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crossover from BKt‑rough 
to KpZ‑rough surfaces 
for interface‑limited crystal 
growth/recession
noriko Akutsu

the crossover from a Berezinskii–Kosterlitz–thouless (BKt) rough surface to a Kardar–parisi–
Zhang (KpZ) rough surface on a vicinal surface is studied using the Monte carlo method in the 
non‑equilibrium steady state in order to address discrepancies between theoretical results and 
experiments. the model used is a restricted solid‑on‑solid model with a discrete Hamiltonian without 
surface or volume diffusion (interface limited growth/recession). The temperature, driving force for 
growth, system size, and surface slope dependences of the surface width are calculated for vicinal 
surfaces tilted between the (001) and (111) surfaces. The surface velocity, kinetic coefficient of the 
surface, and mean height of the locally merged steps are also calculated. In contrast to the accepted 
theory for (2 + 1) surfaces, we found that the crossover point from a BKT (logarithmic) rough surface 
to a KPZ (algebraic) rough surface is different from the kinetic roughening point for the (001) surface. 
the driving force for crystal growth was found to be a relevant parameter for determining whether the 
system is in the BKT class or the KPZ class. It was also determined that ad-atoms, ad-holes, islands, 
and negative-islands block surface fluctuations, which contributes to making a BKT-rough surface.

Surface  roughness1,2 is important both practically, in the theory of crystal growth, and fundamentally, in the 
basic theory of interface properties. At equilibrium, the Berezinskii–Kosterlitz–Thouless (BKT)3,4 roughening 
phase  transition5–9 occurs at the roughening temperature TR on a two-dimensional (2D) low-Miller-index surface 
(interface), such as the (001) surface, in 3D. For temperatures T ≥ TR , the square of the surface width diverges 
logarithmically as the linear system size L increases to infinity (BKT-rough surface).

For scaling, the concept of the self-affine surface (interface) has been successful and has been widely  used10–13. 
The surface width shows a Family–Viscek scaling relation and the surface width W(L, t) can be expressed by 
the following relation:

where t is time and the α , β , and z exponents are referred to as the roughness, growth, and dynamic exponents, 
respectively.

The surface growth equation with a non-linear term under a symmetry principle consideration was first 
proposed by Kardar, Parisi, and Zhang (Kardar–Parisi–Zhang, KPZ)14. For a two-dimensional (2D) surface in 
3D, the exponents are obtained numerically as α = 0.3869 , β = 0.2398 , and z = 1.613113,15 (KPZ-rough sur-
face). The values of the exponents have been observed for directed polymers, as well as other systems in the 
KPZ universality class.

However, for crystal growth, the experimentally observed exponents are typically different from the KPZ 
 exponents10,16. The question of the reason for the difference between KPZ growth and the experimentally 
observed crystal growth has attracted considerable  attention13,17–21. For crystal growth with surface diffusion, 
step-flow  growth1, 17,18 on a vicinal surface is expected. A vicinal surface at temperatures less than T(001)

R  can be 
described by terrace surfaces and a train of steps, where a step consists of a zig-zag structure on the edge (the 
terrace, step, kink (TSK)  picture1, Fig. 1). At equilibrium, the square of the surface width of a vicinal surface 

(1)W(L, t) ∼ Lα f (L−z t), z = α/β ,
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diverges logarithmically as the system size  diverges22–25 for T < TR , similar to a BKT-rough surface. This loga-
rithmic divergence results from long wavelength slope  fluctuations22,23 caused by step-wandering9.

In the non-equilibrium state, one reason why the crystal surface is different from the KPZ class is surface 
 diffusion10,17,18,26–33, such as in the case of molecular beam epitaxy (MBE). The surface width shows algebraic 
divergence but with different values of the exponents from those of KPZ. Depending on the step–step interac-
tions, several groups of exponents are obtained  theoretically20,34.

Recently, for reaction-limited crystal growth, different exponents were experimentally  obtained35 from the 
KPZ values. In addition, in the solution growth of SiC and GaN, self-assembled faceted macrosteps roughen 
the vicinal surface and degrade the quality of the  crystal36. In our previous work, we used the restricted solid-
on-solid (RSOS) model with a point-contact-type step–step attraction (p-RSOS model) to demonstrate that a 
faceted macrostep exists stably at  equilibrium37–41. Here, “restricted” means that the surface height difference 
between nearest neighbor sites is restricted to {0,±1} . For interface-limited crystal growth/recession, a faceted 
macrostep disassembles as the absolute value of the driving force for crystal growth  increases42–45, which is a 
different behaviour than that of the results obtained for diffusion limited crystal  growth46.

Hence, in this article, the crossover from a BKT-rough surface to a KPZ-rough surface for interface-limited 
growth is studied using the Monte Carlo method based on the RSOS  model47–49 with a discrete Hamiltonian 
equivalent to the 19-vertex model. The surface is tilted between the (001) surface and the (111) surface. The 
surface width, surface velocity, and mean height of the locally merged steps are calculated depending on a set of 
external parameters, temperature T, driving force for crystal growth �µ , linear size of the system L, and surface 
slope p for the interface limited growth (recession) in the non-equilibrium steady state. The calculated results 
for the slope dependence of the surface width, surface velocity, and mean height of the locally merged steps 
are of greatest interest. From these results, we demonstrate which parameter determines whether the surface 
is KPZ-rough or BKT-rough. This work builds a bridge between mathematical models and surface models for 
crystal growth.

It should be noted that the RSOS model applied in the present study is slightly different from the RSOS model 
studied by Kim and  Kosterlitz50, which corresponds to the absolute SOS (ASOS) or simply the SOS  model51 for 
crystal growth, where the height difference between nearest neighbour sites can take a natural number up to the 
linear system size normal to the surface. However, their numerical simulations based on the KPZ equation were 
performed for a height difference up to 1. The crossover from a BKT-rough surface to a KPZ-rough surface for 
a 2D vicinal surface in 3D was first discussed by  Wolf52 using renormalization calculations with the anisotropic 
KPZ (AKPZ) equation. However, the present results are different from the AKPZ results on some points.

To obtain clear results for interface-limited crystal growth/recession, the surface  diffusion1,10,17,18,26–33, vol-
ume  diffusion46, second-nearest-neighbour (2nn) interaction between  atoms53–56 in crystals, Ehrlich–Schwoe-
bel  effect57,58, elastic  interactions59, surface  reconstruction24,25,60, adsorption  effects61–64, and point-contact-type 
step–step  attraction37–41 are not taken into consideration.

Model and calculations
The Hamiltonian for a vicinal surface is given by the following equation:

where h(m, n) is the height of the surface at a site (n, m) , ǫ is the microscopic ledge energy, N is the total number 
of unit cells on the (001) surface, and Esurf  is the surface energy per unit cell. The RSOS condition is required 
implicitly. Here, �µ is introduced such that �µ = µambient − µcrys , where µambient and µcrys are the bulk chemi-
cal potential of the ambient and crystal phases, respectively. At equilibrium, �µ = 0 ; for �µ > 0 , the crystal 

(2)H =
∑

{m,n}
{ǫ[|h(m+ 1, n)− h(m, n)| + |h(m, n+ 1)− h(m, n)|] −�µ h(m, n)} +NEsurf ,
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Figure 1.  Schematic figures of the side views of vicinal surfaces in the RSOS model. Dark lines: profile of the 
surfaces. Pink lines: part of the local (111) surface where ad-atoms cannot be added. Green thick lines: part of 
the local (111) surface where ad-holes cannot form. Upper box: vicinal surface tilted from the (001) surface. 
Lower box: vicinal surface tilted from the (111) surface. Thick light-blue arrows: step-growth direction for 
crystal growth. x̃ and ỹ indicate the 〈110〉 and �1̄10� directions. (a) ad-atom. (b) mono-atomic step. (c) (001) 
terrace. (d) step with a height of three mono-atomic steps ; the side surface is (111) surface. (e) ad-hole (negative 
ad-atom). (f) negative step.
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grows; whereas for �µ < 0 , the crystal recedes. The (grand) partition function for the surface at equilibrium is 
obtained by Z(T , L,�µ,Nstep)|�µ=0 =

∑

h(m,n) exp[−H/kBT] with a fixed Nstep.
For first-principles quantum mechanical calculations, Esurf  or ǫ corresponds to the surface free energy, which 

includes the entropy originating from lattice vibrations and  distortions65. Hence, Esurf  or ǫ decreases slightly as 
the temperature increases. However, Esurf  and ǫ are assumed to be constant throughout this work because we 
concentrate on the crossover phenomena of the surface roughness.

The vicinal surfaces of the tilted (001) and (111) surfaces are considered by using the Monte Carlo method 
with the Metropolis algorithm. Atoms are captured from the ambient phase to the crystal surface, and escape 
from the crystal surface to the ambient phase. The number of atoms in a crystal is not conserved. The external 
parameters are temperature T, �µ , number of steps Nstep , and the linear size of the system L. The (mean) surface 
slope p is defined by p = tan θ = Nstepa/L . For details of the Monte Carlo calculations, refer to Ref. [66] and 
the Supplementary Information.

The square of the surface width W(L, t) is defined by the variance of the height h(�x, t) of the vicinal surface:

where �x is a site on the surface, g is the determinant of the first fundamental quantity of a curved  surface23, 66, 
and θ is the tilt angle inclined towards the 〈111〉 direction from the 〈001〉 direction. 

Results
�µ and T dependence. Figure 2 shows the |�µ| dependence of the surface width for several temperatures. 
The roughening temperature of the (001) surface is T(001)

R /ǫ = 1.55± 0.0238,48, whereas the roughening tem-
perature of the (111) surface T(111)

R  is infinite. The temperature in (c) and (f) is higher than T(001)
R .

Near equilibrium ( �µ ∼ 0 ), the values of gW2/ ln L for each system size coincide (Fig. 2a,b,c), whereas for 
large |�µ| , √gW/Lα with α = 0.385 for each system size converge as the driving force increases (Fig. 2d,e,f). 
The value of α = 0.385 is the KPZ-exponent in this article. Then, a crossover-driving-force �µco is introduced. 
For |�µ| < �µco , W2 ∝ ln L (BKT rough), whereas for �µco < |�µ| , W ∝ Lα (algebraic rough). From Fig. 2, 
it is clear that the value of �µco depends on temperature. For high |�µ| , the convergence of α to the KPZ value 
is stronger when the temperature is lower. At kBT/ǫ = 0.4 , �µco|kBT/ǫ=0.4 = 0.3ǫ (Fig. 2a). For |�µ/ǫ| > 2 , 
there is good agreement between the three lines for √gW/L0.385 (Fig. 2d).

It has been suggested that a KPZ-rough surface may appear when the surface is kinetically  roughened10,18,52 
because islands on the terraces enhance the step-growth velocity. Hence, the driving force for the kinetic rough-
ening �µ

(001)
kr  on the (001) surface is studied. The obtained �µ

(001)
kr  at kBT/ǫ = 0.4 is �µ

(001)
kr /ǫ = 1.15± 0.15 . 

�µ
(001)
kr  is determined as follows. For a smooth terrace surface, the surface velocity V on the (001) surface 

converges to zero as the surface slope p → 0 ; whereas, for a rough terrace surface, V on the (001) surface con-
verges to a finite value as p → 0 . Then, �µ

(001)
kr  is determined as the largest |�µ| , so that the surface velocity V 

converges to zero as the slope p → 052 (refer to the section on the surface velocity below). In Fig. 2a,d, W near 
�µ

(001)
kr  (around �µ/ǫ = 1 ) seems to form a broad peak for larger system sizes. This peak in W is considered to 

(3)
gW(L, t)2 = �[h(�x, t)− �h(�x, t)�]2�,

g = (1+ p2x + p2y) = 1/ cos2 θ , px = py = Nstepa
√
2/L,
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Figure 2.  Driving force dependence of the surface width. (a)–(c) show gW2/ ln L vs. �µ/ǫ . (d)–(f) show √
gW/L0.385 vs. �µ/ǫ . (a), (c), (d), and (f): surface slope p = 3

√
2/8 ≈ 0.530 , tilt angle θ = 27.9◦ . (b, e) surface 

slope p =
√
2/2 ≈ 0.707 , tilt angle θ = 35.3◦ . Reverse triangles in (a, d): �µ negative and L = 80

√
2a ( a = 1).
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relate to the kinetic roughening of the (001) surface. In snapshots of the surface (Fig. 3), the steps rarely have an 
overhang structure (Fig. 3a,b) for �µ < �µkr , whereas overhang structures on the contour lines can be seen 
for Fig. 3c,d. Figure 3e shows the thermally roughened surface.

It is interesting that the kinetic roughening occurs approximately where the linear size of the 2D critical 
nucleus on a (001) terrace is less than 2a ( a = 1 ), where a is the lattice constant. Assuming that the shape of the 
critical nucleus on a (001) terrace is square, the size of the critical nucleus r∗ is expressed by r∗/a = 2ǫ/�µ . 
At |�µ/ǫ| = 1 or 2, r∗/a = 2 or 1, respectively. Islands with a compact shape are frequently formed near 
|�µ/ǫ| = 1.0 and merge with the step on the same layer. The step edge consists of several 1D “overhang” struc-
tures due to merging of the islands with steps. In this manner, islands on a terrace enhance the step velocity. For 
r∗/a ≤ 1 , where �µ/ǫ ≥ 2 , even a single atom on the terrace grows to form an island. This relates to the fact 
that W increases drastically around �µ/ǫ = 2.

It should be noted that the TSK picture is broken for |�µ| ≥ �µkr or for T > TR , since the “step” is not 
well-defined due to the terrace being roughened. However, the contour lines on the surface shown in Fig. 3c,d,e 
(and Supplementary Fig. S1 (b), (c), and (d)) show the complexities of the surface. In Fig. 3d and Supplementary 
Fig. S1 (c), dendritic contour shapes can be seen.

In the case of crystal recession, the 2D nucleus on the (001) terrace at �µ/ǫ = −1 is a negative square nucleus. 
Here, an ad-hole, a negative-island, and a negative-nucleus are, respectively, a vacancy on the terrace, an island 
made by a vacancy, and a negative-island with a critical size.

At kBT/ǫ = 0.63 , the characteristics of the |�µ| dependence of W are similar to those at kBT/ǫ = 0.4 . We 
also have �µco|kBT/ǫ=0.63 = 0.5ǫ , whereas �µkr |kBT/ǫ=0.63 = 0.65ǫ ± 0.05ǫ . The value of W is smaller than that 
for kBT/ǫ = 0.4 ; the peak of W around �µkr |kBT/ǫ=0.63 is small.

At kBT/ǫ = 1.7 where T > T
(001)
R  , the (001) terraces are rough at �µ = 0 . Hence, there is no kinetic roughen-

ing. Here, �µco|kBT/ǫ=1.7 = 1.2ǫ , which is the largest among the three cases. Multi-layer island formation caused 
by thermal fluctuations increases the region of BKT roughening (Fig. 3e).

L dependence. Figure 4 shows the ln L dependence of gW2 and ln(√gW) . Figure 4a shows the results at 
equilibrium. In contrast to the two-component system of our previous work at  equilibrium67, the linearity of 
the obtained data is high. This indicates that the elementary steps are well separated and the intervals between 
kinks are small relative to the system size. The amplitudes of the lines at p = 3

√
2/8 increase as the temperature 

increases, specifically, 0.102, 0.0759, and 0.0738 for kBT/ǫ = 1.7 , 0.63, and 0.4, respectively. These amplitudes 
are larger than the universal value of 1/(2π2) ≈ 0.0507 for p → 024,68,69.

Figure 4b shows results for the non-equilibrium steady-state at kBT/ǫ = 0.4 . For small �µ , gW2 increases 
logarithmically as the system size increases. However, a power law behaviour of √gW is obtained for relatively 
large |�µ| . The slopes of the lines show the roughness exponent α . For large L, the obtained α for �µ/ǫ = 2.2 , 
1.4, and 0.6 are 0.347, 0.331, and 0.316, respectively. This is consistent with the results seen in Fig. 2d–f. The 
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Figure 3.  Snapshots of simulated surfaces at 4× 108 MCS/site. (a,e): BKT-rough surfaces. (b–d): KPZ-rough 
surfaces. Size: 40

√
2× 40

√
2 . Nstep = 30. p = Nstepa/L = 3

√
2/8 ≈ 0.530 . θ = 27.9 degree. The surface height 

is represented by brightness with 10 gradations, where brighter regions are higher. Due to the finite gradation, 
where the darkest areas sit next to the brightest areas, the darker area is higher by one gradation unit. The lines 
showing the side views are drawn with respect to the height along the bottom edge of the top-down views.
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exponent α seems to gradually increase as |�µ| increases. However, the slope at larger L is steeper. Therefore, 
we consider that the exponent α converges to the KPZ value in the limit of L → ∞ . The large finite size effect 
decreases the value of α in the small length region.

It is interesting that large wavelength surface fluctuations are observed in the snapshots in Fig. 3b,c,d. We 
also show snapshots for L = 400

√
2a in the Supplementary Information.

From the results in this and the previous sections, we conclude that the crossover point �µco between the 
BKT-rough and the algebraic-rough surfaces is different from the kinetic roughening point �µkr . Also, the 
algebraic-rough surface is essentially the KPZ-rough surface in the limit of L → ∞ . The large finite size effect 
decreases the value of α for the small system size.

p dependence. Figure 5 shows the slope dependence of W and W2 . At equilibrium, apart from the neigh-
bourhood of the (001) surface, W for kBT/ǫ = 0.4 is well described by (Fig. 5a) the following single equation:

Here, for T > T
(001)
R  , gW2/ ln L of the (001) surface converges to a finite value for p → 0 . For different tempera-

tures for T < T
(001)
R  , the slope dependence of W agrees well within 5%.

For a large surface slope, near the (111) surface where T(111)
R  is infinite, W is well described by the following 

single equation:

(4)gW2/(ln L) = (A+ B ln p)2, A = 0.319± 0.006, B = 0.065± 0.008.
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for kBT/ǫ = 0.4, 0.63, and 1.7. It should be noted that the vicinal surface around the (111) surface of the RSOS 
model is approximate compared to the real (111) surface. The negative-step (Fig. 1) is a “step” with a (111) ter-
race in the step-down direction. However, due to the geometrical restrictions of the model, there are no “steps” 
with a (111) terrace in the step-up direction. For the same reason, there are no ad-atoms or ad-holes on the 
(111) terraces either.

For the non-equilibrium steady state, from Fig. 5d, apart from the neighbourhood of the (111) surface, the 
slope dependence of W is well described by

at |�µ/ǫ| = 2.2 and kBT/ǫ = 0.4.
Unexpectedly, as seen from Fig. 5b,d for small θ , a vicinal surface with a small tilt angle shows a different 

behaviour from the KPZ-rough surface even if |�µ| is high. For θ < 19◦ , the vicinal surface is BKT-rough. We 
will return to this point in the discussion.

Mean height of locally merged step. Figure 6a shows the �µ dependence of the mean height of locally 
merged steps 〈n〉 . In contrast to the cases of surfaces with faceted  macrosteps43–45, 〈n〉 is independent of the sys-
tem size or the initial configurations. This lack of a finite size effect means that 〈n〉 in the RSOS model is deter-
mined by the local or short wavelength structure of steps.

It is interesting that 〈n〉 at kBT/ǫ = 0.4 increases rapidly for �µ/ǫ > 1.2 , which is almost the same as �µkr 
at kBT/ǫ = 0.4 . At equilibrium, the result that �n� ∼ 1 indicates that the steps are well separated. When |�µ| is 
about �µkr , 2D nucleation with a compact shape and growth occurs frequently on the (001) terraces (Fig. 3c, 
Supplementary Fig. S1 (b)). The growing islands merge with the step on the same layer to enhance the surface 
growth velocity. However, growing islands that catch up with steps on the lower layer are prevented from further 
growth due to geometrical restrictions. Hence, the ratio of multi-height steps increases. This is why 〈n〉 increases 
rapidly as |�µ| increases for |�µ| > �µkr . Assuming that the increase of 〈n〉 is dominantly caused by the forma-
tion of double steps, the ratio of the double step is less than 20% for �µ/ǫ ≤ 1.6 , whereas the ratio increases up 
to about 50% for �µ/ǫ > 1.8 as �µ increases.

Again, it should be noted that when |�µ| exceeds �µkr , the TSK picture breaks down. However, regarding 
a contour line on the surface as an extended meaning of a “step”, the complexity of the surface undulations can 
be explained by an extended T“S”K picture.

At high |�µ| > 2 , since the size of the critical nucleus is less than one, ad-atoms on the terrace frequently 
grow larger islands for crystal growth. Also, the ad-atoms rarely escape from the terrace and the islands have 
dendrite shapes. Hence, by merging to a step, the contour lines of the vicinal surface exhibit winding shapes 
(Fig. 3d, Supplementary Fig. S1 (c)).

The slope dependence of 〈n〉 was also calculated (Fig. 6b). 〈n〉 is approximated by �n� ≈ A
√
2/(

√
2− p) with 

A = 0.672 for kBT/ǫ = 0.4 and �µ/ǫ = 0.2 . More precisely, 〈n〉 is relatively large near the (001) and (111) sur-
faces (Fig. 6c). For a BKT-rough surface, �n�(

√
2− p) is well expressed by a quadratic function with respect to 

(
√
2− p) ; whereas for a KPZ-rough surface, �n�(

√
2− p) is asymmetric around p = 1/

√
2.

Surface velocity. Figure 7a shows the �µ dependences of the surface velocity V. The surface velocity does 
not depend on the system size, but is determined by the local structure of the surface, such as the kink density 
on the surface. To determine the |�µ| dependence of the kink density, the kinetic coefficient k = (V/�µ)(ǫτ/a)
46 was calculated, where τ is the interval time of one MCS/site (Fig. 7b). Unexpectedly, for T < TR , the kinetic 
coefficient k decreases rapidly as |�µ| increases up to �µkr ; k decreases gradually for |�µ| > �µkr . The change 
of k happens in the step flow region rather than in the kinetically roughened region. For T > T

(001)
R  , k decreases 

by a constant rate as |�µ| increases.

(5)gW2/(ln L) = [A′ + B′ ln(
√
2− p)]2, A′ = 0.327± 0.002, B′ = 0.026± 0.005,

(6)gW/Lα = A′′ + B′′ ln(
√
2− p), A′′ = 0.233± 0.002, B′′ = 0.086± 0.004, α = 0.374,
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Figure 6.  |�µ| and the slope dependence of the mean height of a locally merged step 〈n〉 . T̃ = kBT/ǫ . (a) 
|�µ| dependence of 〈n〉 . p = 3

√
2/8 ≈ 0.530 . θ = 27.9◦ . (b) Slope dependence of 〈n〉 . (c) Slope dependence of 

�n�(
√
2− p) . Lines: �n�(

√
2− p) = A+ B(

√
2− p− C)2 + D(

√
2− p− C)3 + E(

√
2− p− C)4 ; from top to 

bottom, A = 1.19 , B = 0.290 , C = 0.594 , D = −0.352 , and E = 0.535 ; A = 1.01 , B = 1.07 , C = 0.672 , D = 0 , 
and E = −0.493 ; and A = 0.951 , B = 1.21 , C = 0.707 , D = 0 , and E = −0.604.
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Considering the surface velocity, a stepwise increase can be seen in Fig. 7a for kBT/ǫ = 0.4 . The step flow 
growth is almost saturated around kBT/ǫ ∼ 1 . For |�µ/ǫ| > �µkr , regarding the contour lines as extended 
surface “steps”, additional surface growth (or recession for �µ < 0 ) occurs by a 2D dendritic-island-growth 
process. Hence, the surface growth shows a stepwise increase. A stepwise increase of V with respect to �µ is 
also observed experimentally for a metal-alloy  surface70. It is known that the islands on the terrace surface have 
dendritic shapes, which is consistent with the present observation of the contour shapes in the computer simula-
tions (Fig. 3d, Supplementary Fig. S2 (c)).

Figure 7c shows the slope dependence of the relative surface velocity. V44 is the surface velocity of the sur-
face with θ = 44◦ . V/V44 is equal to k/k44 , where k44 is the kinetic coefficient of the surface with θ = 44◦ . In 
the limit of θ = 0 , V/V44 for a thermally rough (001) surface and a kinetically rough (001) surface converge to 
finite values; whereas for a smooth (001) surface, V/V44 converges to zero. Using these characteristics, �µkr 
can be determined.

It is remarkable that, for θ > 42◦ or p > 0.90 , the slope dependence of V/V44 coincides well with one of the 
curves, regardless of the difference of T or �µ . This indicates that the local structure or the short range structure 
of the vicinal surface for θ > 42◦ is approximately the same.

Discussion
The relationship between the surface velocity and fluctuation width was discussed by  Wolf52 using the renor-
malization group method. Let us consider the AKPZ  model17,52:

where νx̃ and νỹ are relaxation constants for the x̃ and ỹ directions, respectively, related to the surface tension, 
�x̃ and �ỹ are the coefficients related to the “excess velocity”, and η(�x, t) is Gaussian white noise. The parameters 
�x̃ and �ỹ are given by

Wolf52 found that for �x̃�ỹ > 0 , the system converges to a fixed point with algebraic roughness ( W ∝ Lα ), 
whereas for �x̃�ỹ < 0 , the system converges to another fixed point with logarithmic roughness ( W2 ∝ ln L).

To compare our results to the AKPZ model, we investigate the consistency between our results and the 
AKPZ results. For small θ , ∂V/∂p > 0 and ∂2V/∂p2 < 0 . Then, �x̃�ỹ < 0 indicates that the surface should be 
BKT (logarithmic)-rough, which is consistent with our results. For large θ , ∂V/∂p < 0 and ∂2V/∂p2 < 0 . Then, 
�x̃�ỹ > 0 indicates that the surface is KPZ (algebraic)-rough. This seems to be consistent with the results for the 
large |�µ| case. However, for small |�µ| , our results show BKT roughness for large θ . Hence, the AKPZ results 
are not fully consistent with our results. More seriously, if the surface slope p is replaced by 

√
2− p and redefined 

by p̂ , then we have ∂V/∂ p̂ > 0 and ∂2V/∂ p̂2 < 0 for large θ surfaces, which leads to logarithmic roughness. The 
AKPZ results change depending on the definition of the slope p. Therefore, the AKPZ results cannot be estab-
lished for the case of large θ in our model.

Then, the question remains as to what is the “relevant” quantity to obtain a KPZ (algebraic)-rough surface 
from a BKT-rough surface. We focused on the difference between the surfaces of kBT/ǫ = 0.4 with |�µ| = 0 and 
|�µ/ǫ| = 2.2 for θ > 30◦ . The only difference between these surfaces in the external parameters is the value of 
|�µ| . Therefore, we conclude that a sufficiently large |�µ| > 0 creates a KPZ (algebraic)-rough surface.

The next question is why a large |�µ| > 0 creates a KPZ (algebraic)-rough surface. We consider that a suf-
ficiently strong asymmetry between the attachment and detachment of atoms, which creates overhang structures 
on negative-step40 edges, gives rise to the KPZ-rough surface. Here, a negative-step is a step such that the ter-
race is a (111) surface and the side surface of the negative-step is a (001) surface (Fig. 1). For large θ , where the 
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vicinal surface is close to the (111) surface, the surface grows or recedes at the edge of negative-steps on the (111) 
surface (Supplementary Fig. S2). Due to the geometric restrictions of the RSOS model, ad-atoms or ad-holes are 
forbidden on the (111) surface. Hence, the (111) surface does not roughen kinetically. Nevertheless, the surface 
becomes a KPZ-rough surface when |�µ| is sufficiently large. Therefore, we conclude that a sufficiently strong 
asymmetry between attachment and detachment of atoms at negative-step edges creates the KPZ-rough surface.

Physically, for |�µ/ǫ| >> 0 with large θ , growing negative-steps have a strongly anisotropic step velocity. To 
describe this anisotropy, we introduce Miller indices for the (111) plane. The (01), (10), and (11) negative-steps 
have 2D vectors normal to the mean step-running directions in the �1̄01� , �01̄1� , and �11̄0� directions, respectively. 
Since the step velocity of (11) negative-steps is larger than that for (01) or (10) negative-steps, (11) negative-steps 
with a small-scale zig-zag structure involving (01) and (10) negative-steps under non-equilibrium conditions 
tend to be surrounded by longer (01) and (10) steps. Then, larger square shapes with (01) and (10) negative-
steps are formed in non-equilibrium conditions than at equilibrium (Supplementary Fig. S2). Some produce an 
overhanging structure at the negative-step edges. In this manner, a large-scale zig-zag structure with overhangs 
on the negative-step edges is formed due to the anisotropy in the step velocity for |�µ/ǫ| >> 0 , which increases 
the width of surface fluctuations. Therefore, the anisotropy in the step velocity or the kink density at the step 
edges creates KPZ-roughness on the surface for |�µ/ǫ| >> 0.

The third question is why a vicinal surface with small θ shows a BKT-rough surface even for large |�µ| . We 
consider that ad-atoms, ad-holes, islands, and negative-islands on “terraces” block the advancement/recession 
of the “steps”, decreasing the surface fluctuation width. The only difference between a BKT-rough surface and a 
KPZ-rough surface is the surface slope for kBT/ǫ = 0.4 and �µ/ǫ = 2.2 . For a small θ surface, ad-atoms, ad-
holes, islands, and negative-islands form on the (001) terrace (Figs. 1, Fig. 3b–d). When these excitations exist 
on the same layer as a step, they help to grow/recede the step. However, when such excitations exist on different 
layers from the step, they hinder the advancement/recession of the step. In this manner, the surface fluctuation 
is suppressed, decreasing W. For a large θ surface, ad-atoms, ad-holes, islands, and negative-islands cannot form 
on the (111) terrace due to geometrical restrictions. The surface can grow/recede mainly by growing/receding 
steps and negative-steps. A similar situation occurs for a 2D lattice gas on a surface. The phase transition in the 
2D lattice gas model belongs to the 2D Ising class. However, due to the presence of islands with multiple heights 
on the surface, the roughening transition of the surface belongs to the BKT class. Therefore, we conclude that 
the ad-atoms, ad-holes, islands, and negative-islands are relevant to making the BKT-rough surface.

In a real surface, there exist many other elements, as mentioned at the end of the introduction. Since the 
atomic attachment/detachment process on the vicinal surface studied in the present work is fundamental, exam-
ining the combinations with other elements should provide new knowledge. However, detail studies of the 
combinations are left as future work. In the following, we will discuss the combination with surface diffusion 
and the combination with the 2nd nn interactions between atoms.

Surface diffusion is one of the most important processes for crystal  growth1. Hence, extensive computer 
simulation studies of surface diffusion have been  undertaken26–33,71,72. Since the diffusion process of atoms is a 
result of the mass conservation law of atoms, the universality class of a surface with a diffusion process must be 
different from the universality class of a surface without  diffusion73. When surface diffusion occurs along with 
an atomic attachment/detachment process, it is referred to as a “desorption” process in statistical mechanics. The 
competition between the diffusion process and the desorption process causes a crossover phenomenon on the 
surface between a diffusion-relevant-rough surface and a desorption-relevant-rough  surface10,26–33 for a kineti-
cally roughened surface. Here, the roughness exponent α for the diffusion-relevant-rough surface is known to 
be α = (4− D)/3 ≈ 0.667 with D = 2 for a 2D surface in  3D28.

The occurrence of the crossover between the diffusion-relevant-rough surface and desorption-relevant-rough 
surface is system-size dependent, as measured by the surface width, with the diffusion length �s being the transi-
tion boundary: for L < �s , the diffusion process is relevant, while for �s < L , the desorption process is  relevant10. 
Here, the diffusion length �s , which is a characteristic length for the surface diffusion, is expressed  by1

where Ds is the diffusion coefficient for an atom travelling on the surface, τs is the mean life of an adsorbed atom 
before being evaporated, τh is the mean hopping time for an atom, W ′

s is the evaporation energy of an atom, Uh is 
the activation energy between two neighbouring equilibrium positions on the surface, and ν and ν′ are frequency 
factors. For many semiconductors, Uh << W ′

s , for which τs is large. Hence, the number of atoms on the surface 
is approximately conserved for a finite area L2 . Hence, the diffusion length is determined by Ds and increases 
as the temperature increases. This is the situation often observed in molecular beam epitaxy (MBE). While for 
metals, Uh < W ′

s , and τs determines the diffusion length. Hence, the diffusion length becomes shorter as the 
temperature increases. Atoms detach to the ambient phase frequently at high  temperatures1.

It should be noted that based on the present study, the desorption-relevant-rough surface for �s < L can be a 
BKT-rough surface, though the surface has been thought to be KPZ-rough. For a vicinal surface, a terrace with 
a (001) surface is smooth for small |�µ| less than the kinetic roughening point �µkr at temperatures less than 
the roughening transition temperature of the (001) surface T(001)

R  . A crossover between the desorption-relevant-
rough surface and the diffusion-relevant-rough surface with respect to the surface slope p must occur even if 
the (001) surface is smooth. When the mean terrace width ℓ = a/p is less than �s , the vicinal surface should be 
a 1D diffusion-relevant-rough  surface17,26, even though �s < L . Thus, the slope dependence of the surface width 
of a vicinal surface where diffusion and desorption processes coexist will be complex. The crossover between 
the desorption-relevant-rough surface and the diffusion-relevant-rough surface is intricately intertwined with 
the crossover between the BKT-rough surface and the KPZ-rough surface. The detail study of these crossovers 
is a future problem.

(9)�
2
s = Dsτs , Ds = a2/τh, 1/τs = ν exp(−W ′

s/kBT), 1/τh = ν′ exp(−Uh/kBT),
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The 2nn interactions between  atoms53–56 change the morphology and anisotropy of the surface (step) ten-
sion. Here, a vicinal surface is rough even if the terrace surface is  smooth22–25. For repulsive 2nn interactions, 
the 2nn interactions are expected to be “irrelevant” for determining whether the vicinal surface is BKT-rough 
or KPZ-rough, because the 2nn interaction does not change the Gruber–Mullins–Pokrovsky–Talapov74,75 uni-
versality class or the 1D free fermion character of mono-atomic  steps68,69,76 on a vicinal surface at equilibrium. 
However, considering the pre-roughening77 proposed by den Nijs and Rommels on a (001) surface for an SOS 
model with 2nn interactions between atoms, a new class for the kinetic roughening might exist. A detail study 
on this is also left as future work.

For an attractive interaction between 2nn atoms, the phenomena can be changed drastically. The RSOS model 
with point-contact-type step–step attraction (p-RSOS model) partially accounts for the 2nn attractions between 
atoms. In the p-RSOS model, mono-atomic steps self-assemble to form faceted macrosteps at low temperatures 
at  equilibrium37–45. In that case, the surface width is different from the results near equilibrium reported in the 
present paper. The author is currently preparing a separate article for publication to report these results.

conclusions
For the RSOS model with a discrete Hamiltonian under a non-equilibrium steady state without surface diffusion 
or volume diffusion:

• The crossover point �µco between the BKT (logarithmic)-rough surface and the KPZ (algebraic)-rough 
surface is different from the kinetic roughening point �µkr.

• A step flow growth or recession leads intrinsically to a KPZ-rough surface due to the anisotropic step velocity, 
where the anisotropy is caused by the crystal structure.

• The ad-atoms, ad-holes, and their clusters on terraces, which block the step advancement and recession, are 
relevant for making the BKT-rough surface.
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