
1

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:13378  | https://doi.org/10.1038/s41598-020-70125-8

www.nature.com/scientificreports

Development and validation 
of a 1‑year survival prognosis 
estimation model for Amyotrophic 
Lateral Sclerosis using manifold 
learning algorithm UMAP
Vincent Grollemund1,2*, Gaétan Le Chat2, Marie‑Sonia Secchi‑Buhour2, François Delbot1,3, 
Jean‑François Pradat‑Peyre1,3, Peter Bede4,5,6 & Pierre‑François Pradat4,5,7

Amyotrophic Lateral Sclerosis (ALS) is an inexorably progressive neurodegenerative condition with no 
effective disease modifying therapies. The development and validation of reliable prognostic models 
is a recognised research priority. We present a prognostic model for survival in ALS where result 
uncertainty is taken into account. Patient data were reduced and projected onto a 2D space using 
Uniform Manifold Approximation and Projection (UMAP), a novel non‑linear dimension reduction 
technique. Information from 5,220 patients was included as development data originating from past 
clinical trials, and real‑world population data as validation data. Predictors included age, gender, 
region of onset, symptom duration, weight at baseline, functional impairment, and estimated rate 
of functional loss. UMAP projection of patients shows an informative 2D data distribution. As limited 
data availability precluded complex model designs, the projection was divided into three zones with 
relevant survival rates. These rates were defined using confidence bounds: high, intermediate, and low 
1‑year survival rates at respectively 90% ( ±4% ), 80% ( ±4% ) and 58% ( ±4% ). Predicted 1‑year survival 
was estimated using zone membership. This approach requires a limited set of features, is easily 
updated, improves with additional patient data, and accounts for results uncertainty.

Amyotrophic Lateral Sclerosis (ALS) is a relentlessly progressive neurodegenerative condition involving both 
upper and lower motor neurons, leading to progressive limb weakness and bulbar dysfunction. Mean survival 
time from disease onset is typically 3 to 5  years1, with death occurring secondary to respiratory failure. The 
disease is characterised by considerable clinical  heterogeneity2 and differences in progression  rate3, with some 
patients surviving 10 years or  more4,5.

From a clinical perspective, accurate prognostic indicators are indispensable for optimising multidisciplinary 
care, planning interventions, advising patients on end-of-life decisions, resource allocation, etc. Disease heteroge-
neity is a recognised barrier to successful clinical trials in  ALS6, and accurate prognosis prediction would improve 
patient stratification. Previous epidemiology studies have identified a number of negative prognostic  indicators7, 
such as older age of onset, bulbar onset, respiratory compromise, cognitive impairment, short symptom onset to 
diagnosis interval, marked functional disability, c9orf72 status, and fast progression  rate8–11. However, individu-
alised prediction is seldom reliable when clinical and demographic variables are considered  alone11. There is a 
growing trend to develop accurate prognostic tools based a combination of prognostic  factors12, using supervised 
machine learning models such as random  forests13, regression  models14, neural networks with random  forests15 
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and boosting  algorithms16. Recently, Westeneng et al.17 presented an externally validated Royston-Parmar regres-
sion prediction model of survival in a large European ALS population.

Unsupervised learning methods provide new modelling opportunities in ALS due to their ability to detect 
data distributions without a firm underlying statistical  hypothesis18,19. Dimension reduction methods project data 
onto a new low-dimensional space and allow interesting data visualisation. A neighbourhood-based approach 
takes full advantage of patient similarity for prognosis modelling and can unravel relevant correlations between 
predictors and outcomes. Uniform Manifold Approximation and Projection (UMAP)20 is a novel method based 
on non-linear dimension reduction which can be readily combined with probability assessments. The main 
objective of our study was to evaluate a UMAP based 1-year survival prediction model in ALS, designed using 
three clinical trial datasets, and validated by a Real-World (RW) dataset. Model performance was compared with 
random forest and logistic regression models. The model is easily updated, works with a limited set of features 
and factors result uncertainty in. Taking advantage of the UMAP projection, other prognosis outcomes and 
different time frames can be explored.

Methods
Patient population.  Validation and test data for this research included a total of 5,393 patients from four 
different datasets, three of which originated from clinical trials. The first dataset, which is referred to as ‘Trophos’, 
was a clinical trial for olesoxime, a drug developed by  Trophos21 which included 512 patients. After excluding 
samples with missing data, 431 patients remained. The second dataset, ‘Exonhit’, was a clinical trial for pen-
toxifylline, a drug produced by Exonhit  Pharma22 which included 400 patients. Given the considerable negative 
effect of the tested treatment on survival time, patients that received the treatment were excluded from outcome 
analysis. Nevertheless, these patients were included in dimension reduction as projection calculation is solely 
based on baseline features. Following the exclusion of incomplete samples and patients having received the treat-
ment, data from 345 patients were included in the dimension reduction phase and 172 patients were retained for 
1-year survival analysis. The third database was ‘PRO-ACT’, funded by the ALS Therapy Alliance and released 
in 2012 as part of the DREAM Phil Bowen ALS prediction Prize4Life competition. PRO-ACT consists of pooled 
data from 16 completed phase II-III clinical trials and one observational  study23. The original sample size was 
10,723, reduced to 3,971 after discarding samples with missing data. The fourth dataset was population-based 
and contained RW patient data. These data were obtained from the database of the Paris tertiary referral cen-
tre for ALS collected between September 1999 and April 2008. The original sample size was 1,377 which was 
reduced to 646 after the removal of incomplete samples. Baseline patient feature distribution for 1-year survival 
analysis is presented for each cohort in Table 1. Additional information on each dataset is provided as supple-
mentary information.

Clinical predictors and outcomes. The primary outcome was 1-year survival. Overall survival (in months), and 
1-year functional loss (using the validated ALS Functional Rating Scale (ALSFRS)) were secondary outcomes. 
Each outcome had a specific data scope: 1-year survival was a binary variable and was predicted for patients 
dying within 12 months or with an available ALSFRS score at t+12 months. 1-year functional loss was predicted 
for patients that survived at t+12 months with an ALSFRS score at that time. Patients who died or had invasive 
ventilation within the first year were assigned an ALSFRS score of 0 at year 1. Overall survival (in months) was 
used for patients when such information was available but provides a limited understanding of true patient sur-
vival given patient monitoring ended at t+12 months for most data.

The choice of predictors was based on feature completeness after database cross-referencing. Predictors 
include gender, region of onset (spinal/bulbar), age, symptom duration, baseline ALSFRS score, baseline weight, 
and estimated functional decline  rate24. The functional decline rate was estimated using the following formula:

with ALSFRSbaseline , the ALSFRS score recorded at baseline, ALSFRSmaximum , the maximum score for the ALSFRS 
(40) and symptom duration , time in months between symptom onset and baseline.

(1)decline rate =
ALSFRSmaximum − ALSFRSbaseline

symptom duration

Table 1.  Predictor distribution per dataset. Numerical predictors are described using mean ± standard 
deviation (range).

Source n
Gender (male/
female)

Onset (spinal/
bulbar) Age (years)

Symptom duration 
(months) Baseline weight (kg)

Baseline ALSFRS 
(score)

Baseline ALSFRS 
decline rate (score/
month)

PRO-ACT 3,971 2,485/1,486 3,117/854 56.2± 11.3 (18:81) 20.8± 12.7 (0.5:140.4) 74.8± 15.8 (30:148.6) 30.1± 5.7 (7:40) −0.61± 0.51 ( −6.09:0)

Trophos 431 277/154 346/85 56.7± 11.1 (26:79) 16.4± 8.0 (5:38) 71.5± 12.7 (41:130) 32.5± 4.1 (16:40) −0.55± 0.39 ( −2.67:0)

Exonhit 172 118/54 129/43 55.6± 12.0 (26.3:77.9) 24.7± 11.9 (5:58) 70.1± 13.8 (45:112) 27.5± 6.4 (10:39) −0.60± 0.40 ( −3.14:−
0.05)

Real world 646 345/301 458/188 62.2± 12.1 (26.3:92.2) 22.1± 21.6 (0:228.5) 70.4± 13.2 (40:140) 28.6± 7.4 (3.5:40) −0.78± 0.65 ( −4.16:0)

Overall 5,220 3,225/1,995 4,050/1,170 57.0± 11.6 (18:92.2) 20.7± 13.9 (0:228.5) 73.8± 15.3 (30:148.6) 30± 5.9 (3.5:40) −0.63± 0.52 ( −6.09:0)
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Table 2 provides an overview of patient outcome feature distribution. Patient survival was on average above 
75% for all datasets, and 1-year average ALSFRS was above 17 for all datasets. Overall patient survival was 
bounded by clinical trial follow up time.

Missing data management.  Missing feature analysis focused solely on baseline predictors and outcomes 
(overall survival, 1-year survival, and 1-year ALSFRS). Table 3 presents missing data ratio per feature for all data-
sets. Features which were not available in all datasets, such as testing and biological lab results, were discarded. 
ALSFRS sub-scores were not recorded for Trophos patients and were discarded as a whole. Outcome features 
can easily be missing due to loss to follow up or death. Features at time t+3 were less available than at baseline. 
Data collection was not disclosed for PRO-ACT data which aggregates multiple clinical trials and this prevented 
the identification of missing data patterns. Due to data collection differences between the cohorts, we did not 
perform missing data imputation and opted for complete case analysis. 

Data  processing.  Pre-processing was limited to predictor normalisation to the 0–1 range. Data trans-
formation was carried out through non-linear dimension reduction, also called manifold learning. The Uni-
form Manifold Approximation and Projection for Dimension Reduction (UMAP)20 method was implemented. 
UMAP works in two steps. First, a compressed embedding of the input space (aka initial patient data) is gen-
erated through topological analysis of the data structure. Subsequently, a low-dimensional (in our case 2D) 
data embedding is created through a cross-entropy optimisation process. UMAP preserves data neighbour-
hoods, distances and density. ‘Development data’ were used to learn a 2D representation of patients. Validation 
data were projected using the learnt mapping. Information on the subject can be found in the supplementary 
information section. Sample size of development data for 1-year survival was 4,574. Functional loss and overall 
survival analyses had lower sample sizes: respectively 4,382, a 4% drop with regards to 1-year survival sample 
size, and 1,612, a 65% drop with regards to 1-year survival. Sample size of validation data for 1-year survival, 
functional loss and overall survival were respectively 646, 541 and 447.

1-year survival rates zones were identified by dividing the UMAP projection space into multiple small square 
cells. A local assessment of the survival rate was calculated for each cell based on the development samples 
belonging to that cell. Confidence bounds were derived at a 95% confidence level using the area sample size and 
the following  formula25:

with α = 1−confidencelevel , zα , the value for 2 normal distribution, P, the outcome probability and N, the sample 
size.

(2)width = 2zα

√

P(1− P)

N

Table 2.  Outcome distribution per dataset. Numerical predictors are described using mean ± standard 
deviation (range).

Source n (1-year survival) Survival rate (%) n (survival) Survival (months) n (1-year ALSFRS)
1-year ALSFRS 
(score)

PRO-ACT 3,971 76 1,434 10± 5 (0:31) 3,789 17± 12 (0:40)

Trophos 431 84 99 11± 4 (3:15) 428 21± 11 (0:38)

Exonhit 172 72 79 10± 5 (1:18) 165 16± 12 (0:39)

Real world 646 67 447 14± 9 (0:41) 543 14± 13 (0:40)

Overall 5,220 75 2,059 11± 6 (0:41) 4,925 17± 12 (0:40)

Table 3.  Missing feature analysis per dataset. Numerical predictors are described using mean ± standard 
deviation (range).

Group n
Survived 
(yes/no)

Gender 
(male/
female)

Onset 
(spinal/
bulbar) Age (years)

Symptom 
duration 
(months)

Baseline 
weight (kg)

Baseline 
ALSFRS 
(score)

Baseline 
ALSFRS 
decline rate 
(score/month)

1-year 
ALSFRS 
(score)

High survival 
rate zone 1,525 1,378/147 1,189/336 1,187/338 54.1± 9.7 (22:78) 16.7± 9.6 

(2.9:59.8)
82.5± 15.1 
(46:148.6)

35.4± 2.2 
(27:40)

−0.34± 0.22 
( −1.46:0)

25.1± 10.6 
(0:40)

Intermediate 
survival rate 
zone

1,524 1,219/305 899/625 1,171/353 56.4± 12.1 (18:81) 21.2± 12.7 
(3.1:140.4)

70.8± 12.5 
(30:122.5)

31.3± 2.2 
(25:39)

−0.56± 0.34 
( −2.38:−0.02)

18.3± 11.1 
(0:39)

Low survival 
rate zone 1,525 892/633 792/733 1,234/291 58.3± 11.6 (25:80) 23.7± 13.5 

(0.5:86.7)
69.6± 15.3 
(36.5:138.9)

23.9± 4.2 
(7:35)

−0.92± 0.63 
( −6.09:−0.15) 9.0± 9.4 (0:37)

Overall 4,574 3,489/1,085 2,880/1,694 3,592/982 56.3± 11.3 (18:81) 20.5± 12.4 
(0.5:140.4)

74.3± 15.5 
(30:148.6)

30.2± 5.6 
(7:40)

−0.61± 0.49 
( −6.09:0)

17.6± 12.3 
(0:40)



4

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:13378  | https://doi.org/10.1038/s41598-020-70125-8

www.nature.com/scientificreports/

Cell sample size directly influenced the cell survival rate. The less populated a cell, the wider the probability 
confidence interval, and the less reliable the analysis of cell membership. Cells were combined to form three 
equally populated zones with sample sizes sufficient to bound survival rates’ confidence intervals. These zones 
were designed to have distinct survival rates. Validation data were projected onto the UMAP projection space to 
check if distribution patterns observed for development data still held. RW patients were then assigned to their 
corresponding survival rate zone. Validation data zone assignment was assessed with regards to actual survival.

The model was compared to logistic regression and random forest models. Models were trained on two dif-
ferent subsets of features: all of the baseline features and specifically age and baseline ALSFRS features. Models 
were trained on development data and tested on validation data. The number of True Positives (TP), False 
Positives (FP), False Negatives (FN) and True Negatives (TN) were reported for each model. The following 
classification metrics were used: accuracy ( TP+TN

TP+TN+FP+FN . ), precision (or positive predictive value = TP
TP+FP . ), 

specificity (or true negative rate, selectivity = TN
TN+FP . ), recall (or sensitivity, true positive rate = TP

TP+FN . ), balanced 
accuracy (average of precision and recall = Precision+Recall

2
 .) and F1-measure (harmonic mean of precision and 

recall = 2 Precision×Recall
Precision+Recall . ). As the model returned a survival probability and not a survival status, the total number 

of survivors could only be approximated. It was calculated by adding up the number of survivors for each zone 
which was based on the total number of patients within that zone and the associated survival rate.

Results
Analysis of patient characteristics—input feature distribution.  Development data were projected 
using UMAP in a 2D space shown in Fig. 1a. Initial plot of data did not show relevant patient stratification as 
all patients were clustered together. Plot analysis helps to identify strong correlations between projection and 
predictors. This was the case for age and baseline ALSFRS scores (Fig. 1d,g respectively) and to a lesser extent 
for symptom duration and estimated ALSFRS decline rate (Fig. 1e,h respectively). Onset, gender, and baseline 
weight did not show a high degree of correlation as demonstrated in Fig. 1b,c,f as feature distribution appeared 
to be random with regards to UMAP projection. Projection data seemed to be independent of cohort member-
ship as patients from each source were evenly distributed in the projection space.

Figure 1.  Predictors: onset (b), sex (c); age (d); symptom duration in month (e); baseline weight in kg (f), 
baseline ALSFRS score (g); and estimated ALSFRS loss rate (h) distribution with regards to UMAP projection 
(a). Each point represents an individual patient. Age ranges between 18 and 81 years old (d), symptom duration 
ranges between 0.5 and 87 months (e), baseline weight ranges between 30 and 130 kg (f), ALSFRS score ranges 
between 0 and 40 (g) and estimated baseline ALSFRS slope ranges between 0.00 and − 1.50 ALSFRS points per 
month (h). Axes are dimensionless and come from UMAP dimension reduction.
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Analysis  of  patient  outcomes—output  feature distribution.  Analysis of UMAP projection with 
regards to outcome variables showed spatial patterns as presented in Fig. 2. Survival in months is shown in 
Fig. 2a. Patients with a longer survival (more than 12 months is referred to as the 13+ on the colour map) tended 
to be located in the upper part of the UMAP projection. 1-year survival led to an uneven patient distribution, as 
shown in Fig. 2b. Patients deceased within the year tended to concentrate in the lower pane of the UMAP pro-
jection which was consistent with the pattern for overall survival. Patients who survived a year tended to spread 
evenly across the entire projection space. Fig. 2c shows that similarly to 1-year survival, the 1-year ALSFRS score 
correlated well with the UMAP projection. ALSFRS score patterns differed slightly from 1-year survival as the 
lower left pane concentrated patients with lowest ALSFRS. Unsurprisingly, the 1-year ALSFRS score, in Fig. 2c, 
correlated strongly with baseline ALSFRS score, in Fig. 1g.

Analysis of projection space segmentation—zone division.  As stated earlier, patients who were not 
alive at year 1 were mainly located in the lower pane of the projection space as seen in Fig. 3a. Dividing the 
projection space in square cells helped to unravel local survival patterns as shown in Fig. 3b. Cells in the lower 
left side of the projection space had survival rates lower than 40% . As average sample size within each cell is 
below 25, confidence intervals were approximately ±30% minimum with survival rate between 10 and 70% . To 
ensure statistical significance, a simple division of the UMAP projection space according to the vertical axis was 
proposed as shown in Fig. 3c. This led to high, intermediate, and low survival rate zones with respectively 90% 
( ±4% ), 8% ( ±4% ) and 58% ( ±4% ) survival rates. Predictors of patient population within each zone are presented 
in Table 4. Baseline features for the intermediate survival rate zone were similar to overall baseline features. 
Baseline features for high and low survival rate zones differed significantly from one another. The former had 
younger patients and patients with higher weight with shorter symptom duration, with less functional disability 
and lower functional loss rate; while the latter had older patients with lower baseline weight and longer symptom 
duration, higher functional loss and functional loss rate.

Novel patient data, provided all baseline features are recorded, can be projected in the reduced UMAP space. 
The corresponding 2D coordinates determine zone membership to one of the three survival rate zones. Zone 
membership and the spatial positioning within the projection space provide a broad estimate of patient 1-year 
survival. Three examples are provided for more details and presented in Fig. 3d:

• Patient A (ID 4922) is a 41-years-old woman with a spinal onset, baseline weight is 84 kg, baseline ALSFRS 
score is 36, symptom duration is estimated at 6.5 months, hence estimated baseline ALSFRS decline rate is 
assessed at − 0.6 ALSFRS points per month. This information is used to compute the spatial coordinates of 

Figure 2.  Outcomes: overall survival (a); 1-year survival (b) and 1-year functional loss (c) distribution with 
regards to UMAP projection in Fig. 1a. Each point represents an individual patient. For overall survival (a), 
survival ranges between 0 and 12 months. 13+ refers to patients whose death date is 13 months or higher. 
ALSFRS score ranges between 0 and 40 (c). For overall survival (a) and 1-year functional loss, the data point 
colour is mapped to a specific time value (for a) or ALSFRS score (for c). Axes are dimensionless and come from 
UMAP dimension reduction.



6

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:13378  | https://doi.org/10.1038/s41598-020-70125-8

www.nature.com/scientificreports/

patient A within the UMAP projection space. Patient’s A spatial coordinates in the UMAP projection space 
are (0.92, 0.79), which fall into the high survival rate zone. Patient A has a resulting 1-year survival rate 
estimate of 90%.

• Patient B (ID 429) is a 57-years-old man with a spinal onset, baseline weight is 71 kg, baseline ALSFRS is 
33, symptom duration is estimated at 13 months, hence baseline estimated ALSFRS decline rate is assessed 
at around − 0.5 ALSFRS points per month. This information is used to compute the spatial coordinates of 
patient B within the UMAP projection space. Patient’s B spatial coordinates in the UMAP projection space 
are (0.46, 0.62) which fall into the intermediate survival rate zone. Patient B has a resulting 1-year survival 
rate estimate of 80%.

• Patient C (ID 2816) is a 78-years-old woman with a spinal onset, baseline weight is 64 kg, baseline ALSFRS 
is 19, symptom duration is estimated at 11 months, hence baseline estimated ALSFRS decline rate is assessed 
at around − 1.8 ALSFRS points per month. This information is used to compute the spatial coordinates of 
patient C within the UMAP projection space. Patient’s C spatial coordinates in the UMAP projection space 
are (0.41, 0.03) which fall into the intermediate survival rate zone. Patient C has a resulting 1-year survival 
rate estimate of 58%.

Subsequent analysis of patients’ A, B and C status after one year are that patient A and B survived a year while 
patient C died within the first year. A refined division of the projection space was also carried out and is presented 
in the supplementary information section.

Analysis  of  the model with  additional  data—external  data  testing.  The prognosis model was 
assessed using external data. Patient distribution within the projection space was examined with regards to out-
come variables. The different trends for outcome variables identified in Fig. 2 remained valid with patient distri-
bution being uneven for patients who die within one year. Patients with a shorter survival tended to concentrate 
in the lower pane of the projection, as shown in Fig. 4a, as did patients who do not reach the 1-year milestone in 
Fig. 4b. Patients were also distributed similarly based with regards to the functional loss pattern identified earlier. 
Patients were distributed according to their impairment after one year of follow up. Patients suffering from a 
stronger functional loss were located in the lower-left part of the projection, as presented in Fig. 4c. Additional 
information on differences between development and validation data using the Kullback-Leibler divergence and 
complementary figures on distribution comparisons are presented in the supplementary information section.

Figure 3.  One-year survival projection space segmentation: initial 1-year survival distribution (a), projection 
space division using square cells and survival probability estimation per cell (b), resulting projection space 
division using cell survival probability distribution (c), novel patient data projection (d). Each point represents 
an individual patient. The projection space is divided in a square grid (b) with each cell having a specific survival 
rate computed based on patients belonging to that cell (which have either survived or deceased within the 
year). The overall space is divided in three zones (c); the survival rate for each zone is calculated using patients 
belonging to each zone. Novel patient data is projected into the reduced space and prognosis is estimated based 
on projection coordinates (d). Axes are dimensionless and come from UMAP dimension reduction.
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Zone division—external data evaluation.  Patient distribution within the three zones is presented in 
Table 5. 42% of the RW patients went within the low survival rate zone, while 25% go within the high survival 
rate zone, and the 33% remaining to the non-informative intermediate survival rate zone. The overall survival 
rate of the RW patient dataset was 67% . Measured survival rates within the low, intermediate, and high survival 
rate zones were respectively 48% , 76% , and 88% . Patients in the low survival rate group had a poorer survival rate 
than observed with trial data. Adding 646 patients reduced the overall confidence bound for survival relatively 
by 6% (from 2.43% to 2.28%).

The model was compared to logistic regression and random forest models. Results are presented in Table 6. 
90% of the 160 patients associated with the high survival rate zone were labelled as survivors (144). 80% of the 
211 patients belonging to the intermediate survival rate zone were labelled as survivors (159). 58% of the 275 
patients assigned to the low survival rate zone were labelled as survivors (160). Overall 473 patients were pre-
dicted to survive, 173 were predicted to die. 433 patients actually survived and 213 died. Performance assessment 
is approximated based these figures. Hence 433 survivors (TP) and 173 deceased patients (TN) were predicted 
correctly while 40 patients were wrongly labelled as survivors (FP). Our model obtained classification metrics 
higher than the other models’, specifically with regards to the F1-measure and balanced accuracy metric where 
our model reached respectively 96% and 91% scores in opposition to the other models averaging around 50% 
and 65% scores. 

Discussion
Our study demonstrated the utility of UMAP for survival analysis in ALS. We have successfully applied this 
non-linear dimension reduction method to ALS clinical trial data to predict overall survival, 1-year survival 
and 1-year functional loss. Our results showed that limited patient information, collected early in the course of 
the disease, was sufficient to obtain a relevant low-dimensional patient projection with regards to key outcome 
variables (survival and functional loss). These input features correlated with the different outcomes of interest, 
thus explaining the observed distribution patterns. These correlations persisted for external RW patients. One-
year survival patient distribution patterns were used to identify zones with distinct survival rates. We proposed 
a simple 1-year survival estimation model which fared well against the tested machine learning models although 
performance metrics could only be grossly approximated. The benefit of our approach with regards to standard 
machine learning methods is threefold. First, our model is simple; it uses only simple probabilities and readily 
available clinical features. Second, we limit prognosis error by providing a coarse prognosis estimate. Third, our 
model is easily updated and improves with additional data. No learning was required for our model to work 
as UMAP is a dimension reduction method. Given dimension reduction was performed on baseline features, 

Table 4.  Predictor distribution per survival area.

Feature PRO-ACT Exonhit Trophos Real world Overall

Initial sample size (n) 10,723 400 512 1,377 13,012

Gender 0% 0% 0% 0% 0%

Onset 12% 0% 0% 2% 10%

Age 28% 0% 0% 0% 23%

Symptom duration 36% 0% 0% 0% 30%

Baseline weight 39% 3% 1% 3% 33%

Baseline height 38% 0% 100% 3% 35%

Baseline ALSFRS 36% 2% 0% 0% 30%

Baseline ALSFRS upper limb sub-score 39% 0% 0% 0% 36%

Baseline ALSFRS lower limb sub-score 39% 0% 100% 0% 36%

Baseline ALSFRS bulbar sub-score 39% 0% 100% 0% 36%

Baseline ALSFRS respiratory sub-score 39% 0% 100% 0% 36%

Baseline ALSFRS trunk sub-score 39% 0% 100% 0% 36%

Baseline pulse 32% 1% 100% 100% 41%

Baseline diastolic blood pressure 32% 1% 0% 100% 37%

Baseline systolic blood pressure 32% 1% 0% 100% 37%

Baseline vital capacity (L) 23% 1% 0% 100% 29%

Baseline vital capacity ( %) 10% 1% 0% 100% 19%

Survival (month) 68% 55% 80% 66% 68%

1-year survival 46% 15% 16% 59% 45%

1-year ALSFRS 66% 42% 30% 75% 65%

Overall missing ratio 35% 6% 41% 35% 34%

Overall predictor missing ratio 30% 1% 41% 30% 30%

Overall outcome missing ratio 60% 37% 42% 67% 59%

Final sample size for 1-year survival (n) 3,971 172 646 431 5,220
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projection analysis can be extended to other prognosis outcomes, namely functional loss or clinical staging, and 
different time frames.

As this study evaluated pre-existing datasets we faced a number of constraints. PRO-ACT data are not 
uniformly recorded; for instance, vital capacity may be available in litres or percent, and slow and forced vital 
capacities are inconsistently documented. Units for weight are not clearly labelled as pounds or kilograms. A 
weight value of 99 without an associated unit may equally be interpreted as kilograms or pounds. These incon-
sistencies concern 26% of PRO-ACT patients. Inclusion criteria for all datasets pooled within PRO-ACT are not 

Figure 4.  Outcomes with regards to UMAP projection for development and validation data: overall survival for 
development (a.1) and validation (a.2) data, 1-year survival for development (b.1) and validation data (b.2) and 
1-year functional loss for development (c.1) and validation data (c.2) (for overall survival, 13+ refers to patients 
whose death date is 13 months or more). Each point represents an individual patient. For overall survival (a), 
survival ranges between 0 and 12 months. 13+ refers to patients whose death date is 13 months or higher. 
ALSFRS score ranges between 0 and 40 (c). For overall survival (a) and 1-year functional loss, the data point 
colour is mapped to a specific time value (for a) or ALSFRS score (for c). Axes are dimensionless and come 
from UMAP dimension reduction. (a.1), (b.1) and (c.1) represent development data plots; (a.2), (b.2) and (c.2) 
represent validation data plots.
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comprehensively documented; 6 out the 23 pooled clinical trial names were not disclosed. Available trial data 
also suffer from inclusion bias, as patients with marked cognitive or behavioural impairment often face worse 
 prognosis26–28, and are often excluded from or drop out of clinical trials.

Missing data imputation was omitted and our model was trained solely on complete case samples. Although 
generally recommended in medical settings, data imputation seemed hazardous in this specific data context, 
specifically working with PRO-ACT. Multiple imputation methods often assume that the missingness patterns 
are missing at random, i.e. that they depend on other observed variables in the dataset. This information is dif-
ficult to verify and these data imputation methods are often performed on the biggest feature subset available so 
as to improve the odds of such a hypothesis being true. Given the differences in the data collection process and 
the limited feature subset shared between the different datasets, data imputation could not have been carried out 
on the global data structure. Data imputation at a dataset level would not have been productive and would have 
led to significant additional noise in data given small sample size and significant missing feature ratio for each 
dataset. Even advanced multiple imputation methods such as Quartagno et al.29 which deal with missing data 
imputation at a study level (for meta-analysis purposes) require knowing the collection process for each study 
in scope, which we cannot access for PRO-ACT as features could be missing due to loss to follow up or due to 
clinical trial setup. Furthermore, as UMAP is a neighbourhood-based approach, data imputation can be seen 
as adding data where it is missing. This would have induced sample similarity in cases where little information 
was known on the subjects, creating visual artefacts of similar patients within the projection space and adding 
significant bias to the visual representation. Our spatial distribution approach would have had a more limited 
performance had we worked with imputed data that would have artificially created spatial proximity.

Another data constraint was that lack of availability of established prognostic indicators in at least one 
of the four datasets, such as ALSFRS sub scores, cognitive profile, Riluzole intake, vital  capacity30, time to 
 generalisation31 or weight loss, which is considered more relevant than absolute weight at  baseline32. This lim-
ited the model’s ability to discriminate patients within the projection space. Additional clinical features, such as 
upper or lower limb onset, upper or lower motor neuron predominance, may be potential predictors to improve 
our model further. The inclusion of biological,  genetic33, and imaging  features14,34 are likely to have improved 
current prognosis  modelling35. In our study, overall survival was only regarded as a secondary outcome as global 
survival was not available in most cases. Analysis of overall survival would not have led to accurate results given 
the available data is predominantly censored after trial end. As overall survival prediction remains key and 1-year 
survival, a substitute target, it seemed relevant to analyse how overall survival correlated with UMAP projection 
coordinates. Given our data, 1-year survival was a good proxy of overall survival.

Feature processing excluded dealing time-resolved features in a time-series manner, comparable to past ALS 
prognosis  studies15,36–38. As such, feature processing and model design was simplified. Time-series information, 
specifically with regards to ALSFRS, was obtained using intercept and slope values. As such, we did not intend 
to carry out a statistical analysis of data using traditional Kaplan Meier (for 1-year survival) or Cox regression 
(for functional loss) approaches that factor in time and censoring. A Kaplan–Meier approach can provide an 
interesting overview of the outcome with regard to time but never at a patient level which is the approach we 
wished to explore.

As a non-linear unsupervised learning model, UMAP can capture and characterise complex relationships 
between predictors. UMAP is more than a data visualisation method: the projection space preserves distances, 
density and neighbourhoods which allow manipulation of projected data through spatial analysis or clustering 

Table 5.  Real-world validation data distribution per survival area.

Group Deceased Survived Count per zone Percent per zone

High survival rate zone 20 140 160 25%

Intermediate survival rate zone 51 160 211 33%

Low survival rate zone 142 133 275 42%

Count per status 213 433 646

Percent per status 33% 67%

Table 6.  Model comparison on validation data. LR, RF and Proposed Model respectively stand for Logistic 
Regression, Random Forest and UMAP combined to spatial division.

Model TP FP FN TN Accuracy (%) Precision (%) Specificity (%) Recall (%) Balanced accuracy (%)
F1 measure 
(%)

LR 2 features 89 124 58 375 72 42 75 61 68 49

LR 7 features 100 113 64 369 73 47 77 61 69 53

RF 2 features 85 128 96 337 65 40 72 47 60 43

RF 7 features 119 94 104 329 69 56 78 53 66 55

Proposed Model 433 40 0 173 94 91 81 1000 91 96
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methods. However, it is a black-box approach. Model interpretability cannot be obtained: the explicit relation-
ship between UMAP input and output variables remains unavailable. Analysis of input feature distribution in 
the UMAP projection gives a broad overview of variable importance with regards to the projection. Data is 
projected in a reduced space with interesting data distribution and preserved input space proprieties. UMAP 
provides the foundation to develop our prognosis model which derived from UMAP space segmentation. Our 
model combined UMAP with a simple spatial division in order to leverage observed correlations between projec-
tion features and the primary outcome. As such, similarly to other machine learning models, UMAP identifies 
underlying data correlations but cannot reveal causal relationships. Nevertheless, our model provides confidence 
intervals which most machine learning techniques such as random forest, boosting or neural network methods 
do not ordinarily provide. This additional information can help clinicians to evaluate prognosis in finer detail.

ALS prognosis modelling has been already been extensively researched in the past. Random forest models 
were frequently  tested15,36,37,39–41, repeatedly outperforming other machine learning models. As logistic regression 
is a probabilistic model, it seemed interesting to compare our model with these two machine learning mod-
els. Given the strong correlation between age and baseline ALSFRS features and projection space coordinates, 
evaluating model performance on this feature subset was also valuable. Given the imbalance with regards to the 
outcome (as 75% of patients survived 12 months), accuracy alone would not have been a reliable performance 
metric. Precision and recall metrics provided a finer understanding of model weaknesses and strengths. As 
performance metrics were calculated differently for our model and the other machine learning models, where 
individual predictions were available for all patients, performance results should be viewed with caution.

Given the cell sample size, the estimated survival probability for each cell was not directly used for prognosis 
estimation, as the confidence interval was not narrow enough. Although each cell carried limited survival infor-
mation on its own; combined, they were useful in understanding the differences in spatial distribution. Sample 
size was crucial as it directly influenced the level of detail for the projection space division. A larger data sample 
would be required to define more zones with distinct survival rates. Dividing the projection space in three was 
deemed the most appropriate approach given the patient distribution and sample size. Based on the available 
data, we had to deal with the trade-off between prognosis personalisation and narrow confidence bounds for 
survival. Testing on external RW data was necessary to assess model ability to scale up and model validity as it 
was designed using trial patients. Only minor differences were observed when assessing zone membership. A 
large number of patients were assigned to the low survival rate zone. This is clearly explained by the fact that 
clinical trials have inclusion criteria which select less severe patients. Additional RW data could correct this bias 
and limit the resulting over-optimistic prognosis it entails.

In conclusion, we have successfully implemented a simple 1-year survival model partially based on a novel 
non-linear unsupervised learning method. Further work will be needed to extend our analyses to other prog-
nosis outcomes, such as functional loss and clinical staging systems. Given the relatively low incidence of ALS 
compared to other neurodegenerative conditions, robust international collaborations are necessary to collect 
large datasets and build precision  models42. Notwithstanding the constraints of the available data, we have dem-
onstrated that combining UMAP with a probabilistic and spatial distribution analysis, important correlations 
can be unravelled.

Data availability
Anonymised data are freely accessible from the public database of the Northeast ALS Consortium. Statistical 
code are shared on the following github: alsparis/als_survival_prognosis.
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