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Influenza virus, respiratory syncytial virus, and human metapneumovirus commonly cause acute 
upper and lower respiratory tract infections, especially in children and the elderly. Although rapid 
antigen detection tests for detecting these infections have been introduced recently, these are 
less sensitive than nucleic acid amplification tests. More recently, highly sensitive point-of-care 
testings (POCTs) have been developed based on nucleic acid amplification tests, which are easy 
to use in clinical settings. In this study, loop-mediated isothermal amplification (LAMP)-based 
POCT “Simprova” to detect influenza A and B viruses, respiratory syncytial virus, and human 
metapneumovirus was developed. Simprova system is fully automated and does not require skilled 
personnel. in addition, positive results can be achieved faster than with pcR. in this study, the 
accuracy of the POCT was retrospectively analyzed using 241 frozen stocked specimens. Additionally, 
the usability of the Simprova at clinical sites was assessed in a prospective clinical study using 380 
clinical specimens and compared to those of real-time PCR and rapid antigen detection test. The novel 
LAMP-based POCT demonstrated high sensitivity and specificity in characterizing clinical specimens 
from patients with influenza-like illnesses. The Simprova is a powerful tool for early diagnosis of 
respiratory viral infections in point-of-care settings.

Respiratory tract infections, especially lower respiratory tract infections, are associated with high morbidity and 
mortality. Over 65% of respiratory infections are caused by  viruses1 and the World Health Organization (WHO) 
has estimated that 3.9 million people succumb to acute respiratory viral infections every  year2. Influenza virus 
(IV), respiratory syncytial virus (RSV), and human metapneumovirus (hMPV) infections are the most common 
causes of acute upper and lower respiratory tract infections such as pneumonia and bronchiolitis, and lead to 
hospitalization, especially in children and the  elderly3–6. Timely diagnosis of these infections is important in the 
clinical management of patients and for the reduction in healthcare  costs7. Early diagnosis can also avoid nosoco-
mial spread of these viruses and the unnecessary use of  antibiotics7–9. However, the clinical signs and symptoms 
of these viruses are similar, and it can be difficult to distinguish the causative  viruses1,10. In addition, not only 
viruses but also bacteria cause respiratory tract infections with almost indistinguishable clinical  symptoms11. 
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Early methods of virus diagnosis mainly utilized time-intensive viral cultures,however, over the past several 
decades, these methods have evolved to provide more rapid results with easy-to-use rapid antigen detection test 
(RADT) based on immunochromatographic assay. Nowadays, RADT is widely available for diagnosis of IV in 
clinical settings. RADTs for RSV are also available, and has been reported that their sensitivity is comparable 
to that of RADT for  IV12. In contrast, the available number of RADTs for hMPV is low because hMPV was 
first identified in  200113. RADTs can be used in point-of-care (POC) settings, but they are less sensitive than 
molecular diagnostic tests such as PCR and other nucleic acid amplification tests (NAATs)14,15. More recently, 
highly sensitive point-of-care testings (POCTs) based on NAAT that are easy to use in clinical settings have 
been developed. IV has been a primary driver of this evolution of diagnostic methods due to its annual global 
epidemics, the availability of antiviral therapy, which must be given early to have an  effect16, and the constant 
threat of new pandemic strains. In 2015, the first molecular POCT based on NAAT for IV was cleared by the US 
Food and Drug Administration (FDA)17. Furthermore, in 2017, the FDA re-classified RADTs for IV from class 
I to II devices, and now requires RADTs for IV to meet specific minimum criteria for sensitivity and specificity. 
Consequently, especially in the United States, the number of RADTs has decreased and molecular POCTs based 
on NAAT have been  introduced17. There is already a report that molecular POCT to detect IV is expected to 
reduce hospitalization and mortality rates, and it appears to be cost-effective18. The current molecular diagnos-
tic test used in both laboratory and POC setting employs several methods, including isothermal nucleic acid 
amplification, real-time reverse transcription PCR (rRT-PCR), nested multiplex PCR, and RT-PCR followed by 
hybridization and colorimetric visualization.

Recently, we developed a loop-mediated isothermal amplification (LAMP)-based POCT “Simprova” for the 
detection of respiratory  bacteria19. The results of the POCT for detecting respiratory bacteria are obtained within 
35 min after specimen collection with high sensitivity and specificity. Unlike common NAATs that require nucleic 
acid extraction and purification followed by amplification reaction, Simprova processed the entire steps auto-
matically and can be used in POC settings. In addition, Simprova can diagnose multiple targets at once because 
it has a testing chip with multiple reaction wells.

In this study, Simprova for respiratory viruses (Simprova-RV) that contains lyophilized primers for detecting 
influenza A virus (IAV), influenza B virus (IBV), RSV, and hMPV was developed. The purpose of this study was 
to evaluate the performance of Simprova-RV. The accuracy of Simprova-RV for clinical specimens was assessed 
in a retrospective validation using frozen stocked specimen. Additionally, the usability of Simprova-RV at clinical 
sites was assessed in a prospective clinical study. rPCR was used as the gold standard test for comparison in the 
retrospective validation and the prospective clinical study.

Material and methods
In vitro-transcribed RNA controls. In vitro-transcribed RNAs were used to determine the analytical sen-
sitivity of Simprova-RV assay. RNA transcripts for IV were prepared from the full-length of matrix (M) gene of 
A/Narita/1/2009 (H1N1)pdm09 (GISAID accession no. EPI180038) and non-structural (NS) gene of B/Massa-
chusetts/02/2012 (EPI439259), and those for RSV were prepared from the full-length of nucleoprotein (N) gene 
of RSV/OsakaC.JPN/16.2012 (Genbank accession no. LC415429) and RSV/OsakaC.JPN/38.2011 (LC415430) as 
previously  studied20. RNA transcripts for hMPV were prepared from the full-length of the N gene of hMPVA/
OsakaC.JPN/13.2012 (LC510256) and hMPVB/OsakaC.JPN/14.2012 (LC510257). In  vitro-transcribed RNAs 
were synthesized as previously  studied20. The procedure is described in detailed below. The random hexamer 
primer was used for reverse transcription using a SuperScript III Reverse Transcriptase Kit (Thermo Fisher 
Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. The entire coding region of each 
gene was amplified by PCR using Phusion High-Fidelity DNA Polymerase (New England BioLabs, Ipswich, 
MA, USA) with paired primers, with the reverse primer containing the T7 promoter sequence. RNA was tran-
scribed using the T7 RiboMAX Express Large Scale RNA Production System (Promega, Madison, WI, USA), 
and treated with TURBO DNase (Thermo Fisher Scientific) to degrade the template DNA. The dNTPs and NTPs 
were removed using MicroSpin G-25 Columns (GE Healthcare, Piscataway, NJ, USA) according to the manu-
facturer’s instructions. The transcribed RNAs were quantified using a NanoDrop spectrophotometer (Thermo 
Fisher Scientific), and the absorbance value was used to calculate the copy numbers of the transcribed RNAs. 
The integrity of each transcribed RNA was assessed with a 2100 BioAnalyzer (Agilent Technologies, Santa Clara, 
CA, USA).

clinical specimens. A flowchart of clinical specimen collection is given in Fig. 1. For a retrospective valida-
tion of Simprova-RV using frozen stocked specimen, 178 nasopharyngeal swabs (NPSs) and 63 nasal secretions 
(NSs) collected from patients who presented with influenza-like illnesses from January 2016 through February 
2019 were used. All NPSs and NSs were collected in 1 mL of universal transport medium (UTM; Copan, Brescia, 
Italy) and stored at − 80 °C after initial analysis. rPCR and Simprova-RV were performed within 4 weeks of thaw-
ing a specimen.

For a prospective clinical study, 381 nasopharyngeal aspirates (NPAs) were collected from pediatric patients 
(age, ≦ 15 years) with influenza-like illnesses from October 2018 to June 2019 at 4 different hospitals and 1 
clinic. NPA was collected with 0.5–2 mL of sterile normal saline because it is viscous, tenacious, and small, and 
difficult to handle. After sampling, NPA was frozen at − 20 °C immediately, and transported to the laboratories 
within 2 weeks. At the laboratories, 300 µL of NPA was diluted in 3 mL UTM (BD, Franklin Lakes, NJ, USA) and 
refrigerated; rPCR and Simprova-RV were performed within 4 weeks after thawing a specimen. The remaining 
NPA was stored at − 80 °C, and RADT was performed immediately after re-thawing of the NPA.

This study was conducted in accordance with the Declaration of Helsinki. This study was approved by the 
institutional medical ethical committees of Aizenbashi Hospital (#18-8), Nakano Children’s Hospital (#40), 



3

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:13496  | https://doi.org/10.1038/s41598-020-70090-2

www.nature.com/scientificreports/

Nishi-Tokyo Central General Hospital (#2018-002), Showa General Hospital (#REC-094), the National Institute 
of Infectious Diseases (#946), Osaka Institute of Public Health (#1810-01), and Eiken Chemical Co., Ltd (#82-
012). Participants or the parents of participants provided written informed consent.

Testing by Simprova-RV. Simprova-RV was performed using a principal machine in which the pretreat-
ment (extraction and purification of nucleic acid from the sample) part and the LAMP reaction and detection 
part were separated in this study. Simprova-RV was carried out as described  previously19. In the pretreatment 

(A)

(B)

Specimen collected from Jan 2016 to Feb 2019 frozon stocked

nasopharyngeal swabs (NPSs) in 1mL UTM,  n=178

nasal secretions (NSs) in 1mL UTM, n=63

Aliquot #1 Aliquot #2

Thawed

Tested by rPCR Tested by Simprova-RV

Within 4 weeks

Specimen collected from Oct 2018 to Jun 2019 at 4 hospitals and 1 clinic in Japan

nasopharyngeal aspirates (NPAs) in 0.5-2 mL saline,  n=381

Frozen at -20℃  immediately and transported to laboratories

Diluted 300 µL of NPA in 3mL UTM

Thawed

Rest of NPA Frozen stocked

Within 4 weeks

Within 2 weeks

Thawed again 

Immediately tested by RADT

Aliquot #1 Aliquot #2

Tested by rPCR Tested by Simprova-RV

Excluded 1 sample 
because of Simprova-RV invalid

Analyzed NPA, n=380

Figure 1.  Overview of clinical specimen collection and diagnosis testing in a retrospective validation of 
Simprova-RV (A) and a prospective clinical study (B).
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part, viral RNA was extracted and purified from 200 µL of specimen in UTM. Then, the viral RNA solution was 
manually injected into the testing chip and transferred to the LAMP reaction and detection part. Turnaround 
time for one test including extraction and purification of nucleic acid from the sample is approximately 30 min. 
Each target has multiple reaction wells including one well for positive control to check reactivity of the LAMP 
reagent on a testing chip. If an amplification signal was detected from at least one of the wells on the testing chip, 
the target was determined as “positive”.

testing by rpcR. Viral RNA for testing by rPCR assay was extracted by a MagMAX CORE Nucleic Acid 
Purification Kit (Thermo Fisher Scientific) using 200 µL of UTM mixed with clinical specimens according to the 
manufacturer’s instructions, with an elution of 50 µL. cDNA was synthesized with a random hexamer primer 
using the PrimeScript RT reagent kit (Takara Bio, Shiga, Japan) and 10 µL viral RNA. Multiplex rPCR was con-
ducted using the QuantiTect multiplex PCR kit (Qiagen, Hilden, Germany) for detecting IAV and IBV, RSV A 
and B, and hMPV as described  previously21. The rPCR was performed in a 20 µL reaction containing 5 µL cDNA 
as the template and using the LightCycler 480 II (Roche, Basel, Switzerland). The RSV A and RSV B results were 
not separate, but were judged comprehensively and used as RSV results in this study.

Rapid antigen detection test (RADt). The Prime check Flu·RSV and Prime check hMPV (Alfresa 
Pharma, Osaka, Japan) that are commercially available were carried out according to the manufacturer’s instruc-
tion. Briefly, NPA sample collected using a swab provided in the RADT kit was added to an extraction reagent. 
Each device was read through visual inspection by three people after 10 min of incubation at room temperature.

Analytical sensitivity of Simprova-RV assay. The analytical sensitivity of Simprova-RV assay was 
assessed by testing serial dilutions of quantified in vitro-transcribed RNA in 6 or 12 replicates at each concentra-
tion. Nuclease-free water was used as the negative control. The diluted RNA or nuclease-free water was manually 
injected into the testing chip and transferred to the LAMP reaction part. To determine the limit of detection 
(LOD) at 95% probability, a probit regression analysis was performed using StatPlus software (version 2009, 
AnalystSoft, Walnut, CA, USA).

Statistical analyses. The sensitivity, specificity, positive predictive value (PPV) and negative predictive 
value (NPV) of Simprova-RV assay, and RADT were calculated with the MedCalc free statistical calculator 
(https ://www.medca lc.org, MedCalc Software bvba, Ostend, Belgium). The statistical significance of quantifica-
tion cycle (Cq) values of rPCR between rPCR positive and Simprova-RV positive samples was calculated using 
Mann–Whitney nonparametric test using GraphPad Prism software (version 7.0, Graph Pad Software, La Jolla, 
CA, USA) as the data were found not to be normally distributed via the Shapiro–Wilk’s test using RStudio (ver-
sion 1.1, RStudio, Boston, MA, USA). Comparison between the numbers of Simprova-RV and RADT positive 
results was assessed using the Chi-square test with GraphPad Prism software. A P value of less than 0.05 indi-
cated significance.

Results
The LOD of Simprova-RV assay. The LOD of Simprova-RV assay was determined by testing serial dilu-
tions of quantified in vitro-transcribed RNAs in 6 or 12 replicates. As shown in Table 1, the LOD of Simprova 
assay for the detection of IAV, IBV, and RSV was 1.08–2.99 RNA copies/µL. The LOD of Simprova assay for 
detection of hMPV was 10.5–18.4 RNA copies/µL, which was nearly 10 times lower than that of IV and RSV 
(Table 1). There were no false positive results observed for any of the negative control samples in either target, 
and no cross-reactivity between these targets (data not shown).

Retrospective validation of Simprova-RV. A flowchart of enrolled patients, clinical specimen collec-
tion, and diagnosis testing is given in Fig. 1. To assess the accuracy of Simprova-RV for clinical specimen, we 
conducted a retrospective validation of Simprova-RV using frozen stocked specimen, and calculated the sensi-
tivity and specificity using rPCR as a gold standard. A total of 241 clinical specimens collected from 132 male 
and 109 female child patients who presented with influenza-like illnesses were used. The median patient age 

Table 1.  Analytical sensitivity of Simprova-RV assay. NT not tested.

Target In vitro-transcribed RNA

Number of positive testing chips/number of tests for each RNA

LOD (copies/µL)

Concentration of RNA (copies/µL)

20 10 5 2.5 1.25 0.625 0.3125 0.15625

IAV A/Narita/1/2009 (H1N1)pdm09 M gene 12/12 12/12 12/12 12/12 12/12 9/12 4/6 2/6 1.08

IBV B/Massachusetts/2/2012 NS gene 12/12 12/12 12/12 11/12 10/12 7/12 2/6 2/6 2.97

RSV
RSV/OsakaC.JPN/16.2012 N gene 12/12 12/12 12/12 11/12 9/12 3/12 2/6 0/6 2.99

RSV/OsakaC.JPN/38.2011N gene 12/12 12/12 12/12 12/12 12/12 7/12 3/6 3/6 1.59

hMPV
hMPVA/OsakaC.JPN/13.2012N gene 12/12 11/12 9/12 6/12 3/12 1/12 1/6 1/6 18.4

hMPVB/OsakaC.JPN/14.2012N gene 6/6 6/6 5/6 4/6 1/6 3/6 NT NT 10.5

https://www.medcalc.org
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was 3 years (range 0–14 years) as shown in Table 2. The clinical specimens consisted of 178 NPSs and 63 NSs, 
with 37–54 rPCR positive specimens for each target virus. Table 3 summarizes the comparison of the results for 
Simprova-RV and rPCR. Simprova-RV had 100% specificity for all targets. The sensitivity of Simprova assay for 
the detection of IAV, IBV, and RSV was over 90%. For hMPV, the sensitivity of Simprova assay was 75.5%, which 
was slightly worse than that of IV and RSV (Table 3). Overall, based on the retrospective validation, there were 
no false-positive results for any of the negative specimens in either targets, and no cross-reactivity between these 
targets when using clinical specimens (data not shown).

prospective clinical study. To assess the usability of Simprova-RV at clinical sites, we conducted a pro-
spective clinical study. In this study, one invalid result was obtained with Simprova-RV by the negative results for 
the positive control, which was assumed to have arisen from a viscous and sticky specimen; the same sample was 
negative for all targets by rPCR (data not shown). This invalid specimen was excluded from the study analysis 
(Fig. 1). The demographic, clinical, and specimen characteristics of the analyzed patients in this study are shown 
in Table 4. During the study period, 380 NPAs were tested using Simprova-RV, rPCR, and RADT. The median 
patient age was 1 year (range 0–15 years) with 226 male and 154 female patients. Of the 380 patients, 275 (72.4%) 
were outpatients and 105 (27.6%) were hospitalized, 235 (61.8%) patients showed symptoms of lower respiratory 
tract infection, which was over 2 times the number of patients with upper respiratory tract infections, and 226 
(61.1%) patients exhibited fever. The specimens of 190 (51.4%) patients were collected 72 h after symptom onset. 
Table 5 summarizes the results of Simprova-RV, rPCR, and RADT. Over the course of the study, rPCR detected 
50 IAV positive, 11 IBV positive, 108 RSV positive, 61 hMPV positive, and 157 negative results. Two viruses 
were co-detected in 7 specimens; IBV and hMPV were in 2 specimens and RSV and hMPV were in 5 specimens 
(Table 4). Unlike rPCR, Simprova-RV detected 90.0% IAV and 90.9% IBV, but RADT detected 58.0% and 36.4%, 

Table 2.  Demographic and specimen characteristics of 241 patients for a retrospective validation of 
Simprova-RV.

n (%)

Total number 241

Demographic feature

Gender male 132 (54.8)

Age, median years (range) 3 (0–14)

Virus(es), according to rPCR

IAV 44 (18.3)

IBV 33 (13.7)

RSV 50 (20.7)

hMPV 45 (18.7)

IAV + IBV 2 (0.83)

IAV + RSV 1 (0.41)

IAV + hMPV 1 (0.41)

IBV + RSV 1 (0.41)

IBV + hMPV 1 (0.41)

RSV + hMPV 2 (0.83)

Specimen

Nasopharyngeal swab (NPS) 178 (73.9)

Nasal secretion (NS) 63 (26.1)

Table 3.  The accuracy of Simprova-RV for clinical specimen during a retrospective validation. CI confidence 
interval. a 95% CI.

Target No. of positive specimens tested by rPCR
No. of positive specimens tested by 
Simprova-RV

Simprova-RV

Sensitivity %a Specificity %a

IAV 48 47
97.90% 100%

(88.9–100%) (98.1–100%)

IBV 37 35
94.60% 100%

(81.8–99.3%) (98.2–100%)

RSV 54 50
92.60% 100%

(82.1–97.9%) (98.1–100%)

hMPV 49 37
75.50% 100%

(61.1–86.7%) (98.1–100%)
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Table 4.  Demographic, clinical and specimen characteristics of 380 analyzed patients in a prospective clinical 
study. a Fever: defined as body temperature ≧ 38 °C

n (%)

Total number 380

Demographic feature

Gender male 226 (59.5)

Age, median years (range) 1 (0–15)

Medical history

Body temperature

Fevera 226/370 (61.1)

Data missing 10 (2.63)

Time of visiting hospital or clinic from onset of illness

6 h > 24/370 (6.49)

6–12 h 26/370 (7.03)

12–24 h 51/370 (13.8)

24–72 h 79/370 (21.4)

72 h  190/370 (51.4)

Data missing 10 (2.63)

Hospitalization

Outpatient 275 (72.4)

Inpatient 105 (27.6)

Symptom

Upper respiratory tract infection 100 (26.3)

Lower respiratory tract infection 235 (61.8)

Other 45 (11.8)

Virus(es), according to rPCR

IAV 50 (13.2)

IBV 9 (2.37)

RSV 103 (27.1)

hMPV 54 (14.2)

IBV + hMPV 2 (0.53)

RSV + hMPV 5 (1.32)

Table 5.  Performance of Simprova-RV compared with the reference rPCR and RADT in a prospective clinical 
study. PPV positive predictive value, NPV negative predictive value, CI confidence interval. a 95% CI.

Target No. of positive specimens tested by rPCR Simprova-RVa RADTa

IAV 50

Sensitivity % 90.0% (78.2–96.7%) 58.0% (43.2–71.8%)

Specificity % 100% (98.9–100%) 100% (98.9–100%)

PPV % 100% 100%

NPV % 98.5% (96.6–99.3%) 94.0% (91.9–95.6%)

IBV 11

Sensitivity % 90.9% (58.7–99.8%) 36.4% (10.9–69.2%)

Specificity % 100% (99.0–100%) 100% (99.0–100%)

PPV % 100% 100%

NPV % 99.7% (98.3–100%) 98.1% (97.1–98.8%)

RSV 108

Sensitivity % 84.3% (76.0–90.6%) 56.5% (46.6–66.0%)

Specificity % 100% (98.7–100%) 100% (98.7–100%)

PPV % 100% 100%

NPV % 94.1 (91.2–96.1%) 85.3% (82.4–87.8%)

hMPV 61

Sensitivity % 73.8% (60.9–84.2%) 65.6% (52.3–77.3%)

Specificity % 100% (98.9–100%) 100% (98.9–100%)

PPV % 100% 100%

NPV % 95.2% (92.9–96.8%) 93.8% (91.5–95.6%)
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respectively. For RSV, Simprova-RV detected 84.3% of RSV positive samples using rPCR, versus RADT detected 
56.5% of them. For hMPV, Simprova-RV detected 73.8% of hMPV positive samples using rPCR, versus RADT 
detected 65.6% of them. Simprova-RV and RADT gave no false-positive result, and had 100% specificity and 
PPV for all targets. There are no associations between the clinical characteristics of patients and positive rate 
of viruses in each test (data not shown). The mean rPCR Cq values for rPCR and Simprova-RV positive speci-
mens were 30.20 (range 20.79–40) and 29.16 (range 20.79–40), respectively for IAV; 27.83 (range 20.92–34.85) 
and 27.13 (range 20.92–34.85), respectively for IBV; 27.32 (range 17.68–40) and 25.27 (range 17.68–37.67), 
respectively for RSV; 24.57 (range 18.48–37.64) and 23.16 (range 18.48–29.68), respectively for hMPV (Fig. 2). 
Comparison of Cq values between rPCR and Simprova-RV positive specimens for all targets failed to disclose 
any significant difference (P = 0.06–0.80, Mann–Whitney nonparametric test). However, the rate of concord-
ance results between rPCR and Simprova-RV were different by Cq values of the positive specimens (Fig. S1). 
Discordant results were observed when comparing specimens with Cq value of > 33 for IAV, IBV, and RSV, and 
those with Cq value of > 21 for hMPV. Since a slight difference in sensitivity was confirmed by detailed Cq value 
comparison, and it was found that genome of hMPV group B (hMPV B) collected during the prospective clinical 
study had mismatches in the LAMP primer region by sequencing analysis (data not shown), the hMPV LAMP 
detection primers were improved to detect hMPV B.

Improvement of hMPV LAMP detection primers. Simprova assay for hMPV using the new testing 
chip containing lyophilized improved detection primers was then performed. All positive specimens for hMPV 
and 5–10 each of positive specimens for other viruses by rPCR collected in the prospective clinical study were 
used for evaluation of improved hMPV LAMP detection primers. The numbers of positive specimens tested 
with Simprova-RV using the new testing chip with improved primers are shown in Table 6. The number of posi-
tive specimens for IAV, IBV, and RSV was almost same between old and new testing chips, but the number of 
them for hMPV increased from old (45) to new (58). The sensitivity of the improved Simprova assay for hMPV 
became 95.1% and LOD of that using in vitro-transcribed RNA became 1.90 copies/µL (data not shown).

Discussion
In this study, rapid, specific, and sensitive LAMP-based POCT for IAV, IBV, RSV and hMPV “Simprova-RV” 
was developed. Simprova-RV showed LOD of 1.08–18.4 RNA copies/µL (Table 1). These LODs were the same 
as the LOD of rRT-PCR as determined in previous  studies22,23 or within 10 times lower.

rPCR Simprova
-RV

20

30

40

Cq
va

lu
e

hMPVRSVIBVIAV

15

rPCR Simprova
-RV

rPCR Simprova
-RV

rPCR Simprova
-RV

+ + + + + + + +

Figure 2.  Comparison of rPCR Cq values between rPCR and Simprova-RV positive specimens in a prospective 
clinical study. Data present Cq value with the mean ± standard deviation (red line).

Table 6.  Number of positive specimens tested by Simprova for hMPV using improved testing chips. CI 
confidence interval. a 95% CI.

Target rPCR

Simprova-RVa

Old chip New chip

IAV 5 5 5

IBV 7 6 6

RSV 10 10 9

hMPV 61 45 58

 sensitivity % 73.8% (60.9–84.2%) 95.1% (86.3–99.0%)

 specificity % 100% (86.3–100%) 100% (86.3–100%)
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To assess the accuracy of Simprova-RV for clinical specimen, we conducted a retrospective validation using 
frozen stocked specimens. Unlike that of rPCR, the sensitivity of Simprova assay for IAV, IBV, and RSV was 
over 90%, although that of Simprova assay for hMPV was 75.5% (Table 3). Overall, the retrospective validation 
indicated that there were no false-positive results and no cross-reactivity in either target. Simprova-RV has been 
shown to be able to provide accurate diagnosis of clinical specimens, indicated by the results of this retrospec-
tive validation.

Subsequently, we compared rPCR and RADT to assess the clinical usability of Simprova-RV. Nowadays, 
RADTs are widely used and popular at clinical sites. However, several systematic reviews have indicated poor 
sensitivity of RADTs; for example, the pooled sensitivity for IAV detection was 54.4% and that for IBV was 
53.2%24. In this study, Simprova-RV showed high sensitivity for all targets, especially for IBV (Table 5), unlike 
RADTs. Differences between the number of positive results obtained with Simprova-RV and RADT were also 
compared at various times from the onset of illness (Table S1). Although previous reports have indicated that 
the sensitivity of RADT may be slightly lower in very early and later in the course of the  disease25, in this study, 
the positive number shown by Simprova-RV was significantly higher than that by RADT in any duration of time 
(P = 0.00–0.02). Antiviral drugs for IV such as oseltamivir reduce symptoms and frequency of hospitalization 
if administered within 48 h of onset of symptoms, especially within 24 h26. Regardless of the time duration, 
highly sensitive Simprova-RV is a useful diagnostic tool that enables early treatment and prevention of infection 
spread. In the prospective clinical study, the sensitivity of Simprova assay for hMPV was slightly decreased than 
IV and RSV, but it was higher than that of RADT. Comparison of the rPCR Cq values between rPCR positive 
and Simprova-RV positive specimens for all targets showed that the Cq value ranges between the two groups 
were consistent for IAV and IBV, and there was no significant difference between the two groups for all targets 
(Fig. 2). In the prospective clinical study, the sensitivity of Simprova assay for all targets was slightly lower than 
that in the retrospective validation. For one reason, in the prospective clinical study, the virus concentration 
in the specimen was generally low because NPA was used instead of NPS. In fact, the rate of specimens with 
Cq ≥ 33 were higher in the prospective clinical study than in the retrospective validation for IV and RSV; 19/50 
(38%) versus 12/48 (25%) for IAV, 3/11(27%) versus 6/37 (16%) for IBV, and 29/108 (27%) versus 13/54 (24%) 
for RSV, respectively (data not shown). Conversely, for hMPV, the rate of specimens with Cq ≥ 33 in the prospec-
tive clinical study was lower than that in the retrospective validation; 4/61 (7%) versus 5/49 (10%), respectively, 
even the sensitivity of Simprova-RV assay in the prospective clinical study was slightly lower than that in the 
retrospective validation. Additionally, the nucleotide sequence of hMPV B that was prevalence in the 2018/19 
season was found to be different from that of hMPV LAMP detection primers. After the hMPV LAMP detection 
primers were improved to detect the prevalent hMPV B, the sensitivity of Simprova assay for hMPV became 
higher than the other targets. Thus, compared to RADT, NAAT is easier to improve against detection sensitivity 
degradation due to changes in genome sequence of prevalence viral strains.

In this Simprova-RV, multiple reaction wells are mounted on the testing chip, and multiple targets can be 
tested at the same time. In a previous study, we developed RT-LAMP assays to detect influenza A subtypes of 
H1pdm09 and H3 viruses and other respiratory  viruses20,27,28. Therefore, by combining these assays, IVs can be 
easily and simultaneously identified with respect to type and subtype, and other respiratory viruses can also be 
detected.

In conclusion, the newly developed LAMP-based POCT “Simprova” for IV, RSV, and hMPV demonstrated 
high sensitivity and high specificity in clinical specimens from patients with influenza-like illnesses. This Sim-
prova-RV processed the entire step automatically; the test can be performed without skilled personnel in the 
POC setting by simply placing a pretreatment cartridge, a testing chip, and the sample in the  machine19. In 
addition, positive results can be achieved faster than by rPCR testing, because of the use of an isothermal nucleic 
acid amplification method. Furthermore, since multiple reaction wells are mounted on the testing chip, multiple 
targets can be tested at the same time. The Simprova-RV can be used to test for other pathogens and is a powerful 
tool for the POC setting.
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