from the Lagrange formula (1) we have
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If the constant function 1 is interpolated, all the fj ’s are 1 and the right-hand side of (5) should be 1. Hence the 
modified Lagrange formula (5) yields

Inserting this relation into (5), we have the barycentric formula:

Since the numerator and denominator in (6) have the same barycentric weights wj , any scaling of (4) can be used 

instead. For equidistant nodes, the barycentric weights can be explicitly computed by wj = (−1)j
(

n
j

)

 with a 

proper scaling8, where 
(

n
j

)

 is the binomial coefficient. For the Chebyshev nodes (3),

with a proper scaling9. This simplicity of wj ’s makes the choice of the Chebyshev nodes (3) particularly intrigu-
ing among other choices of nodes. The barycentric polynomial interpolation (6) with (7) is explicit, hence its 
computational cost is cheap.

Due to the singular term 1/(T − Tj) in (6), the barycentric formula (6) is not defined at T = Tj and need to 
be specially treated as the sample value fj . However, when T ≃ Tj , because the numerator and the denominator 
have the same singular terms 1/(T − Tj) , the inaccuracies due to the singular terms may cancel out8. If we use 

1 = ℓ(T)

n
∑

j=0

wj

T − Tj
.

(6)pn(T) =

n
∑

j=0

wj

T − Tj
fj

n
∑

j=0

wj

T − Tj

.

(7)wj =

{

(−1)j 12 if j = 0 or j = n,
(−1)j otherwise,

Figure 1.   The polynomial interpolation of a set of TEPs in4 at (top) equidistant nodes and (bottom) Chebyshev 
nodes: (left) Seebeck coefficient α(T) , (center) electrical resistivity ρ(T) , (right) thermal conductivity κ(T) . The 
black dots denote the raw data points. The exact curve is assumed to be a quadratic spline for Seebeck coefficient 
and a linear spline for electrical resistivity and thermal conductivity. The green dots (the red dots) denote data 
points at 13 equidistant nodes (Chebyshev nodes) resampled from the exact curve.
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the Chebyshev nodes (3), the barycentric formula is indeed numerically forward stable10 and no severe inac-
curacy arises at T ≃ Tj.

The derivative of the barycentric formula (6) can be written in the same form. Using the barycentric repre-
sentation of ℓj(T) , we can show8 that

From the Lagrange formula (1), p′n(Ti) =
∑n

j=0 fjℓ
′
j(Ti) hence

Considering the p′n(Ti) above as a new sample value at Ti , we have the barycentric formula of p′n(T) just replac-
ing fi in (6) by p′n(Ti) in (8):

Results
Accuracy of interpolation.  We test the barycentric polynomial interpolation (6) at the Chebyshev nodes 
(3) by reconstructing 276 sets of TEPs from published papers. The list of the papers are given in the SI. The TEP 
dataset was previously used to validate a theory of thermoelectric conversion efficiency in11,12.

To assess the accuracy of interpolating curves, an exact curve should be known but this is not possible since 
the determination of the exact curve requires an infinite (uncountable) number of measurements. Hence we 
assume that Seebeck coefficient curve α(T) is given by a second-order spline (a spline is a piecewise polynomial; 
see, e.g.,13), and electrical resistivity ρ(T) and thermal conductivity κ(T) curves are given by first-order splines 
(i.e., piecewise linear curves). With this assumption, only one exact curve is obtained for each TEP from the raw 
data points. We use a second-order spline for α because our evaluation of thermoelectric module performance 
requires the temperature derivative of Seebeck coefficient α′(T) = dα

dT (T) ; this point will be clear in the next sec-
tion. We use first-order splines for ρ and κ to secure the strict positivity of ρ and κ ; higher-order splines can give 
unphysical properties of zero or negative ρ and κ due to superfluous oscillations. Also note that the choice of the 
piecewise linear exact curve makes polynomial interpolation even harder, compared to the choice of higher-order 
splines; it would not be an easy task for smooth polynomials to imitate non-differentiable piecewise linear curves.

The top of Fig. 2 shows the superiority of Chebyshev nodes over equidistant nodes. In the figure, the relative 
error is measured by the L1-norm:

where f is an exact function and f̂  is an interpolating function. As the number of nodes n increases, the error 
of the interpolation at Chebyshev nodes consistently decreases. With 11 Chebyshev nodes one may expect 
relative L1-norm errors of 0.5% for α and κ , and 1% for ρ ; see the bottom of Fig. 2. Meanwhile, the error of the 
interpolation at equidistant nodes significantly increases for large n’s: the error is at the minimum with 7 nodes 
and exceeds 6% with 16 nodes.

As shown in the top of Fig. 3, the superiority of Chebyshev nodes is more apparent if the relative L∞-norm

is considered. The error for equidistant nodes grows serious and exceeds 50% with 16 nodes, while the error for 
Chebyshev nodes consistently decreases. With 11 Chebyshev nodes, one may expect relative L∞-norm errors of 
2% for α and κ , and 2.5% for ρ , as shown in the bottom of Fig. 3.

Accuracy of module performance.  Here we examine how much error in performance of thermoelectric 
modules is caused by the polynomial interpolation of α(T) , ρ(T) and κ(T) . We consider a single-material single-
leg thermoelectric power generation module with the length L of 1mm and cross-sectional area A of 1mm2 . 
Then the temperature distribution T(x) inside the module with a spatial coordinate x ∈ [0, L] is given by the fol-
lowing second-order ordinary differential equation called the thermoelectric equation (for derivation, refer to2):

ℓ′j(Ti) =
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where J is a given electric current density: J = I/A for a given electric current I. We assume the thermoelectric 
module is under fixed temperatures at the boundaries: T(0) = Th and T(L) = Tc . The hot-side temperature Th 
and the cold-side temperature Tc are chosen as the maximum and minimum temperature values in the TEP data 
where all the α(T), ρ(T) and κ(T) are available. As before, the exact curves are assumed to be a second-order 
spline for α(T) , and first-order splines for ρ(T) and κ(T) . We avoided using a first-order spline for α(T) because 
the thermoelectric equation (9) contains the derivative of α(T) ; if α(T) is a first-order spline, then its derivative 
is discontinuous so the computation of a numerical solution of (9) becomes difficult.

The power P generated by the thermoelectric module is given by

where the VOC is the open-circuit voltage and R is the electrical resistance inside the module: VOC =
∫ Th
Tc

α(T) dT 
and R = 1

A

∫ L
0 ρ(T(x)) dx . The energy conversion efficiency of the module is given by

Since the power and the efficiency depend on the given electric current I, we can maximize the power or efficiency 
by choosing a suitable I. Such maximum values are referred as the maximum power and maximum efficiency. 
Another popular performance parameter is the thermoelectric figure of merit zT. Here the z is defined by

The zTm := z Th+Tc
2  is proportional to the efficiency for temperature-independent TEPs14. Although the propor-

tional relation is no longer valid for temperature-dependent TEPs11,12,15–17, the zT has been widely used to assess 
thermoelectric materials due to the conciseness of the formula. Because the zT depends on T, the maximum 
value of zT over T ∈ [Tc ,Th] is often used for material evalulation.

(9)
d

dx

(

− κ(T)
dT

dx

)

= ρ(T)J2 −
dα

dT
(T)T

dT

dx
J ,

P = I(VOC − IR)

η =
P

−κ(Th)A
dT
dx (0)+ Iα(Th)Th

.

(10)z(T) =
α2(T)

ρ(T)κ(T)
.

Figure 2.   The mean relative L1-norm error arising from the barycentric polynomial interpolation of TEPs, 
averaged over 276 TEPs. The interpolated TEP curves are compared to the exact TEP curves. (top) Chebyshev 
nodes vs. equidistant nodes, (bottom) Chebyshev-node case only, with error bars. The error bars indicate the 
95% confidence intervals (CIs) for population mean. The CIs for equidistant nodes are omitted here and given in 
the SI because they are too large to draw.
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Here we consider three performance parameters of thermoelectric power generation modules: the maximum 
power density P/A, maximum efficiency η , and maximum zT. The errors in those parameters, caused by the inter-
polation, are given in Fig. 4. In the figure, 8 or more nodes are considered because fewer nodes did not guarantee 
the positivity of ρ(T) for some of 276 TEPs. At least 8 nodes are recommended to secure the strict positivity of 
ρ(T) and κ(T) . With 11 Chebyshev nodes, one may expect the relative error of 0.4% for the maximum power 
density, maximum efficiency, and the corresponding electric currents where the maximum values are attained. 
The low error is in accordance with the L1-norm error in the interpolation of TEPs. This is not surprising because 

Figure 3.   The mean relative L∞-norm error in the barycentric polynomial interpolation of TEPs, averaged over 
276 TEPs. (top) Chebyshev nodes vs. equidistant nodes, (bottom) Chebyshev-node case only, with error bars. 
The error bars indicate the 95% CIs for population mean. The omitted CIs for equidistant nodes are given in the 
SI.

Figure 4.   The mean relative error in three parameters of module performance, averaged over 276 TEPs: 
(left) maximum power density P/A and the corresponding electric current I where the maximum is attained, 
(center) maximum efficiency η and the corresponding electric current I where the maximum is attained, (right) 
maximum zT and the corresponding temperature T where the maximum is attained. The error bars indicate the 
95% CIs for population mean.
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the solution T(x) of (9) is mainly affected by integrated quantities of TEPs rather than the TEP themselves; refer 
to an integral formulation of the thermoelectric equation in11,12,15. On the contrary, the errors in the maximum 
zT and the corresponding T show a higher error of 1%. Since the zT depends on the TEPs directly, the error is 
in accordance with the L∞-norm error in the interpolation of TEPs.

Robustness on noise.  We have assumed so far the values extracted at Chebyshev nodes are exact. If there 
is noise in the sampling, how much the accuracy of the interpolation is affected? To assess the robustness on the 
noise, we add random noise on the extracted value in (6) by replacing fj with

where U(a, b) is the uniform random variable of which probability density function is given by fU (x) = 1
b−a if 

x ∈ (a, b) and fU (x) ≡ 0 otherwise. Let us call this process p% noise for convenience.
The Fig. 5 shows the error caused by the interpolation of TEPs linearly increases with the degree of noise. 

The percentage of the error is almost the same as the percentage of noise. This implies the interpolation does not 
cause unnecessarily high oscillation at unsampled points even there is sampling noise. A large number of nodes 
is slightly detrimental when there is a high degree of noise. This is because a high order polynomial needlessly 
struggles for interpolating the noise-added curves. But such degradation due to the choice of the number of 
nodes is less than 1%.

The Fig. 6 shows similar, linearly increasing error trends for module performance. The result is better for 
maximum power density and maximum efficiency; the percentage of error is below half of the percentage of 
noise. For example, with 11 Chebyshev nodes, the average relative error in maximum power density and maxi-
mum efficiency is below 2% under 5% noise. On the other hand, the result for the maximum zT is worse; the 
percentage of error is about one and a half of the percentage of noise. Also note that the error trends for the 
maximum zT are only valid when the interpolation preserves the positivity of ρ and κ . If it does not due to the 
noise, the error soars because ρ × κ is the denominator of z as in (10). But negative ρ and κ are so unphysical 
and conspicuous that one would fix them by resampling. For that reason, we deliberately avoided such negative 
ρ and κ cases in the numerical simulation.

Physical implication of small and large interpolation error cases.  We have verified that tens or less 
Chebyshev nodes provide an accurate polynomial interpolation on average. But even a smaller number of nodes 
is enough for many TEP curves. For example, with 7 nodes, 45% of the interpolation results has less than 1.5% 
error in the relative L∞-norm, and 80% of the results has less than 4.8% error (see Table S17 in SI). Let us call 
such well-interpolated curves normal and the other curves abnormal.

As an example of a normal curve, Fig. 7 shows that the nanostructured Bi-Sb-Te bulk alloys18 have slowly 
varying behavior of measured TEP values in the observed temperature range smaller than 550K. The electron 
and phonon Boltzmann transport equations (BTE) with the relaxation time approximation (RTA) within first-
principles calculations19–21 may predict the TEP curves of this material; refer to SI for the details of the method. 
The predicted curves in Fig. 7 not only follow the variation on temperature but also have a reliable size of TEP 
values. Within this semi-classical theory, the electron and phonon quasiparticles are responsible for the charge 
and heat transport in crystalline solids 22. Within the RTA, the interaction between fundamental particles and 
various imperfections lead to the particle scattering and enhanced resistivity23–25. Hence, when there is no phase 
transition by temperature change, the thermoelectric properties predicted by the BTE with RTA are smooth 
functions of temperature T because the charge and heat carrier densities as well as the relaxation time are smooth 
functions of T. The strong agreement between the measured and computed TEPs suggests that the nanostructured 
Bi-Sb-Te bulk alloys in18 have no material phase transition and their TEP curves are smooth.

fj + U
(

− fj ×
p

100
,+fj ×

p

100

)

,

Figure 5.   The mean relative L∞-norm error caused by the interpolation of noise-added TEPs, compared to the 
exact TEPs. The L∞-norm errors are averaged over 276 TEPs having noise in sampling at Chebyshev nodes. The 
error bars indicate the 95% CIs for population mean.
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On the other hand, abnormal TEP curves have a large interpolation error with a small number of nodes 
because they undergo a drastic change with temperature. As a phase transition can be manifested through a 
drastic change or a discontinuity in TEP curves, temperature points where a large interpolation error occurs 
can be a phase transition temperature. Using this idea, we search for large interpolation error points to detect 
phase transition behaviors. Figure 8(a)–(c) show three examples of phase transition successfully detected by this 
method without using any domain knowledge. The detailed algorithm is given in SI.

In contrast to Bi2Te3-based thermoelectric materials, other tellurides can have phase transitions. One case is 
the Ag2Te-based materials: at room temperature Ag2 Te has a low symmetric monoclinic phase and it transforms 
into a high temperature fcc phase above 417 K26. Consistent with this fact, our algorithm detects an abnormal 
temperature for Ag2Se0.5Te0.527 near 380 to 400 K; see Fig. 8(a). The drastic change of the TEP curves occurs in a 

Figure 6.   The mean relative error in module performance vs. degree of noise. The errors are averaged over 276 
TEPs having noise in sampling at Chebyshev nodes. The error bars indicate the 95% CIs for population mean.

Figure 7.   The 7-Chebyshev-node interpolation of measured and simulated TEPs for the nanostructured 
Bi-Sb-Te bulk alloys in18: (left) Seebeck coefficient, (center) electrical resistivity, (right) thermal conductivity. 
The red dots denote the raw data points in18. The blue dots denote the simulated TEPs using the Boltzmann 
transport equations with the relaxation time approximation within first-principles calculations. Both are well 
interpolated by 7 Chebyshev nodes. The details of the simulation method are given in SI.
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narrow temperature range. It is argued that due to the alloying effect between Ag2Te and Ag2Se , the phase transi-
tion seems to occur gradually in the narrow temperature range from 397 to 424 K28,29. Noteworthily, such phase-
transition-induced abnormal transport behaviors are detected for all Ag2Te-containing materials in our dataset.

Figure 8(b) shows the abnormal transport behavior of Cu2Se30 known to exhibit a continuous phase transition. 
The continuous change of lattice angle in the temperature range from 340 to 410 K was confirmed by HTXRD 
data30. The key temperature points are well detected by our algorithm.

(a) Ag2Se0.5Te0.527

(b) Cu2Se30

(c) SnSe crystal31

Figure 8.   Examples of abnormal TEP curves in the dataset. As we suspect a phase transition, we assume 
all the exact curves (silver) are piecewise linear. The vertical lines indicate automatically detected abnormal 
temperature points. The dotted vertical lines are where the difference between the exact curve and the 
7-Chebyshev-node polynomial interpolation (dark blue dashed line) is high. The dashed vertical line in (c) is 
where the difference between their derivatives is high. The detailed algorithm is given in SI. By dividing the 
temperature range with the detected temperature points and interpolating on each range, accurate interpolating 
curves (red) are found.
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SnSe is one of the well-known thermoelectric materials having high zT of 2.6 along the b-direction in the 
single crystalline phase31. Figure 8(c) shows our data analysis detects several abnormal temperature points for 
this material. There are two important temperature points, ∼ 600 K and ∼ 800 K, where the slopes of Seebeck 
coefficient and electrical resistivity rapidly change. The detected temperature point in 600–800 K well coincides 
with the range under the thermally activated generation of hole charge carriers in SnSe reported in32. From 
density functional theory calculations, it is shown that the formation of acceptor Sn-vacancy is responsible for 
the increasing electrical conductivity with temperature32: nh = N exp(−Eform/(kT)) where nh is the hole car-
rier density, N is the site density of Sn, and Eform is the defect formation energy of Sn-vacancy. The next critical 
point is about 800 K. The origin of the derivative discontinuity at near T = 800 K is considered to be the phase 
transition from Pnma to Cmcm31,32.

Mathematical interpretation of small and large interpolation error cases.  We have observed that 
many TEP curves are accurately interpolated with even a small number of Chebyshev nodes, and a large inter-
polation may indicate a drastic change in the curves due to a phase transition. There is a mathematical basis for 
why the polynomial interpolation can perform well for many TEPs. For a given continuous function on a closed 
interval, there is a polynomial arbitrarily close to the given function in the L∞-norm, by the Stone-Weierstrass 
theorem (see, e.g., Theorem 7.26 in 33). The issue is to find such a polynomial under a limited number of sam-
pling nodes, and our approach here is the sampling at Chebyshev nodes.

On the other hand, for a discontinuous function, there is no reason for a polynomial interpolation to work. 
Suppose f(T) is a real-valued, (n+ 1)-times continuously differentiable function on a closed interval [T0,Tn] . 
Then by Taylors’ theorem (see, e.g., Theorem 5.15 in 33), the interpolating polynomial pn(T) of f(T) at n+ 1 
nodes {Tj}

n
j=0 satisfies

where ξ(T) ∈ (T0,Tn) is some value depending on T. If {Tj}
n
j=0 is the sequence of Chebyshev nodes of the second 

kind in (3), the normalized variable s := T−T0
Tn−T0

 gives

where f̂ (s) := f (T) and ξ̂ (s) := ξ(T) . The right-hand side shows the error depends on the normalized highest-
order derivative f̂ (n+1) . This explains why a drastically changing or discontinuous curve ruins the interpolation. 
Also note that the error does not depend on the size of the interval Tn − T0 as long as the normalized highest-
order derivative is the same. Hence the error is affected by the oscillation shape of the curves rather than the 
size of the interval. If the function f is continuous, there is a high-order polynomial arbitrary close to the f. As a 
polynomial has a high-order derivative, our Chebyshev-node interpolation becomes close to this polynomial as 
the number of nodes becomes large. Therefore by using more nodes, one can accurately recover the continuous 
function f. But for a discontinuous function, the discontinuity is not treatable with a high-order polynomial.

A simple method to handle a drastically changing or discontinuous curve is to first spot the problematic points 
and to apply our interpolation method in each interval where the curve is continuous and midly changing. Some 
examples of this approach are given in Fig. 8(a)–(c); the interpolation consisting of multiple polynomials (red 
lines) are noticeably improved over the single-polynomial interpolation (dark blue dashed lines). The problematic 
points used there is the previously found abnormal temperature points.

Conclusion
To reduce the infinite dimension of TEPs into a finite dimension, we propose the use of high-order polynomial 
interpolation at Chebyshev nodes of the second kind. To evaluate polynomials in a numerically stable way, the 
barycentric formula is used. The tests on 276 sets of published TEPs show our interpolation method is accurate, 
and robust on noise. For example, with 11 Chebyshev nodes, the error caused by the interpolation is about 2% 
for TEPs and 0.4% for module performance parameters of maximum power density and maximum efficiency. 
Even if there is noise in sampling, the interpolation does not cause any further error beyond the degree of noise.

While a small number of nodes is enough for many TEP curves, drastically changing or discontinuous curves 
can have a high interpolation error. A simple remedy to enhance the accuracy is to confine the temperature range 
to where the set of TEPs is continuous and midly changing. Meanwhile, as the drastic change may indicate a 
phase transition, the interpolation method can be used to detect an unidentified phase transition.

Since our polynomial interpolation method is robust on noise and presumes no physical model, it would 
perform well for various curves other than TEPs. The method projects infinite-dimensional vectors acquired from 
scientific experiments into a finite-dimensional space. Then a smooth, raw-data-preserving curve is efficiently 
constructed using the barycentric formula. Our empirical validation shows that the dimension reduction method 
allows digitizing infinite-dimensional univariate material data, with tens or less data points. Hence the method 
enables using the infinite-dimensional data for material informatics and machine learning.

f (T)− pn(T) =
f (n+1)(ξ(T))

(n+ 1)!

n
∏

j=0

(T − Tj),

f (T)− pn(T) =
f̂ (n+1)(ξ̂ (s))

(n+ 1)!

n
∏

j=0

(

s −
1

2

(

1− cos
jπ

n

))

,
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Computational method
All the numerical computations in this paper are performed using the python programming language (version 
3.6). The thermoelectric equation (9) with the Dirichlet boundary condition is solved by the fourth-order col-
location method implemented in the solve_bvp function34 of SciPy library (version 1.2.1). The maximum 
power density and maximum efficiency are found by the Brent-Dekker optimization method implemented in 
the minimize_scalar function35 of the SciPy library.

Data availability
The data generated during the current study is available in the GitHub repository https​://githu​b.com/jaywa​
n-chung​/tep-cheby​shev. More information on the TEP dataset is given in SI. The numeric values of the confidence 
intervals and standard deviations in Fig. 2, 3, 4, 5 and 6 are given in SI.

Code availability
The code used to generate data and figures in this paper is available in the GitHub repository https​://githu​b.com/
jaywa​n-chung​/tep-cheby​shev.
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