
1

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:13114  | https://doi.org/10.1038/s41598-020-69890-3

www.nature.com/scientificreports

QtL mapping and GWAS 
for field kernel water content 
and kernel dehydration rate 
before physiological maturity 
in maize
Shufang Li1,5, Chunxiao Zhang1,5, Ming Lu2, Deguang Yang3, Yiliang Qian4, Yaohai Yue2, 
Zhijun Zhang2, Fengxue Jin1, Min Wang2, Xueyan Liu1, Wenguo Liu2* & Xiaohui Li1*

Kernel water content (KWC) and kernel dehydration rate (KDR) are two main factors affecting maize 
seed quality and have a decisive influence on the mechanical harvest. It is of great importance to map 
and mine candidate genes related to KWCs and KDRs before physiological maturity in maize. 120 
double-haploid (DH) lines constructed from Si287 with low KWC and JiA512 with high KWC were used 
as the mapping population. KWCs were measured every 5 days from 10 to 40 days after pollination, 
and KDRs were calculated. A total of 1702 SNP markers were used to construct a linkage map, with a 
total length of 1,309.02 cM and an average map distance of 0.77 cM. 10 quantitative trait loci (QTLs) 
and 27 quantitative trait nucleotides (QTNs) were detected by genome-wide composite interval 
mapping (GCIM) and multi-locus random-SNP-effect mixed linear model (mrMLM), respectively. One 
and two QTL hotspot regions were found on Chromosome 3 and 7, respectively. Analysis of the Gene 
Ontology showed that 2 GO terms of biological processes (BP) were significantly enriched (P ≤ 0.05) 
and 6 candidate genes were obtained. This study provides theoretical support for marker-assisted 
breeding of mechanical harvest variety in maize.

Maize (Zea mays L.) is one of the most important crops in the world. To reduce production costs and increase 
production efficiency, the whole-process mechanization has become an irreversible trend in world  agriculture1. 
Yet mechanical harvest, especially mechanical kernel harvest, remains a bottleneck of whole-process mechani-
zation for  maize2. The low kernel water content (KWC) at harvest was very important for maize, which could 
facilitate machinery harvest, shelling efficiency, grain quality and reduce additional drying cost and shrinkage 
 penalties3-5. When the KWC at harvest is more than 25%, the breakage rate increases quickly so as to significantly 
reduce farmers’  incomes6. Therefore, it is urgent to accelerate the breeding of varieties with low KWC at harvest.

The change in KWC comprises two distinct  phases7,8. The first phase spans the time from pollination to 
physiological maturity (PM) and is defined as physiological dehydration. During this phase, kernel water loss is 
primarily due to dry matter accumulation. The second phase spans the time from PM to harvest and is defined as 
naturally drying process. In this process, KWC at PM, drying time, and KDR jointly determine KWC at harvest. 
Previous research has shown that selection based on low ear-moisture content at a specific period after pollina-
tion was an effective way to result in low-KWC at  harvest9-11. The kernel dehydration rate (KDR) is defined as 
the rate of moisture loss between two adjacent periods after pollination, which is the corresponding index with 
KWC before PM.

Currently, the genetic mechanism of KWC and KDR is still unclear, making it necessary to further investigate 
the underlying molecular mechanism and identify relevant major genes. However, prior studies were mostly 
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QTL mapping for KDR after PM and KWC at  harvest3,4,12-17. Recently, QTL for three traits related with KWCs at 
30, 40, 60 and 80 days after pollination (DAP) was conducted by Capelle et al.3, using Recombinant Inbred Lines 
(RILs)  F3:4 populations derived from a cross between  F2 and  F252. Obvious stage-specific QTL were revealed for 
all traits. QTL for KWCs at 10, 20, 30 and 40 DAP and for KDRs during all periods was conducted by Li et al.18, 
using 258 RILs developed from a cross between N04 and Dan232. The results showed that 45 QTLs were stage/
period specific. Besides, there were no other records in the literature regarding QTL for KWC and KDR at dif-
ferent stages before pollination.

In this study, 120 derived double-haploid (DH) lines developed from a cross between two contrasting geno-
types, a Tangsipingtou inbred Si287 with low KWC, and a Iodent inbred JiA512 with high KWC were used to 
map QTLs by genome-wide composite interval mapping (GCIM)19 and QTNs by multi-locus random-SNP-effect 
mixed linear model (mrMLM)20, and to mine related candidate genes, which is for KWCs and the corresponding 
KDRs from 10 to 40 DAP. The results are of important theoretical significance and application value in the mining 
of candidate gene and the marker-assisted breeding of the field KWC and KDR-related characteristics in maize.

Results
Phenotypic evaluation of the DH populations.  From Table 1 and Supplementary Fig. S1, the KWCs 
of both parents of the DH line population, Si287 and JiA512, were significantly or extremely significantly dif-
ferent at all the sampling times from 10 to 40 days after pollination in 2015 and 2016. There existed variations 
in the target traits among different lines, and the coefficients of variation for all the KWCs were less than 10%. 
The heritability for the KWCs ranged from 77.324 to 79.631%. The correlations between these KWCs for various 
periods in three environments were more than 90%. From Fig. 1a, we could know that the changing tendency of 
KWCs in three environments was similar; all continuously declined with increasing days after pollination and 
generally conformed to linear curve.

From Table 1 and Supplementary Fig. S2, the KDRs of Si287 and JiA512, were significantly or extremely 
significantly different at a majority of the above sampling times in 2015 and 2016. There existed variations in 
the target traits among different lines, and the coefficients of variation for all the KDRs were more than 10% and 
ranged from 28.76 to 47.63%. The heritability for the KDRs ranged from 63.235 to 73.295%. In the DH popu-
lation, only the kurtosis for KWC30 was > 1, and the absolute values of skewness and kurtosis for other traits 
were < 1, which met the QTL mapping requirements for mapping studies. The KDRs for various periods were 
different among different lines of the DH population, but the correlations between these indicators were poor. 
From Fig. 1b, we could also know that the changing tendency of KDRs in the mean environment was continu-
ously increased with increasing days after pollination.

Genetic  map  construction.  Using the Axiom  Maize55K21 chip and upon filtration per the criteria 
described in section “DNA extraction and genotype analysis”, there remained 12,861 polymorphic SNPs. The bin 
function in IciMapping software was used to delete redundant markers, the recombination frequency between 
them will be estimated as 0. A genetic linkage map containing 1702 markers was eventually obtained. 1702 
markers covered 1,309.02 cM on 10 chromosomes (Chr.) with an average marker interval of 0.77 cM (Supple-
mentary Fig. S3). Total length of the map for each chr. ranged from 98.96 cM (chr.8) to 234.93 cM (chr.1). Chr.4 
and 1 had the least (115 markers) and most (335 markers) markers, respectively; chr.3 and 4 had the minimum 
(0.63 cM) and maximum (0.97 cM) average marker-intervals, respectively. Only one gap ≥ 10 cM existed on 
Chr.4 (10.46 cM); 1,680 gaps ≤ 5 cM existed (Table 2).

QTL mapping for KWCs and KDRs.  The GCIM model detected 10 additive QTLs related to KWC and 
KDR (Table 3, Fig. 2, Supplementary Figs. S4-S6), in which 575 candidate genes were annotated (Supplementary 
Table S1) and 6 QTLs were detected in two or three environments. These QTLs were distributed on Chr. 1, 3–5, 
7 and had an LOD range of 2.54–3.87 and could explain 3.06–16.03% of the phenotypic variation (PVE). For 6 
QTLs related to KWC, qKWC35-3-1, qtlKWC35-7-1 and qtlKWC40-3-2 derived from the maternal line Si287, 
which had an LOD range of 2.76–3.41 and the range of PVE was 3.72–8.85%; qtlKWC35-4-1, qtlKWC35-7-2 and 
qtlKWC40-3-1 derived from the paternal line JL001, which had an LOD range of 2.76–3.41 and the range of PVE 
was 3.06–12.10%. For 4 QTLs related to KDR, qtlKDR30-5-1, qtlKDR35-7-1 and qtlKDR40-3-1 derived from the 
maternal line Si287, which had an LOD range of 2.54–3.47 and the range of PVE was 7.24–12.80%; qtlKDR15-1 
derived from the paternal line JL001, which had an LOD 2.64 and the PVE was 16.03%. qtlKWC35-7-2 and 
qtlKDR35-7-1 were located at the same interval; qtlKWC35-3-1, qtlKWC40-3-1 and qtlKDR40-3-1 had an inter-
val adjacent to each other. The above results are consistent with previous studies, which indicated that KDR is a 
maternal  effect24 but has a paternal effect as  well25.

GWAS for KWCs and KDRs.  Structure 2.3.4  software26 was used to calculate the population structure (Q 
value),by setting the range of K value to 1–10 and based on the kinship and ΔK value of the parents Si287 and 
JiA512, K = 2 was specified (Supplementary Fig. S7). Using population structure (Q) and kinship (K) as covari-
ates, the Q + K model in the mixed linear model mrMLM was used to perform GWAS for KWC and KDR. A 
total of 27 QTNs associated with KWC and KDR were detected (Table 4, Fig. 2, Supplementary Fig. S8) and were 
distributed on Chr. 2–4 and Chr.6–8, and the range of PVE was 0.34–11.58%, in which 7 QTNs were detected by 
more than two environments or two methods. qtnKDR25-4, qtnKWC35-7-2 and qtnKWC40-3-2 were detected 
by two environments and the range of PVE was 2.88–8.23%. qtnKWC35-8 and qtnKWC40-3-3 were respectively 
detected by two or three models and the range of PVE was 4.56–11.58%. qtnKDR30-7 and qtnKWC35-4 were 
respectively detected by two or three models in three environments.
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Co-mapping analysis of QTLs and significantly associated loci  in GWAS and candidate gene 
mining.  The 5 KWC-related QTNs detected by the mrMLM model in the GWAS were consistent with the 
intervals of KWC- and KDR-related QTLs (Fig. 2). qtnKWC35-3-1 and qtnKWC40-3-2 were within the physical 
interval of qtlKDR40-3-1. qtnKDR35-3 and qtnKWC40-3-3 were within the physical interval of qtlKWC40-3-1. 
qtnKWC35-3-2 was within the physical interval of qtlKWC35-3-1. qtnKWC35-4 was within the physical inter-
val of qtlKWC35-4-11. qtnKDR35-7, qtnKWC35-7-2 and qtnKDR20-7 were within the physical interval of 
qtlKDR35-7-1 and qtlKWC35-7-2. After mapping the 10 QTLs and 27 QTNs on the B73 genetic map, there were 
3 maize KWC- and KDR-related hotspot regions on Chr.3 and 7, corresponding to 8,596,700–11,655,573 bp, 
117,271,199–118,924,581 bp and 162,434,519–172,868,044 bp.

To explore genes potentially related to KWCs and KDRs in maize, we analyzed the above 3 hotspot regions. 
The 3 regions have 98, 33, and 363 genes, respectively. These genes are annotated for enrichment analysis using 
AGRIGO V2 software (https ://syste msbio logy.cau.edu.cn/agriG Ov2/index .php). According to the functions in 
the GO database, the terms can be grouped into 3 categories (Fig. 3): molecular function (MF), cellular com-
ponent (CC) and biological process (BP). For MF, there are 6 terms; For CC, there are 3 terms and for BP, there 

Table 1.  Statistical analysis for KWC and KDR of the parents and the DH population. 1SD., standard 
deviation; 2CV., coefficient of variation; 3Ske., skewness; 4Kur., kurtosis; 5Her., heritability; BLUP, best linear 
unbiased prediction, ** is significant at 0.01 levels.

Traits ENV Si287 JiA512

DH population

Max Min Mean 1SD 2CV. (%) 3Ske 4Kur 5Her. (%)

KWC10

2015 65.005 67.775** 73.373 63.308 68.435 1.750 2.557 − 0.175 0.239 77.395

2016 65.400 68.997** 74.096 63.773 68.465 1.887 2.756 − 0.001 − 0.034

BLUP 65.064 68.369 73.948 64.285 68.451 1.842 2.691 0.005 − 0.066

KWC15

2015 64.114 66.803** 72.569 61.933 67.729 1.777 2.623 − 0.244 0.589 77.669

2016 64.510 67.953** 73.212 63.227 67.773 1.892 2.791 − 0.002 − 0.073

BLUP 64.170 67.351 73.061 63.550 67.752 1.856 2.739 − 0.021 0.011

KWC20

2015 63.268 65.580** 71.766 60.566 66.958 1.830 2.733 − 0.388 0.711 77.667

2016 63.694 66.748** 72.452 62.634 66.993 1.878 2.803 − 0.036 − 0.135

BLUP 63.339 66.123 72.309 62.194 66.977 1.876 2.802 − 0.112 − 0.002

KWC25

2015 61.602 65.082** 70.872 59.652 66.170 1.830 2.766 − 0.323 0.863 77.324

2016 62.025 66.292** 71.555 61.932 66.209 1.872 2.827 − 0.060 − 0.194

BLUP 61.637 65.657 71.410 61.256 66.191 1.870 2.826 − 0.101 0.010

KWC30

2015 60.855 64.418** 70.274 58.531 65.270 1.898 2.908 − 0.335 0.829 78.664

2016 61.261 65.675** 70.902 60.573 65.320 1.961 3.001 − 0.070 − 0.202

BLUP 60.897 65.027 70.784 60.148 65.296 1.950 2.986 − 0.118 0.035

KWC35

2015 58.773 62.112** 68.850 57.721 64.136 1.860 2.900 − 0.254 0.564 78.023

2016 59.140 63.323** 69.286 59.545 64.204 1.936 3.016 − 0.078 − 0.222

BLUP 58.752 62.652 69.259 59.373 64.172 1.918 2.989 − 0.080 − 0.092

KWC40

2015 57.257 59.899** 67.706 55.222 62.352 1.990 3.191 − 0.382 0.716 79.631

2016 57.696 61.051** 68.137 56.787 62.434 2.092 3.352 − 0.171 − 0.190

BLUP 57.298 60.399 68.120 56.818 62.395 2.062 3.305 − 0.198 0.005

KDR15

2015 0.179 0.199** 0.296 0.036 0.141 0.058 40.928 0.392 0.074 71.773

2016 0.179 0.211** 0.302 0.030 0.138 0.057 40.894 0.368 0.184

BLUP 0.179 0.206 0.298 0.032 0.140 0.057 41.007 0.365 0.151

KDR20

2015 0.166 0.250** 0.315 0.037 0.154 0.069 44.562 0.532 − 0.516 66.746

2016 0.166 0.241** 0.310 0.035 0.156 0.067 43.025 0.502 − 0.592

BLUP 0.166 0.248** 0.316 0.036 0.155 0.069 44.308 0.511 − 0.586

KDR25

2015 0.347 0.095** 0.360 0.044 0.157 0.075 47.630 0.763 − 0.194 63.235

2016 0.329 0.093** 0.341 0.051 0.157 0.071 45.478 0.798 − 0.300

BLUP 0.344 0.092 0.357 0.044 0.157 0.074 47.135 0.764 − 0.278

KDR30

2015 0.141 0.128* 0.435 0.030 0.180 0.070 39.036 0.748 1.243 72.711

2016 0.147 0.122* 0.427 0.034 0.178 0.071 39.919 0.462 1.408

BLUP 0.144 0.124 0.433 0.029 0.179 0.071 39.567 0.659 1.227

KDR35

2015 0.437 0.482** 0.482 0.023 0.226 0.095 42.057 0.278 − 0.224 73.295

2016 0.434 0.479** 0.460 0.045 0.223 0.090 40.330 0.351 − 0.214

BLUP 0.438 0.484 0.464 0.042 0.225 0.093 41.388 0.314 − 0.240

KDR40

2015 0.288 0.444** 0.581 0.133 0.357 0.104 29.182 − 0.175 − 0.800 71.227

2016 0.283 0.456** 0.591 0.142 0.354 0.102 28.768 − 0.099 − 0.763

BLUP 0.284 0.452 0.590 0.134 0.356 0.104 29.285 − 0.149 − 0.782

https://systemsbiology.cau.edu.cn/agriGOv2/index.php
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Figure 1.  The changing curves for KWCs and KDRs of the parents and the DH population under three 
environments. (a) KWC; (b) KDR.

Table 2.  Characteristics of the high-density genetic map derived from a cross between Si287 and JiA512.

Chr. no. Number of markers Physical distance (Mb) Genetic distance (cM)
Avg distance between 
markers (cM)

Gap (cM)

≤ 5 ≥ 10 Max

1 335 301.28 234.93 0.70 333 0 6.41

2 228 236.71 181.20 0.80 226 0 8.04

3 165 232.16 103.39 0.63 164 0 3.41

4 115 239.69 107.86 0.97 113 1 10.46

5 183 217.76 121.19 0.67 181 0 5.94

6 153 169.05 129.98 0.86 152 0 4.41

7 168 173.19 123.02 0.74 165 0 5.99

8 118 175.34 98.96 0.85 116 0 7.13

9 118 156.87 100.20 0.86 115 0 6.20

10 119 149.46 108.47 0.92 115 0 5.99

Total 1702 2051.52 1,309.02 0.77 1,680 1 10.46

Table 3.  QTL mapping for KWCs and KDRs in DH population. 11: 2015; 2: 2016; 3: BLUP.

QTL Trait Chr Pos. (cM) Add LOD PVE (%) Bin marker interval
Confidence interval 
(Mb) 1ENV Previous QTLs

qtlKWC35-3-1 KWC35 3 3.19 0.64–0.76 2.76–3.41 4.0–8.85 AX-90796489–
AX-91556213 10.69–14.85 1, 3 qKdr-3-1 Wang et al.22

qtlKWC35-4-1 KWC35 4 107.86 − 0.64 to − 0.90 2.88–3.70 4.15–12.10 AX-86314360–
AX-91641504 239.54–239.69 1, 2, 3

qtlKWC35-7-1 KWC35 7 46.56 0.72 3.22 5.20 AX-91743846–
AX-91744474 169.62–172.87 3

qtlKWC35-7-2 KWC35 7 104.91 -0.63 2.67 3.98 AX-91734685–
AX-91411127 117.27–118.92 3 Rate_30_40_2 Capelle 

et al.3

qtlKWC40-3-1 KWC40 3 2.04 − 1.75 to − 1.91 2.61–3.87 3.06–9.66 AX-86268070–
AX-86262944 10.39–11.66 1, 2, 3

qtlKWC40-3-2 KWC40 3 85.67 1.93 2.87 3.72 AX-90851052–
AX-90851146 216.93–217.32 2 qKdr-3-6 Wang et al.22

qtlKDR15-1 KDR15 1 150.95 − 0.40 2.54 16.03 AX-91441400–
AX-86240805 182.88–184.65 1

qtlKDR30-5-1 KDR30 5 91.31 0.04–0.05 2.59–2.71 7.24–11.76 AX-91646000–
AX-90609735 14.49–22.21 1, 2

qtlKDR35-7-1 KDR35 7 104.91 0.10–0.11 3.30–3.47 12.60–12.80 AX-91734685–
AX-91411127 117.27–118.92 1, 2, 3

qtlKDR40-3–1 KDR40 3 0.58 0.29–0.32 2.54–2.73 9.80–9.98 AX-90796530–
AX-86268070 10.02–10.39 1, 2, 3 qFkdr3a Qian et al.23
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are 19 terms. 2 GO terms of BP were significantly enriched (P ≤ 0.05) (Supplementary Table S2), the KWCs and 
KDRs may be related to certain BP terms. 6 candidate genes were obtained (Supplementary Table S3).

Discussion
The availability of a reliable methodology to measure KWC under field conditions is a bottleneck in selection for 
 KDR28. The traditional oven method is destructive and not suitable for rapid detection of KWC. Instead, a mois-
ture determination metric, which reveals kernel moisture via detection of electric capacity variation, has been 
 developed29. This method was listed in the International Seed Testing Protocol in 2003. The hand-held moisture 

Figure 2.  Chromosomes location of QTLs and QTNs for KWCs and KDRs in three environments. Red is for 
the QTLs, green is for the QTNs.

Table 4.  QTNs for KWCs and KDRs based on six models. 11: 2015; 2: 2016; 3: BLUP. 
21: pLARmEB; 2: ISIS EM-BLASSO; 3: mrMLM; 4: FastmrMLM; 5: FASTmrEMMA; 6: pKWmEB.

QTN Trait SNP Chr Pos. (Mb) QTN effect LOD score PVE (%) 1ENV 2Method Previous QTLs

qtnKWC15-4 KWC15 AX-90873933 4 68.28 − 0.34 3.33 5.17 2 1

qtnKWC20-7-1 KWC20 AX-91062728 7 156.22 − 0.31 3.46 7.53 3 2

qtnKWC20-7-2 KWC20 AX-91741712 7 158.15 − 0.31 4.11 7.27 3 2

qtnKWC35-3-1 KWC35 AX-86281780 3 10.10 0.50 3.59 5.73 3 2 qFkdr3a, qFkdr3c Qian et al.23

qtnKWC35-3-2 KWC35 AX-86310397 3 11.54 − 0.70 4.58 7.55 1 2 qFkdr3a, qFkdr3c Qian et al.23

qtnKWC35-4 KWC35 AX-91641504 4 239.69 − 0.38 to − 0.64 3.02–3.82 3.22–5.93 1, 2, 3 1, 2, 4

qtnKWC35-7-1 KWC35 AX-86318553 7 115.58 − 0.64 3.18 5.66 2 2

qtnKWC35-7-2 KWC35 AX-86251963 7 117.34 − 0.52 to − 0.76 3.66–4.12 5.88–7.94 2, 3 1

qtnKWC35-7-3 KWC35 AX-91357015 7 120.29 − 0.66 3.75 6.52 1 1

qtnKWC35-7-4 KWC35 AX-91064514 7 162.43 − 0.46 3.04 4.82 3 2

qtnKWC35-8 KWC35 AX-86253350 8 95.29 0.54 3.47–3.53 4.56–4.79 1 1, 2 Water_80_5 Capelle et al.3

qtnKWC40-2-1 KWC40 AX-123946682 2 207.29 1.61 3.06 6.34 3 1 qKdr-2-2 Wang et al.22

qtnKWC40-2-2 KWC40 AX-90785588 2 208.86 1.95 3.75 7.75 1 2 qKdr-2-2 Wang et al.22; q9GDR13-2-1 Li 
et al.18

qtnKWC40-3-1 KWC40 AX-86288465 3 8.60 − 1.53 3.05 6.31 1 1

qtnKWC40-3-2 KWC40 AX-86281780 3 10.10 1.61 3.24–3.31 8.11–8.23 2, 3 2 qFkdr3a, qFkdr3c Qian et al.22

qtnKWC40-3-3 KWC40 AX-91555465 3 10.57 − 1.64 to − 2.13 3.04–3.77 6.88–11.58 1 2, 3, 4 qFkdr3a, qFkdr3c Qian et al.22

qtnKWC40-7-1 KWC40 AX-91060390 7 147.62 − 1.36 3.03 4.77 2 2

qtnKWC40-7-2 KWC40 AX-91739850 7 147.82 − 1.77 4.40 8.09 1 2

qtnKDR20-2-1 KDR20 AX-86283442 2 2.54 − 0.01 3.88 0.99 3 2

qtnKDR20-2-2 KDR20 AX-90731189 2 4.50 − 0.01 4.42 0.34 2 1

qtnKDR20-7 KDR20 AX-90636690 7 118.62 0.03 3.63 4.04 2 2

qtnKDR25-4 KDR25 AX-86312325 4 7.18 0.02–0.03 3.03–7.73 2.88–3.00 1, 2 1

qtnKDR30-3 KDR30 AX-90842115 3 186.13 0.02 13.93 1.89 1 1

qtnKDR30-7 KDR30 AX-116872292 7 107.87 0.01–0.02 3.48–11.09 0.46–3.63 1, 2, 3 1, 2

qtnKDR35-3 KDR35 AX-91555465 3 10.57 0.05 4.39 2.71 1 1 qFkdr3a, qFkdr3c Qian et al.22

qtnKDR35-7 KDR35 AX-86251963 7 117.34 0.09 4.68 9.37 1 2

qtnKDR40-6 KDR40 AX-91450874 6 161.99 − 0.23 3.41 5.92 3 2 qKdr6-1  Zhang27
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meter has been reported to be useful for selecting and evaluating genetic  materials4,11,12,23,28,30. In this study, an 
SK-300 probe (manufactured by Harbin Yuda Electronic Technology Co., Ltd., China) was used to measure KWC.

Many studies suggested that there is close relation between KWC and KDR and environmental factors includ-
ing air temperature, air humidity, rainfall,  etc30-32. Hence, the following measures were taken in this study so as 
to avoid the effect of the environmental factors on KWC and ensure the determination accuracy. (1) To avoid 
border effects, for each plot, 2 border rows and the first 2 plants at each end of the middle 3 rows were not used 
for future determination. (2) The ears were bagged before silking and pollinated by hand. One week later, the bags 
were removed and 5 tested ears were randomly selected, tagged and labeled in each plot. (3) The measurement 
time was established for 9:00 A.M. to remove the effect of the dew and the difference of measurement time. (4) 
If it rains, the KWC was measured after wiping the outer bracts of the ears to eliminate the effect of the rainfall.

RIL and DH population are all permanent mapping populations. The former has a high degree of recombi-
nation, but the constructed period is very long and dominant effect couldn`t be estimated. The latter has a bad 
degree of recombination, but the plants are homozygous and could be used to study the interactions between 
genotypes and environments.

The quality of the genetic map directly affects the accuracy of QTL mapping. Increasing marker density 
can improve the resolution of genetic  map33-35. With the development of high-throughput sequencing and re-
sequencing of the whole genome of the B73, numerous SNP markers have become effective means for construct-
ing high-density genetic maps for  maize36,37. SNPs provide abundant genetic variation loci at the genome level, 
which greatly improves genome coverage and marker  saturation38-40. In previous studies, very significantly dis-
torted markers were discarded in the construction of linkage maps, but the more markers increase total genetic 
distance and marker density on the  chromosome41, and use of fewer distorted markers in all the RILs decreases 
the impact of distorted marker on map  construction42,43. In this study, the Axiom Maize55K chip was used for 
genotyping DH lines and their parents to screen out 12,861 polymorphic markers, and upon removing redundant 
markers that the recombination frequency between them will be estimated as 0, a linkage map containing 1,702 
markers including segregation distortion markers was obtained, with a total full length of 1,309.02 cM and an 
average map distance of 0.77 cM.

Linkage analysis was the most widely-used method in QTL mapping, which included the composite interval 
mapping (CIM), the inclusive composite interval mapping (ICIM), etc. Up to now, most of the numerous QTLs 
have small effects on complex  traits44, and some are closely  linked45. Although QTL mapping has proven to be 
useful for detecting major QTL with relatively large effects, it may lack power in accurately modeling small-effect 
 QTL46. To address this issue, Genome-wide association study (GWAS) was developed to reconsider the model 
and improve the way that polygenic background is controlled. The GWAS data often includes a large number of 
markers, making co-factor selection infeasible. Thus, polygenic effects are often fitted to a mixed linear model 
to capture the genomic background  information47,48. This treatment can help us improve the methods of QTL 
mapping, and overcome the subjectivity nature of the CIM in co-factorselection49,50. A series of simulated and real 

Figure 3.  The annotation of the common candidate genes in GO analysis.
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datasets was used to compare the different methods. The results showed that GWAS analysis had higher power in 
QTL detection, greater accuracy in QTL effect estimation, and stronger robustness under various backgrounds 
as compared with the CIM and empirical Bayes  methods19.

KWC and KDR after field pollination in maize are complex quantitative traits susceptible to environmental 
conditions and are controlled by multiple  genes8,51. As maize KWC and KDR are affected by additive genetic 
effects and have high  heritability7,51-55, it is feasible to carry out mapping of major QTLs for KWC and KDR, to 
mine candidate genes and to develop practical functional markers for marker-assisted selection. In this study, 
10 QTLs and 27 QTNs were detected, in which 4 QTLs and 29 QTNs were consistent with previous studies. The 
others in this study have not been reported. 2 GO terms of BP were significantly enriched (P ≤ 0.05), the KWCs 
and KDRs may be related to certain BP terms. 6 candidate genes were obtained, in which Zm00001d022326 
coded gibberellin receptor GID1L2 (Zea mays). These co-located QTL are reliable and will be valuable for marker 
assisted selection in maize genetic improvement.

Conclusions
The KWCs and the KDRs of both parents of the DH line population, Si287 and JiA512, were significantly or 
extremely significantly different at the sampling times from 10 to 40 days after pollination in 2015 and 2016. There 
existed variations in the target traits among different lines. The heritability for the KWCs and KDRs was very 
high. 10 quantitative trait loci (QTLs) and 27 quantitative trait nucleotides (QTNs) were detected by genome-
wide composite interval mapping (GCIM) and multi-locus random-SNP-effect mixed linear model (mrMLM), 
respectively. One and two QTL hotspot regions were found on Chromosome 3 and 7, respectively. Analysis of 
the Gene Ontology showed that 2 GO terms of biological processes (BP) were significantly enriched (P ≤ 0.05) 
and 6 candidate genes were obtained. This study provides theoretical support for marker-assisted breeding of 
mechanical harvest variety in maize.

Materials and methods
Plant materials.  Si287 (low KWC) and the self-selection line JiA512 (high KWC) were selected as parents 
based on their similitude in time to flowering and their difference in KDR, which were part of the Tangsiping-
tou and Iodent heterotic groups, respectively. Specifically, Si287 was the maternal of the maize hybrid Jidan 27, 
which has been continuously grown for fifteen years in Heilongjiang Province, China with the most annual 
planting acreage, reaching up to 160,000 hectares. A DH population of 120 lines was developed from a cross 
between Si287 (maternal) and JiA512 (paternal).

The development of DH population was briefed as follows: In the summer of 2013, at the Gongzhuling (Jilin 
Province, China) Experimental Base of the Jilin Academy of Agricultural Sciences (JAAS), Si287 and JiA512 were 
crossed to obtain F1. In the winter of 2013, at the Ledong (Hainan Province, China) winter nursery of JAAS, the 
F1 plants as the maternal parent were made to obtain induced progenies using the induction line “Jiyou 101” as 
the paternal parent. In the summer of 2014, at the Gongzhuling Experimental Base, the induced progenies were 
chromosome-doubled using colchicine, followed by kernel identification; upon field identification and selec-
tion, 120 DH lines were obtained. In the winter of 2014, at the Ledong winter nursery, the 120 DH lines were 
multiplied in large number and used in subsequent experiments.

Field design and phenotypic measurements.  The 120 DH lines and their parents were sown on April 
25, 2015 and on April 29, 2016 at Gongzhuling (124°47′ N and 43°27′ E), with a final plant density of 75,000 
plants  ha-1. A randomized block design with three replications was adopted in two environmental evaluations. 
In both years, each plot had 5 rows, with a row length of 5 m, row spacing of 0.65 m, plant spacing of 0.20 m and 
plot area of 16.25  m2. The field management in both years was the same. To avoid border effects, for each plot, 2 
border rows and the first 2 plants at each end of the middle 3 rows were not used for future trait determination.

The ears were bagged before silking (50% of plants in the row having extruded silks). Then the bagged ears 
were pollinated by hand (Supplementary Table S4). One week later, the bags were removed and 5 tested ears 
were randomly selected, tagged and labeled in each plot. The water content was recorded from 10 to 40 day after 
pollination, with one measurement of every 5 days. At 9:00 a.m., per the method published by Reid et al.29, for 
each ear, a SK-300 probe for water content measurement (manufactured by Harbin Yuda Electronic Technol-
ogy Co., Ltd., China) was used to pierce into kernels after penetrating the bract leaves in the middle of the ear.

KWCs on day 10, 15, 20, 25, 30, 35, 40 after pollination were measured, which were designated as 
KWC15, KWC20, KWC25, KWC30, KWC35 and KWC40, respectively. KDRs were then calculated based on 
KWCs for 2 adjacent times. KDR = (KWC at a given time—KWC at the next time)/number of days during 
the time span. The KDRs for the 6 time spans (namely, 10–15, 15–20, 20–25, 25–30, 30–35 and 35–40 days 
after pollination) were respectively denoted as KDR15, KDR20, KDR25, KDR30, KDR35, and KDR40. 
CV(Coefficient of variation) = SD(Standard Deviation)/Mean . One-way analysis of variance (ANOVA) between 
parents and the descriptive statistics for the DH population was conducted using SPSS 22.0 (SPSS, Chicago, IL, 
United States). R software was used to analyze the correlation between various traits. The best linear unbiased 
predictions (BLUPs) for each trait of 2 years were calculated using the R package  Lme456 with the following 
model: y = Imer

(

Trait ∼
(

1|Genetype
)

+ (1|Year)
)

.

DNA  extraction  and  genotype  analysis..  Genomic DNA of 120 DH lines and their parents were 
extracted from young leaves by a modified cetyltrimethyl ammonium bromide (CTAB) method. DNA quality 
was determined by agarose gel electrophoresis (0.8%) and spectrophotometry (NanoDrop 2000). Genotyping 
was performed using an Axiom Maize55K  biochip21 from CapitalBio Corporation (Beijing, China).
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The Axiom Maize55K biochip contains 55,229 single-nucleotide polymorphisms (SNPs). Based on the Affy 
Axiom Array 2.0 platform, the 120 DH lines and their parents were genotyped. Upon genotyping, the original 
data were filtered based on the following criteria: (1) minor allele frequency (MAF) > 0.05 and missing genotype 
rate < 0.1 (24,622 remained); (2) missing SNP loci for any or both of the parents (24,481 remained); (3) no poly-
morphisms at loci between parents (17,124 remained); and 4) heterozygous loci for any of the parents (12,861 
remained). The PLINK program (version 1.9)57 was obtained SNPs with MAF > 0.05 and missing genotype 
rate < 0.1 for association analyses.

Genetic map  construction.  The bin function in QTL IciMapping V4.158 software was used to delete 
redundant SNP markers, the recombination frequency between them will be estimated as 0, and the remaining 
markers were bin markers and used to construct a genetic linkage map. The threshold value of the logarithm of 
odds (LOD) was set as 3.0, and the Kosambi  function59 was used to start the program. Centi-Morgan (cM) was 
used to represent the intervals of markers on the map.

QTL mapping and comparison with previous studies.  All the above phenotypes, along with marker 
genotypic information and linkage maps, were used to identify QTLs using genome-wide composite interval 
mapping (GCIM)19, implemented by the software program QTL.gCIMapping.GUI60, where the threshold for 
significant QTL was set at LOD = 2.5 and the walking speed was 1 cM. Considering that all potential QTLs were 
selected in the first stage, we decided to place a slightly more stringent criterion of 0.000691, which is converted 
from LOD score 2.50 of the test statistics using Pr

(

χ
2
v > 2.50× 4.605

)

= 0.000691 . The above-mentioned QTL 
nomenclature refers to the method in McCouch et al.61. The QTL nomenclature was designated as: qtl + trait 
abbreviation + chromosome number + QTL number. MapChart 2.3  software62 was used to draw genetic linkage 
maps and label QTLs. When a QTL in the current study shared the same physical region as the previous QTL, 
it was regarded as a repeated identification of the previous QTL; otherwise, the current QTL was regarded as a 
new one.

Genome-wide association studies.  All the above phenotypic and genotypic information in the above 
mapping population was used to detect QTNs using the  mrMLM20,  FASTmrEMMA63,  FASTmrMLM64, 
 pLARmEB65,  pKWmEB66 and ISIS EM-BLASSO67 approaches, implemented by the software program mrMLM 
v4.0. The aboved six methods belonged to the “mrMLM” software package, which was developed by Professor 
Yuanming Zhang from College of Plant Science and Technology of Huazhong Agricutural University. The uni-
fied parameter settings for the six methods were as follows: (1) the Q + K model was used, in which the popula-
tion structure value Q was calculated by Structure 2.3.4 software23 and the kinship value K was analysed by the 
“mrMLM” software package; and (2) the significant threshold FPR (the false positive rate) value was set as 0.0002 
(LOD = 3.0), which was calculated as the ratio of the number of false positive effects to the total number of zero 
effects considered in the full model. In addition, while using mrMLM and FASTmrEMMA, the search radius 
of candidate genes was specified as 20 kb; using pLARmEB, 50 potential association loci were selected on each 
chromosome. The QTN nomenclature was designated as: qtn + trait abbreviation + chromosome number + QTN 
number.

Candidate genes identification.  All QTLs and QTNs related to maize KWC and KDR detected by QTL 
gCIMapping software and the "mrMLM" software package were mapped to the maize reference genome B73 
RefGen_V4, and candidate genes were identified in hotspot regions where QTL intervals overlapped QTNs. The 
resultant candidate genes were subjected to Gene Ontology (GO) enrichment analysis for selecting candidate 
genes related to maize KWC and KDR.
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