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Identification of resistance 
in Escherichia coli and Klebsiella 
pneumoniae using 
excitation‑emission matrix 
fluorescence spectroscopy 
and multivariate analysis
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Klebsiella pneumoniae and Escherichia coli are part of the Enterobacteriaceae family, being common 
sources of community and hospital infections and having high antimicrobial resistance. This 
resistance profile has become the main problem of public health infections. Determining whether a 
bacterium has resistance is critical to the correct treatment of the patient. Currently the method for 
determination of bacterial resistance used in laboratory routine is the antibiogram, whose time to 
obtain the results can vary from 1 to 3 days. An alternative method to perform this determination 
faster is excitation‑emission matrix (EEM) fluorescence spectroscopy combined with multivariate 
classification methods. In this paper, Linear Discriminant Analysis (LDA), Quadratic Discriminant 
Analysis (QDA) and Support Vector Machines (SVM), coupled with dimensionality reduction and 
variable selection algorithms: Principal Component Analysis (PCA), Genetic Algorithm (GA), and 
the Successive Projections Algorithm (SPA) were used. The most satisfactory models achieved 
sensitivity and specificity rates of 100% for all classes, both for E. coli and for K. pneumoniae. This 
finding demonstrates that the proposed methodology has promising potential in routine analyzes, 
streamlining the results and increasing the chances of treatment efficiency.

The Enterobacteriaceae family is one of the most clinically prominent bacteria groups. One of the main gram-
negative pathogen is Klebsiella pneumoniae (K. pneumoniae), which causes opportunistic infections, such as 
pneumonia, sepsis and inflammation of the urinary  tract1. Another gram-negative that compose the entereobac-
teriaceae family is Escherichia coli, which are not typically pathogenic to humans and have the ability to cause sev-
eral diseases in different sites including gastrointestinal tract, the renal system and the central nervous  system2,3.

Antibiotic therapy induces the selection of resistant  bacteria4, which generate environmental and health 
hazards, and economical risk. Over the last decades, several bacterial strains have become progressively resistant 
to antimicrobial  agents5. Bacteria may have natural or acquired resistance. Among the genetic variations that 
confer resistance in bacteria, the main ones are extended spectrum  betalactamases6 (ESBL), AmpC production, 
Carbapenemases  production7, KPC group and MBL  group5.

Currently, the standard detection method is culture-based, which is time-consuming and labor intensive, 
providing a slow  detection8. Other methods can be used to obtain faster results, such as low  cytometry9, elec-
trochemical  detection10, and polymerase chain reaction (PCR)11. Near infrared (NIR)12,  Raman13 and Fourier 
transform infrared (FTIR)  spectroscopy14 have been also reported for these applications.
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To identify if a strain of bacteria have resistance is necessary a test where an isolated culture is submitted at 
several types of antibiotics. The antibiotic sensitivity behavior of the isolated strains can be determined by disc 
diffusion  method15, such as Minimal Inhibitory Concentrations (MIC)16 or Minimal Bactericidal Concentra-
tions (MBC)17.

Fluorescence spectroscopy has already been used in the  detection18, structural  investigation19,20 and in the 
construction of a DNA biosensor for E. coli21. Chemometric methods such as Linear Discriminant Analysis 
(LDA)22, Quadratic Discriminant Analysis (QDA)23 and Support Vector Machines (SVM)24, coupled with the 
dimensionality reduction algorithm: Principal Component Analysis (PCA)25,26,and variable selection algorithms: 
Genetic Algorithm (GA)27 and Successive Projections Algorithm (SPA)28, tend to enhance the spectroscopic 
 techniques29–31.

This paper brings a new perspective for the differentiation of sensitive and resistant bacteria of E. coli and 
K. pneumoniae species using excitation-emission fluorescence spectroscopy allied to multivariate classification 
methods.

Results and discussion
Klebsiella pneumoniae samples belonged to three groups, which were named as: Control (ATCC 1706—sensitive 
samples), resistant 1 (CCBH 6633—samples that show resistance to carbapenems) and resistant 2 (CCBH 4955 
KPC—samples resistant to carbapenems, cephalosporins, penicillin). Figure 1 presents the mean excitation-
emission fluorescence matrix (EEM) of Klebsiella pneumoniae: control (Fig. 1a), carbapenems resistant (Fig. 1b) 
and KPC (Fig. 1c), after removing Rayleigh and Raman scatterings (the excluded spectral regions were properly 
corrected by interpolation) and truncation done in the emission matrix.

The E. coli samples were composed of three groups, named control, resistant 1 and resistant 2. The control 
group was formed by sensitive E. coli samples (ATCC 25922). Resistance class 1 was composed of CCBH NDM 
samples, which have an enzyme called New Delhi metallo betalactamase, which attribute resistance to all beta-
lactams, especially carbapenems. The resistant class 2 was formed by E. coli CCBH 7018, which shows a type of 
beta-lactamase that causes hydrolysis of penicillins, monobactams, cephalosporins and cefoxitin. The EEM data 
obtained for Escherichia coli: sensitive (Fig. 2a), NDM (Fig. 2b) and CCBH 7018 (Fig. 2c) are presents in Fig. 2, 
after spectral pre-processing.

As depicted in Fig. 1, it is very difficult to distinguish the classes of sensitive and resistant bacteria only by 
their spectral profiles due to the great similarity between them. In Fig. 2 there is no such visual similarity, but 
still, we cannot trace a clear feature that differentiates the classes apart. An exploratory analysis was performed 

Figure 1.  Excitation–emission molecular fluorescence matrix obtained for Klebsiella pneumoniae: sensitive (a), 
carbapenems resistant (b) and KPC (c). The Rayleigh and Raman scatterings were removed from the spectra.
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using PCA with the unfolded data after spectral pre-processing. Figure 3 shows the PCA scores for Klebsiella 
pneumoniae data, built with 3 principal components (PCs).

It can be observed that in the first component, which explains 51.5% of the explained variance, the control 
samples do not present separation in relation to the resistant Klebsiella samples. The second PC explains 30.6% 
of the data variance and also fails to distinguish between control and resistant classes. For the Escherichia coli 
spectra, we also constructed a PCA using 4 PCs, where the scores are shown in Fig. 4.

Figure 2.  Excitation–emission molecular fluorescence matrix obtained for sensitive Escherichia coli: sensitive 
(a), NDM (b) and CCBH 7018 (c). The Rayleigh and Raman scatterings were removed from the spectra.

Figure 3.  Scores on the first principal component versus the second principal component for classes Klebsiella 
pneumoniae: sensitive (filled rhombus), carbapenems resistant (filled square) and KPC (filled triangle).
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In Fig. 4, it is not possible to identify a separation between the three classes. Projecting the scores for the first 
PC, which explains 63.6% of the data variance, it is possible to observe a segregation between part of resistance 
group 1, in relation to the others samples. However, projecting in the second PC, which explains 14.1% of the 
data variance the data, the three classes cannot be distinguished. PCA results support that it is necessary to use 
multivariate classification algorithms that maximize the difference between the sensitive and resistant classes. A 
total of 75 samples were used for building the models, divided into three groups: calibration (45 samples), valida-
tion (15 samples) and prediction (15 samples). Table 1 shows the results of classification models built using the 
EEM fluorescence data for differentiating sensitive Klebsiella pneumoniae and resistants Klebsiella pneumoniae.

Initially, models were constructed comparing the class of Klebsiella sensitive and that of resistant. For built 
this last group, samples of two resistant classes are combined. Among these models, the ones that presented the 
most satisfactory results were 2D-LDA and 2D-PCA-QDA, which obtained 100.0% calibration accuracy and 
classification rates above 93% in all classes in the prediction set. Models were constructed using the three classes 
of samples, applying QDA and SVM, coupled to dimensionality reduction algorithms (PCA, SPA and GA) in the 
unfolded data. With the exception of the USPA-QDA, UPCA-SVM and USPA-SVM models, all others presented 
satisfactory results, with 100% accuracy, both in calibration and in prediction, for the three classes.

The same strategy was applied to the E. coli samples, the results are shown on Table 2. The first models were 
created with only two classes: E. coli sensitive and the combined resistant samples. The results were satisfactory, 
mainly for 2D-PCA-LDA and 2D-PCA-QDA, which obtained 100.0% accuracy in both classes, both in calibra-
tion and in prediction. The models constructed with the three classes presented satisfactory results in the clas-
sification. Unfolded models (UPCA-QDA and UGA-QDA) also resulted in 100.0% accuracy in calibration and 
prediction of the three classes in this comparison.

Table 3 presents the validation results of the optimized models (UPCA-QDA, UGA-SVM and 2D-LDA) for 
each classification category of Klebsiella pneumoniae. The models that considered three classes (UPCA-QDA, 
UGA-SVM) showed promising results, with 100.0% sensitivity and specificity rates. Another notable result is 
the 2D-LDA model, built with only two classes, achieved similar results, with the same 100.0% sensitivity and 
specificity rates. The parameters accuracy and F-score were all equal to 100.0%, showing that those models are 
valid to distinguish between different groups of Klebsiella pneumoniae bacteria.

The validation results of the optimized models UPCA-QDA, UGA-SVM and 2D-PCA-QDA for the E. coli 
are illustrated in Table 4. The sensitivity and specificity rates for these models are 100.0% for all the analyzed 
classes. The accuracy and F-score values also reinforce the model efficiency.

According to the literature, bacterial resistance is usually associated with the ability of bacteria to modify 
their cellular structure and induce them to produce substances that neutralize the action of antibacterial agents. 
Satisfactory results from the models using EEM fluorescence data, for the E. coli and K. pneumoniae bacteria, 
demonstrate the sensitivity of the technique in detecting variations in the nuclear content of the cells and in the 
structure of the membranes itself. As reported by Opačić et al.19, who used fluorescence spectroscopy on struc-
tural investigation of the transmembrane C domain of the mannitol permease from Escherichia coli, the results 
showed that the technique was capable to differentiated the structure of  EIImtl from structure of a IIC protein 
transporting diacetylchitobiose. Additionally, Romantsov et. al.20 used dynamic data obtained by fluorescence 
correlation spectroscopy to extract structural information on isolated nucleoids, besides the evaluation of the 
characteristic size of the structural units in terms of the DNA length and estimation of their spatial dimensions.

Figure 4.  Scores on the first principal component versus the second principal component for classes Escherichia 
coli: sensitive (filled rhombus), NDM (filled square) and CCBH 7018 (filled triangle).
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Methods
Sample preparation. The samples used were: E. coli ATCC 25922—Standard strain, E. coli CCBH NDM+ , 
E.coli CCBH 7018, K. pneumoniae ATCC 1706, K. pneumoniae CCBH 4955, KPC and K. pneumoniae CCBH 
6633 resistant to Carbapenems. The CCBH strains were obtained from the Laboratory of Hospital Infection 
(LAPIH—Fiocruz/RJ). The ATCC strains belong to LABMIC/DMP—UFRN. Initially the pure samples were 
pealed in a BHI broth, then kept in the oven for 24 h at 38 °C, so that the bacteria multiplied. The sample was 
then pealed on a petri dish containing CLED culture medium, which was also kept in the oven for 24 h. Finally, 
a bacterial mass corresponding to approximately 2 × 106 colony forming units (CFU) was transferred from cul-
ture medium to falcon tube with 2 mL of phosphate buffer solution (1 mol/L), obtaining a concentration of 
1 × 106 CFU/mL. To assure this concentration the turbidity was compared with the McFarland standard. The 
initial solution with the concentration of 1 × 106 CFU/mL was diluted in a phosphate buffer solution (1 mol/L) to 
obtain the following concentrations, 5 × 105 CFU/mL, 1.3 × 105 CFU/mL, 6.3 × 104 CFU/mL and 3,1 × 104 CFU/
mL.

EEM fluorescence spectroscopy. The excitation/emission fluorescence data were acquired in the wave-
length range of 220–310 nm for excitation and 270–900 nm for emission, with steps of 10 and 1 nm for excitation 
and emission, respectively. A RF-5301 Shimadzu spectrofluorometer with a 0.5 mm quartz cuvette was used. The 
excitation and emission slits were set at 3 and 5 nm, respectively, the speed scan was set to super mode; the pho-
tomultiplier tube was set to the medium level and a cell with a fiber optic reflectance probe was used. A total of 
1.5 mL of bacterial solution was added to the fluorescence cuvette for reading. The temperature was maintained 
at 25 °C throughout the experiments. Five replicates of each concentrations were performed.

Table 1.  Results obtained for classification models (2D-LDA, 2D-PCA-LDA, 2D-PCA-QDA, 2D-PCA-SVM, 
UPCA-QDA/SVM, USPA-QDA/SVM and UGA-QDA/SVM) for sensitive Klebsiella pneumoniae and resistant. 
a Number of principal components. b Number of selected variables.

Model Class Calibration Prediction

2D-LDA
Control 100.0 100.0

Resistant 1 + 2 100.0 100.0

2D-PCA-LDA (5)a
Control 37.5 62.5

Resistant 1 + 2 56.5 81.2

2D-PCA-QDA (5)a
Control 100.0 93.7

Resistant 1 + 2 100.0 100.0

2D-PCA-SVM (5)a
Control 100.0 100.0

Resistant 1 + 2 93.8 93.7

2D-LDA

Control 100.0 60.0

Resistant 1 100.0 100.0

Resistant 2 100.0 100.0

UPCA-QDA (4)a

Control 100.0 100.0

Resistant 1 100.0 100.0

Resistant 2 100.0 100.0

USPA-QDA (2)b

Control 100.0 100.0

Resistant 1 93.3 100.0

Resistant 2 100.0 80.0

UGA-QDA (7)b

Control 100.0 100.0

Resistant 1 100.0 100.0

Resistant 2 100.0 100.0

UPCA-SVM (4)a

Control 100.0 60.0

Resistant 1 100.0 100.0

Resistant 2 100.0 100.0

USPA-SVM (2)b

Control 73.3 100.0

Resistant 1 80.0 100.0

Resistant 2 86.7 80.0

UGA-SVM (12)b

Control 100.0 100.0

Resistant 1 100.0 100.0

Resistant 2 100.0 100.0
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Data analysis
Chemometrics procedure and software. Spectral pre-processing and multivariate classification models 
were built using MATLAB R2011a software (The MathWorks, Natick, USA), and the PLS Toolbox 7.9.3 pack-
age (Eigenvector Research, Inc., Wenatchee, USA). A spectral range between 220–310 nm for excitation and 
270–900 nm for emission was used for model construction, with steps of 10 and 1 nm used for excitation and 
emission, respectively. This resulted in a data matrix size of 10 × 651 for each sample. The spectral pre-processing 
was composed by a cut in the region of 270–659 nm in the emission range, and by removing Rayleigh and 
Raman scatterings using the ‘EEMscat’  algorithm32.

The following classification methods were utilized: two-dimensional linear discriminant analysis (2D-LDA)33, 
two-dimensional principal component analysis with linear discriminant analysis (2D-PCA-LDA)34, quadratic 
discriminant analysis (2D-PCA-QDA)34, and support vector machines (2D-PCA-SVM)34. In addition to these, 

Table 2.  Results obtained for classification models (2D-LDA, 2D-PCA-LDA-2D, 2D-PCA-QDA, 2D-PCA-
SVM, UPCA-QDA/SVM, USPA-QDA/SVM and UGA-QDA/SVM) for sensitive Escherichia coli and resistant. 
a Number of principal components. b Number of selected variables.

Model Class Calibration Prediction

2D-LDA
Control 100.0 87.5

Resistant 1 + 2 100.0 100.0

2D-PCA-LDA (3)a
Control 100.0 100.0

Resistant 1 + 2 100.0 100.0

2D-PCA-QDA (5)a
Control 100.0 100.0

Resistant 1 + 2 100.0 100.0

2D-PCA-SVM (5)a
Control 93.7 100.0

Resistant 1 + 2 100.0 100.0

2D-LDA

Control 80.0 60.0

Resistant 1 80.0 80.0

Resistant 2 100 100.0

UPCA-QDA (4)a

Control 100.0 100.0

Resistant 1 100.0 100.0

Resistant 2 100.0 100.0

USPA-QDA (2)b

Control 100.0 100.0

Resistant 1 100.0 100.0

Resistant 2 100.0 80.0

UGA-QDA (7)b

Control 100.0 100.0

Resistant 1 100.0 100.0

Resistant 2 100.0 100.0

UPCA-SVM (4)a

Control 93.3 60.0

Resistant 1 100.0 100.0

Resistant 2 100.0 100.0

USPA-SVM (2)b

Control 100.0 100.0

Resistant 1 100.0 100.0

Resistant 2 100.0 80.0

UGA-SVM (5)b

Control 100.0 100.0

Resistant 1 100.0 100.0

Resistant 2 100.0 100.0

Table 3.  Quality performance values for the three classification methods (UPCA-QDA, UGA-SVM and 
2D-LDA with 2 classes) by molecular fluorescence spectroscopy for each category of Klebsiella pneumoniae.

Stage performance features

UPCA-QDA UGA-SVM 2D-LDA

Cont Res. 1 Res. 2 Cont Res. 1 Res. 2 Cont Res. 1 + 2

Accuracy 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Sensitivity 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Specificity 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

F-score 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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first-order classification using LDA, QDA and SVM were used in conjunction with the output from the dimen-
sionality reduction algorithms: PCA, GA and SPA.

For the construction of classification models, the samples were divided into calibration (60%), validation 
(20%) and prediction (20%) sets using the Kennard-Stone (KS) sample selection  algorithm35. The proposed mod-
els were evaluated by calculating some quality parameters such as accuracy, sensitivity, specificity and F-score.

To statistically evaluate the classification models, calculations of sensitivity and specificity were performed 
using the test samples as important quality measures of model accuracy. Both parameters have a maximum value 
of 100 and a minimum of 0, and are obtained as follows:

where FN is defined as a false negative and FP as a false positive; and TP and TN are defined as true positive and 
true negative, respectively.

Also, the models were evaluated using the area under the curve (AUC) and F-score. The AUC is the area 
under the receiver operating characteristics conditions (ROC) curve, and the F-score is a measurement of the 
model accuracy defined by:

where SENS stands for sensitivity; and SPEC stands for specificity.

Conclusion
The present study demonstrates the ability of EEM fluorescence spectroscopy associated with multivariate clas-
sification in differentiating classes of susceptible and resistant bacteria of the species E. coli and K. pneumoniae. 
The most satisfactory models for the classification of K. pneumoniae were UPCA-QDA, UGA-SVM and 2D-LDA, 
which presented 100% accuracy rates for all classes. For the E. coli data, the UPCA-QDA, UGA-SVM and 
2D-PCA-QDA models were the best, having 100% predictive performance for the classification of all groups. 
All these models obtained a sensitivity and specificity rate of 100%. This paper suggest a new alternative in the 
detection of bacterial resistance, through a methodology that is faster than traditional methods of analysis, 
simplifying the diagnosis, and increasing the chances of recovery of the patients.
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