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Intracellular and tissue specific 
expression of FTO protein in pig: 
changes with age, energy intake 
and metabolic status
Karolina Ferenc1,3, Tomaš Pilžys2,3, Damian Garbicz2, Michał Marcinkowski2, 
Oleksandr Skorobogatov2, Małgorzata Dylewska2, Zdzisław Gajewski1, Elżbieta Grzesiuk2* & 
Romuald Zabielski1*

Genome-wide association studies in the FTO gene have identified SNPs correlating with obesity 
and type 2 diabetes. In mice, lack of Fto function leads to intrauterine growth retardation and lean 
phenotype, whereas in human it is lethal. The aim of this study in a pig model was to determine the 
localization of the FTO protein in different tissues and cell compartments, in order to investigate 
potential targets of FTO action. To better understand physiological role of FTO protein, its expression 
was studied in pigs of different age, metabolic status and nutrition, using both microscopic methods 
and Western blot analysis. For the first time, FTO protein was found in vivo in the cytoplasm, of not all, 
but specific tissues and cells e.g. in the pancreatic β-cells. Abundant FTO protein expression was found 
in the cerebellum, salivary gland and kidney of adult pigs. No FTO protein expression was detected in 
blood, saliva, and bile, excluding its role in cell-to-cell communication. In the pancreas, FTO protein 
expression was positively associated with energy intake, whereas in the muscles it was strictly age-
related. In IUGR piglets, FTO protein expression was much higher in the cerebellum and kidneys, as 
compared to normal birth body weight littermates. In conclusion, our data suggest that FTO protein 
may play a number of distinct, yet unknown intracellular functions due to its localization. Moreover, 
it may play a role in animal growth/development and metabolic state, although additional studies are 
necessary to clarify the detailed mechanism(s) of action.

Genome-wide association studies (GWAS) have shown that single nucleotide polymorphisms (SNPs) in intron 
1 of the FTO (Fat mass and obesity associated) gene are strongly correlated with an increased risk of obesity in 
humans1–4. In the human FTO gene, the mutation (alteration p. Arg316 Gln) that inhibits catalytic activity of 
the protein, results in an autosomal recessive lethal syndrome5. In Fto knock-out mice, body weight and fat mass 
decrease6, while in animals overexpressing FTO they increase7. Evidence from genetic epidemiology studies, 
life-course modeling, and diet-induced fetal programming data suggests that the FTO gene plays an important 
role in these complex biological interactions. It may provide the missing link in the developmental regulation 
of energy metabolism. The FTO variants associated with intrauterine growth retardation (IUGR) and, in con-
sequence, low birth weight, confer a predisposition to obesity later in life. This finding favors the hypothesis of 
the existence of a common genetic denominator that predisposes to low birth weight and obesity in adults8–10. 
Specifically, Fto deletion caused delayed growth, decreased white body fat, increased energy metabolism, and 
systemic sympathetic activation6. For example, in wild-type mice, fasting reduced Fto mRNA levels and the 
number of Fto-immunoreactive cells in the hypothalamus. Interestingly, glucose treatment reversed this effect11. 
However, another group of researchers showed that palatable sucrose feeding did not affect Fto expression in 
the mouse hypothalamus12. Further, Johannson and coworkers revealed that leucine intake increased Fto gene 
expression in hypothalamus13; however, the opposite effect was obtained by another group12. Other studies have 
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shown that a high-fat diet increases Fto mRNA expression in white adipose cells14, as well as mRNA and protein 
levels in rodent liver15. Recently, it has been shown that increased carbohydrate and protein intake significantly 
up-regulates FTO mRNA in peripheral blood of adolescent boys; however, this also depends on FTO genotypes16. 
Further, FTO expression changes after intensive lifestyle intervention depended on FTO SNP rs9930506 type17. 
Finally, Yuzbashian and coworkers showed that changes in expression of FTO mRNA in visceral and subcutane-
ous adipose tissue depended on carbohydrate intake in humans18. Some results have suggested that SNPs in FTO 
gene might not influence obesity and diseases of affluence directly, but rather epigenetically impact the expres-
sion of neighboring genes: IRX3 or RPGIP1L19–21. The strong genetic correlations between obesity and FTO were 
found about 12 years ago and the FTO protein has been crystallized1,2,22. However, thus far the occurrence of 
genetic variants and expression of FTO in correlation with obesity, diabetes, and cancer in different populations 
has been widely discussed1,2,23–25, but the understanding and characterization of the product of these genes—FTO 
protein is still poorly understood.

It is known that FTO protein belongs to a family of ALKBH non-heme Fe(II) and 2-oxoglutarate (2OG)-
dependent oxidative DNA/RNA demethylases, homologs of bacterial AlkB protein26. FTO protein is typically 
localized in the nucleus26,27, but some researchers have observed both nuclear and cytoplasmic localization in cell 
lines28,29. The major physiological substrate of FTO is N6-methyladenosine (N6meA), abundantly present in RNA, 
while methylated thymine (3meT) in single stranded DNA (ssDNA) and uracil (3meU) in RNA are repaired 
much less efficiently26,27. The poor capability of FTO protein to repair DNA alkylation damage, as compared to 
other dioxygenases, suggests that this is not its main physiological role22. Studies in mice model indicate that 
there is a positive correlation between the expression of FTO protein and body weight7. It has been suggested 
that FTO may directly regulate food intake, fat development, energy metabolism, cell proliferation, and cancer 
development30–38. It has also been found that the availability of glucose and amino acids regulates FTO protein 
expression: glucose/amino acid starvation leads to a decrease in the level of FTO protein39. Thus, it is likely that 
the FTO protein is involved in the control of energy balance.

Summing up, the exact mechanism of the influence of nutrient intake on FTO gene expression is still 
unknown. Up until now, the published research regarding FTO has mainly focused on association between spe-
cific SNPs in FTO gene and high body mass index (BMI) or diseases of affluence. However, there are few papers 
showing the influence of nutrient intake on FTO gene expression. Further, thus far researchers have measured 
the level of FTO mRNA, rather than the level of the protein, and the experiments have been performed primarily 
in rodents and not species with metabolisms more similar to humans40 (Supplementary Figure S1).

Given the considerable sparsity of data concerning FTO protein and the lack of information regarding its 
expression in vivo in large mammals, we hypothesize that it is essential to establish the localization of FTO in 
tissues, in order to determine the physiological role of FTO protein in mammals, including humans. The strongest 
evidence for the need of such research is that in humans the deletion of FTO gene is lethal, which is not the case 
in rodents5,6. Pigs seem to be an optimal model to develop for these studies, due to the many similarities in the 
physiology and pathophysiology, including metabolic syndromes41, between pigs and humans. Thus, the present 
work is intended as an important first step towards understanding the role of FTO protein in large mammals. In 
order to address the present gap in the knowledge, the aim of this study was to determine FTO protein localiza-
tion both in cell compartments, as well as in specific cells within pig tissues, in order to investigate potential 
FTO targets of action in the organism. Additionally, the impact of age, metabolic status, and energy intake on 
FTO levels was investigated.

Results
FTO SNPs sequencing.  To determine homogeneity of the pig cohort with respect to the FTO gene, we 
investigated SNPs in Polish Landrace crossbreed with Duroc × Pietrain pigs (n = 29), similarly as performed in 
Danish commercial pigs and Gottingen minipigs by Madsen and coworkers42. We verified four FTO SNPs in 
exon 3 (213 A > G; 528 C > T; 594 C > G) and exon 6 (1,080 G > A). Table 1 summarizes the results concerning 
the frequency of the SNPs in these pigs. We did not find any differences in genotype association depending on 
groups, body weight, or blood parameters (data not shown).

FTO localization in 11‑month old pigs.  To verify anti-FTO antibodies, the method of RNA interference 
directed toward FTO protein in the HeLa cell line was used, confirming proper antibody action (Fig. 1I, line 
FTO (control) vs. siRNA FTO, Supplementary Figure S1). In pigs fed with the control diet, Western blot analysis 

Table 1.   Frequency of alleles in SNPs in Polish Landrace 50% ♀ and Duroc 25%, Pietrain 25% ♂ pigs (n = 29). 
Results prepared accordingly Geneious 10.2.6 software.

Allel

Exon 3 Exon 6

213 A > G 528 C > T 594 C > G
1,080 
G > A

n % n % n % n %

A 4 14.3 – – – – – –

G 6 21.4 – – 6 21.4 29 100

C – – 28 100 4 14.3 – –

Heterozygote 18 64.3 – – 18 64.3 – –



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:13029  | https://doi.org/10.1038/s41598-020-69856-5

www.nature.com/scientificreports/

Figure 1.   FTO protein expression levels in tissues of 11-month old pigs (n = 6). I—Western blot analysis, FTO (control)—HeLa cells 
not treated by siRNA, siRNA FTO—HeLa cells treated with siRNAs directed towards FTO gene (Image Lab, ChemiDoc MP Imaging 
System). II—in-tissue cytometry histograms of selected tissues (A–K) drawn by mean intensity of fluorescence (arbitrary units); 
percentage of high FTO expression (red—positive cells) is up to 200 arbitrary units (Scan^R and ScanR software, Olympus).
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showed: high FTO expression in the cerebellum, salivary gland, kidney, and spleen; low expression in the duo-
denum, jejunum, thyroid, and adrenal gland; and the lowest expression in the pancreas, liver, skeletal muscles, 
and adipose tissue homogenates (Fig. 1I, Supplementary Figure S1). The average level of FTO protein in tissues 
was confirmed by the in-tissue cytometry method, where the structure of the tissue was maintained (Fig. 1II). 
Moreover, FTO expression maps created with the use of in-tissue-cytometry indicated specific areas in most of 
the tissues where the FTO expression was most abundant (Fig. 2). The histological tissue analysis (transparent 
view) and the analysis of the FTO expression as a marker using confocal microscopy identified particular types 
of cells where the expression of the FTO protein was dominant. In the cerebellum, high FTO expression was 
found in the spaces where cell density was highest, while no FTO content was observed in Purkinje cells (Fig. 3). 
In the salivary gland, the protein distribution was seemingly homogeneous (Fig. 4), but no FTO protein was 
found in the saliva (unpublished data). In the pancreas, a very high level of the FTO was found only in a few, 
chiefly insulin-producing pancreatic cells (Fig. 5). The localization of these cells coincides with the localization 
of the Langerhans islets (Figs. 2C and 4). In contrast, the FTO expression was very low in the pancreatic acinar 
and ductal cells (Fig. 4). In the liver, abundant FTO expression was observed in the hepatocytes located on the 
outskirts of the liver lobules and most abundantly in the cells surrounding the portal triads (small arteries, veins, 
and bile ducts). However, no FTO protein was detected in the bile. The hepatic lobule area, near the central 
vein, was also free of FTO protein, producing a clear-cut “halo effect” (Figs. 2D and 4). In the small intestine 
(duodenum and jejunum), high FTO levels were observed in the mucosa, especially in the apical part of the villi, 

Figure 2.   The map of specific regions of the FTO protein expression (red color) in pig tissues. (A) cerebellum, 
(B) salivary gland, (C) pancreas, (D) liver, (E) small intestine, (F) adipose tissue, (G) thyroid, (H) kidney, (I) 
adrenal gland, (J) spleen, (K) muscle. (Scan^R and Scan^R software, Olympus).
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as well as in the crypt region (Figs. 2E and 4). In adipose tissue and the thyroid gland, FTO protein was evenly 
distributed in the cells (Figs. 2F,G and 3). Measurements in adipose tissue were affected by the abundance of 

Figure 3.   FTO protein expression in: cerebellum, adipose tissue, thyroid, kidney, spleen, and adrenal gland. 
Columns from the left: first—unstained view, captured using transparent channel; second—nuclei staining 
with Hoechst 3558, visualized as blue fluorescence; third—FTO expression, visualized by AlexaFluor 568 as red 
fluorescence; fourth—merged images of channels (Olympus FV500; Flouview 5 software, Olympus).
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the fat vacuoles, because the FTO expression was quite high in the adipocyte cytoplasm and as many as 75% of 
adipocytes were FTO-positive. However, the FTO-free fat droplets, occupying major adipocyte space, markedly 
reduced the overall results of the counting (see Figs. 2F, 3, and 6). In the kidney, the level of FTO protein was gen-
erally high, apart from the Bowman’s capsules (Figs. 2H and 3). Meanwhile, in the spleen FTO protein was found 
only in the red pulp (Figs. 2J and 3). In the adrenal gland, the level of the protein differed between the cortex 
and the medulla (Figs. 2I and 3). Finally, no specific FTO expression was detected in skeletal muscles (Fig. 2K). 
Interestingly, we found that the nuclear versus extranuclear FTO localization was characteristic for specific tis-
sues: cytoplasmic localization was observed in the cells of adipose tissue, the liver, pancreas, and salivary gland 
(Fig. 6), while in the remaining tissues FTO protein was localized only in the cell nuclei. Moreover, no FTO 
protein was observed in cell excretions, such as saliva and bile, nor in the circulating blood plasma.

Age‑related differences in the FTO protein expression.  In comparison to 7-day old neonates with 
normal birth body weight (NBW), 11 months old pigs fed with the control diet (C) showed significantly higher 
expression of the FTO protein in the salivary gland (p value < 0.02), small intestine (p value < 0.05), and spleen (p 
value < 0.02). On the other hand, expression was lower in the thyroid gland (p value < 0.01) and there was a ten-
dency toward lower expression in adipose tissue (p value = 0.054) (Fig. 7, Supplementary material S1). However, 
the most spectacular decrease in the level of FTO with age was found in the skeletal muscles (p value < 0.01 by 

Figure 4.   FTO protein expression in the tissues of gastrointestinal tracts. Columns from left: first—unstained 
view, captured using transparent channel; second—nuclei staining with Hoechst 3558, visualized as blue 
fluorescence; third—FTO expression, visualized by AlexaFluor 568 as red fluorescence; fourth—merged images 
of channels (Olympus FV500; Flouview 5 software, Olympus).
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Figure 5.   Colocalization of high expression of the FTO protein with insulin released in the beta cells within the 
Langerhans islets. Blue fluorescence—nuclei visualized by Hoechst 3558, green fluorescence—insulin visualized 
by secondary antibody AlexaFluor 488; red fluorescence—expression of the FTO protein visualized by 
secondary antibody conjugated with AlexaFluor 568. (A–C) single channels, (D) transparent view of unstained 
section, (E) colocalization of FTO with insulin, (F) merged images from channels A + B + C (Olympus FV500; 
Flouview 5 software, Olympus).

Figure 6.   Cytoplasmic expression of the FTO protein in the adipose tissue (fat), liver, pancreas, and salivary 
gland. Top row—merged images from UV laser and green laser channel visualized nuclei (blue fluorescence) 
and FTO (red fluorescence). Bottom row—merged images from UV laser; green laser channel and transparent 
unstained view of the visualized nuclei (blue fluorescence); FTO (red fluorescence) and the structure of tissue 
(Olympus FV500; Flouview 5 software, Olympus).
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Western blot and fluorescence) (Figs. 7 and 8, Supplementary material S1). Finally, FTO protein expression did 
not show any significant age-related changes in the cerebellum, pancreas, liver, duodenum, kidney, and adrenal 
gland.

FTO protein expression in intrauterine growth retarded pig neonates (IUGR).  In comparison 
to NBW, the IUGR phenotype resulted in different expression of FTO protein in several tissues, (Fig. 7, Sup-
plementary material S1). In the IUGR animals, FTO expression was higher in the cerebellum (p value < 0.02) 
and slightly higher in the kidney (p value < 0.08), as compared to NBW piglets. Conversely, the FTO protein 
expression was lower in the liver (p value < 0.01) and slightly lower in the salivary gland (p value < 0.09) and small 
intestine (p value < 0.07) in the IUGR neonates than in the NBW animals.

FTO protein expression in pigs chronically exposed to low / high energy diet.  An imbalance in 
terms of energy (low energy diet—LE, 50% of the control nutritional energy and high energy diet—HE, 150% 
of the control nutritional energy) in the diet severely affected the structure of tissues and the adipocyte content 
(Figs. 9, 10). The changes were most profound in the liver and the pancreas: with the HE diet, adipocytes were 
abundantly present in the histological view of these tissues (Fig. 10).

In the majority of the examined porcine tissues, changes in FTO expression in response to either HE diet 
(leading to insulin resistance) or LE diet (leading to significant growth retardation) were uniform (Fig. 7, Sup-
plementary material S1). Namely, according to Western blot analysis (Fig. 7, Supplementary material S1), there 
was a notably uniform reduction in FTO expression in three tissues: the cerebellum (p value < 0.1), salivary 
glands (p value < 0.02), and the small intestine (p value < 0.05) as compared to the controls. The LE diet led to 
significant reduced, or a tendency towards reduced, FTO expression in the spleen and kidneys (Fig. 7, Sup-
plementary material S1; p value < 0.02 and < 0.1 respectively). We also observed a tendency towards lower FTO 
protein expression in the thyroid (p < 0.08) in the pigs fed the HE diet, as compared to controls. Additionally, it 
is worth mentioning that pigs fed the HE diet showed high level of variance in total mass-approx. fivefold higher 
than in the rest of the groups. This may be the reason for the large differences in FTO levels in adipose tissue, 
which is directly affected by the diet.

Homogenates of the tissues crucial for the development of obesity and Type 2 diabetes (T2D) contained 
very low levels of the FTO protein. As a result, we also analyzed FTO protein expression using in-tissue-cytom-
etry. This method demonstrated a significant increase in pancreatic FTO expression in pigs fed the HE diet (p 
value < 0.01) and a reduction in pancreatic FTO expression in pigs fed the LE diet (p value < 0.01, Fig. 9). The 
latter finding corresponds well to the reduced number and size of the Langerhans islets in the pancreases collected 

Figure 7.   Western blot analysis of the FTO protein expression in pig tissues. (A) FTO band with protein load of 
50 ng: (C) standard diet, HE—high energy diet with developed obesity and insulin resistance; LE—low energy 
diet as a model of chronic undernutrition; NWB—7-day old pig neonates with normal birth body weight; 
IUGR—intrauterine growth retarded pig neonates as a model for predisposition to obesity and T2D in adult life 
(Image Lab, ChemiDoc MP Imaging System). (B) Post-western blot densitometry analysis of the FTO level in 
pig tissues. (C) Standard diet (n = 6); HE—high energy diet with developed obesity and insulin resistance (n = 6); 
LE—low energy diet as a model of chronic undernutrition (n = 6); NBW—7-day old normal birth body weight 
pig neonates (n = 7); IUGR—7-day old pigs with intrauterine growth retardation (n = 7). *p < 0.05, two-tailed 
unpaired Student’s t test with Benjamini–Hochberg adjustment (software R version 3.3.0).
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from pigs fed the LE diet (Fig. 10). In addition to the Langerhans islets, abundant FTO expression was observed 
also in pancreatic acini of pigs fed the HE diet. In single images, we also observed higher FTO expression in the 
livers of the animals fed the HE diet (i.e. thicker “halo”) than in the livers of the control animals, albeit without 
statistical significance (Fig. 9).

Discussion
In humans, some FTO SNPs are strongly associated with a predisposition to obesity. This association was the 
strongest of all known genetic changes43. In recent years, a few studies have been published on porcine SNPs in 
the FTO gene. Interestingly, an association of SNPs with intramuscular fat deposition has been found in pigs 
such as the Italian Duroc, the Danish commercial pig, as well as the Gottingen minipig4,42,44–46. In our study, 
we examined four SNPs, published earlier by Madsen and coworkers42, in 29 Polish Landrace × Duroc, Pietrain 
crossbreed pigs. We found that in the Polish Landrace crossbreed with Duroc × Pietrain, for SNP 594 C > G, 
86% of pigs had the SNP (CG or GG) predisposing to increased amount of lumbar back fat, total percentage of 
lipids, and intramuscular fatness4. This may explain why we were successful in obtaining a high level of fatness 
and observed the development of insulin resistance in the group of pigs fed the HE diet. No heterozygotes, 
characteristic for Gottingen minipigs, for the SNPs 528 C > T and 1,080 G > A were found in our pigs. In all of 
the examined SNPs, we found only synonymous changes. As suggested by Madsen and coworkers, the nonsyn-
onymous alleles were probably eliminated from commercial pig breeds by the selection pressure of intensive 
production42. In our experiments, in accordance with the results of FTO genotyping, we found that changes in 
FTO protein levels did not depend on genetic FTO variants. Instead, as was shown previously, factors such as a 
diet and lifestyle may directly impact the level of FTO expression17. In this work we decided to study whether-
and how-age, metabolic status (normal birth weight vs. IUGR), and energy intake (low vs. high diet) directly 
influence FTO protein expression.

The distribution of Fto mRNA and protein levels was previously studied by several research groups, primar-
ily using rodent models26,29,31,42,47–49. The role of Fto in rodents is, however, limited as compared to humans. In 
humans, mutations in the FTO gene lead to death before the third year of life. In rodents, Fto deletion does 
cause visible phenotype changes, but is not lethal5,6. Thus, the results of our research, based on a pig model, 
are much more translatable to human physiology than results obtained in rodents. Our study should provide a 
better understanding of the role of the human FTO protein. Furthermore, our FTO distribution study in pigs, 

Figure 8.   Differences in the FTO protein expression in skeletal muscles of adult and neonatal pigs. Top—
representative FTO protein immunofluorescence visualization (left), and densitometry analysis (right). 
Bottom—representative maps with specific regions of high expression of the FTO protein (red color). *p < 0.05, 
two-tailed unpaired Student’s t-test with Benjamini–Hochberg adjustment. (C) 11-month old pigs, NBW—7-day 
old pig neonates (Scan^R and ScanR software, Olympus, software R version 3.3.0).
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conducted with the use of in-tissue cytometry and confocal microscopy, revealed that, even in the several tis-
sues where FTO protein is expressed at low levels, its expression is linked to specific cell types. For example, 
in the pancreas expression of FTO is low in the exocrine part, but high in the Langerhans islets, chiefly in the 
insulin-producing cells. Abundant FTO protein expression could also be masked in some cells; for example, the 
presence of large fat droplets in adipocytes masked high FTO levels in their cytoplasm. Meanwhile, in the small 
intestine, FTO protein was expressed almost exclusively in the mucosa, chiefly in crypts, as well as in the upper 
part of the villi. This localization suggests a role of for FTO protein in controlling epithelial cell proliferation/
differentiation and nutrient absorption.

In prior rodent studies, the highest Fto mRNA levels were observed in the hypothalamus, but we found that 
in our pigs the cerebellum was the richest source of FTO protein. This result is consistent with the results pub-
lished on adult Danish commercial pigs by Madsen and coworkers42. In the present study, we also found that the 
salivary gland and kidneys had high expression of FTO protein. The abundance of FTO protein in kidney tissue 
suggests that it may play role in water and/or electrolyte reabsorption, rather than in filtration, because FTO 
protein was notably absent in Bowman’s capsules. In the salivary gland FTO may also play a role in electrolyte/
water regulation, like in the kidney, through the control of serous salivary fluid formation, rather than a role 
in salivary enzymes production. This is also consistent with the very low FTO protein levels in the pancreatic 
acini that synthesize and secrete pancreatic digestive enzymes. The cause of high level of FTO protein in salivary 
cells might be intensive production of the extracellular proteins in this cell type. FTO may take a part in mRNA 
modification through demethylation of N6-meA in specific transcripts, thereby the protein can influence the 
stability and processing of transcript and the level of gene expression36,50,51.

The results of our tissue localization experiments have confirmed—for the first time in vivo—that FTO is 
expressed in the cytoplasm. Previously, data from several groups working with isolated cell models in vitro 
suggested cytoplasmic FTO localization28,29. For example, Aas and coworkers demonstrated endogenous FTO 
presence in the cytosol, membranes, and nuclear fractions of human U2OS cells29. Meanwhile, earlier reports 
showed that the FTO protein shuttles between the nucleus and cytoplasm28. However, our in vivo findings provide 
particularly important new information; we found that cytoplasmic localization is observed only in the cells of 
particular tissues and organs that had high overall FTO cellular expression (Fig. 6), namely in adipose tissue, the 
salivary gland, liver (hepatocytes adjacent to hepatic triads) and pancreas (β-cells). These findings suggest that 

Figure 9.   Representative maps of specific regions of the FTO protein expression (red color) in adipose tissue, 
pancreas, and liver of pigs fed a standard (C), high energy (HE) diet or low energy (LE) diet (left part). Right 
part shows densitometry analysis of FTO in the same tissues (n = 6). *p < 0.05, two-tailed unpaired Student’s 
t-test with Benjamini–Hochberg adjustment (Scan^R and ScanR software, Olympus, software R version 3.3.0).



11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:13029  | https://doi.org/10.1038/s41598-020-69856-5

www.nature.com/scientificreports/

in the cytoplasm of these tissues, FTO takes a part in the modification of nucleoprotein complexes. Interestingly, 
no FTO protein was detected in blood plasma nor in cell excretions, such as bile and saliva, indicating that FTO 
protein probably acts just locally inside the cell and does not take a part in cell-to-cell communication, as for 
example hormones and cytokines do.

FTO protein is produced already at the embryonic stage5, but FTO mRNA has also been found in the 
placenta52,53. Nevertheless, its function during embryonic and fetal development remains unknown. Moreover, 
FTO mRNA expression was found to be positively correlated with fetal or neonatal weight, suggesting some as-
yet-unidentified role in fetal growth. Previously, in the cerebellum, Madsen and coworkers found higher expres-
sion of FTO transcripts at early gestation (day 50) than in late pregnancy (day 100) and in adult pigs42. Here, 
we suggest that FTO protein may play an important role not only in prenatal development, when it probably is 
involved in neurogenesis and weight control, but also in postnatal development. If we compare 7-day old piglets 
to 11-month old pigs, we observe relatively high levels of FTO protein in organs that develop more intensively just 
after birth, such as muscles, adipose tissue, and the thyroid. According to in vitro studies, at this stage of growth 
FTO protein may be involved in adipogenesis. Previous studies have also indicated that elevated expression of 
FTO protein in porcine preadipocytes takes a part in the promotion of cell proliferation, differentiation, and 
lipid deposition31,54, as well as in myoblast differentiation55. Comparing neonates with adult pigs, we detected 
FTO protein only in young pigs. Also it has been shown that up-regulation of FTO gene expression was associ-
ated with increase in skeletal muscle mass in adolescents, suggesting that FTO levels in skeletal muscle may be 
directly linked with growth of this organ56.

These changes may be linked to the extremely intensive development of the above-mentioned organs that 
occurs only in the early stages of postnatal life, because piglets usually double their birth weight within the first 
week of life. This is consistent with our previous discovery that seven out of nine ALKBH proteins, including 
FTO, are overexpressed in fast proliferating cancer cells38.

Thus, we propose that high demethylation efficiency, which demands expression of FTO protein, is crucial for 
the fine-tuning of gene expression at particular stages of pig development, such as just after birth. However, in 

Figure 10.   Histological images from adipose tissue, pancreas and liver of piglets fed a control, HE, or LE diet. 
The HE diet resulted in accumulation of fat droplets in the adipose tissue, as well as in the pancreas and the 
liver. The size of the Langerhans islets in the pancreases of pigs fed the LE diet. Hematoxylin and eosin staining 
(Olympus BX43 with cellSens Stanard 1.9. software; Olympus).
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the spleen, salivary gland, and in the small intestine, we observed the opposite effect: 11-month old pigs showed 
higher expression of FTO protein than neonates—and these organs also undergo severe tissue rebuilding and 
growth in the early postnatal period. Interestingly, we did not detect FTO protein expression in skeletal muscles of 
adult pigs. By comparison, Madsen and coworkers noticed relatively low expression of the FTO gene in 6-month 
old commercial Danish pigs, but these animals were still at the stage of intensive growth and protein deposition42. 
In our 11-month old pigs, intensive muscle development had already completed and the energy sources started 
to accumulate primarily in adipose tissue. Interestingly, we actually found the highest FTO protein expression in 
tissues not developing intensively after birth, which may suggest that in these organs/tissues FTO protein plays 
a role in maintaining homeostasis throughout life.

Due to altered fetal programming, IUGR syndrome may lead to higher predisposition to obesity and T2D in 
adult life, as compared to normal birth weight individuals. Molecular symptoms can be found even at early stages 
of postnatal life, at least in the small intestine and liver57–59. Further, previous results have shown that, both in 
rodents and humans, mutations in the FTO gene are linked with severe growth retardation60. For example, the 
R316Q mutation in human FTO leads to numerous severe phenotypes (including IUGR) and developmental 
delays, with all patients dying before the age of three5. As a result, we decided to examine the influence of the 
IUGR syndrome on levels of FTO protein. It has been postulated that FTO might be an "amino-acid sensor"39 in 
the organism and that one of the most important causes of intrauterine perturbations is an imbalanced maternal 
diet, especially one linked to changes in protein content61. Also there is some evidence that changes in amino acid 
transport through the placenta can lead directly to the creation of IUGR syndrome40. However, we did not find 
an unequivocal explanation for the divergent results in different tissues. In some tissues, such as the cerebellum 
and kidneys, FTO protein expression was much higher in IUGR piglets than in their normal body weight litter-
mates, but in the salivary gland, small intestine, and liver expression was significantly lower. We speculate that 
the increased/decreased levels of FTO may be the result of altered methylation/demethylation levels in IUGR, 
as has been shown in several studies30,62,63, and that in the gastrointestinal system this may reflect retarded tissue 
structure and function development57,59. We conclude, that more research in this area is required.

Nowadays, the hypothesis that FTO acts as a sensor of amino acid concentrations under the regulatory effect 
of the mammalian target of rapamycin (mTORC1) has been verified64. However, the consequences of FTO 
activation by amino acids and its direct link with the mTOR pathways in vivo have yet to be proved. Clearly, the 
elucidation of the role of FTO in cell growth and differentiation is fundamental for the deciphering of its func-
tion in early development. The question of whether the sensing of amino acids by the FTO plays a direct role 
in the regulation of body weight, fat mass, and/or energy balance in vivo remains to be answered. However, the 
reduced FTO protein expression that we observed in the intestinal mucosa and liver of our piglets with IUGR 
syndrome supports this hypothesis.

The expression of Fto mRNA in the hypothalamic arcuate nucleus is bidirectionally regulated as a function 
of nutritional status. In rodent models, it has been show to decrease following a 48-h fast and increase after 
a 10-week exposure to a high-fat diet26,35. Likewise, in a sheep model it has been shown that decreased daily 
energy intake results in changes in FTO gene expression in the hypothalamus53. In our study, neither high nor 
low energy diets changed the level of FTO protein in the hypothalamus, according to Western blot analysis. 
However, in this experiment, the standard deviations for measurements of the control group were high and the 
number of animals used was limited. Nevertheless, we found diet-dependent changes in FTO levels in some 
peripheral tissues. One of our main discovery was that FTO protein levels in the pancreas were associated with 
energy intake: low on low energy diet and high on high energy diet, compared to normal diet. Earlier in vitro 
studies showed that FTO overexpression in MIN6 (mouse insulinoma) cells significantly inhibited insulin secre-
tion in the presence of glucose, but did not affect insulin expression47. As a result, we argue that increased FTO 
levels in the pancreas may directly influence insulin release from beta cells. Moreover, FTO overexpression in 
the pancreas resulting from a high energy diet might also be a consequence of the reactive oxygen species (ROS) 
production and activation of the NF-κB pathway47. This hypothesis is plausible, because at early stages of T2D, 
pancreatic secretion is increased in response to the decreased number of insulin receptors in peripheral tissues 
and increased basal level of glucose in the blood47. The lack of a negative feedback signal forces the pancreas to 
increase insulin release, resulting in elevated levels of ROS production in the pancreas47. This may explain why 
we observed an increased FTO protein levels not only in β-cells, but also in the exocrine pancreas in pigs fed the 
HE diet. In this case, FTO could protect the pancreas against ROS and an insulin overload, because high insulin 
levels may lead to organ malfunction. Similar findings were obtained in the liver, where FTO was expressed more 
abundantly in cells close to the portal triads, and expression seemed to be associated with dietary caloric load.

Another interesting finding within this pool of experiments was that the LE diet influenced FTO expression 
more strongly than the HE diet. With the LE diet, decreased FTO expression was observed in several tissues, 
such as the salivary gland, small intestine, and spleen. Additionally, we observed that the kidneys tended to show 
lower levels of FTO. These changes may be linked to another possible FTO function, namely, as an "amino-acid 
sensor"39 or "nutrient sensor"65. The intake level of protein and carbohydrates may significantly up-regulate the 
mRNA level of FTO16. Here, when the HE diet was applied, the total protein content and amino-acid composition 
did not show obvious deficits in relation to age and the stage of development, whereas with the LE diet provided 
only 50% of the required proteins and amino acids. Previous in vitro studies showed that the regulation of Fto 
gene expression occurs in response to the lack of essential amino acids39 and may be a reason for altered levels 
of FTO being more pronounced in pigs fed with low calorie diet. Of course, it is possible that more than one 
signaling pathway is involved in the regulation of FTO, and that certain amino acids, such as glutamine, cysteine 
and methionine, preferentially trigger one pathway over another39. Likewise, it has been shown that the FTO 
protein expression may be regulated by glucose and might be involved in the sensing of cellular nutrients65.
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Overall, the biggest limitation of our study is the relatively small number of animals. However, we strongly 
believe that obtained results in pig models are much more valuable and reliable than rodent models—the results 
obtained from pig are much easier to transfer to humans.

Conclusions
Until recently, the role of the FTO protein was practically unknown, even though FTO SNPs have been described 
as strong genetic factors linked to predisposition to obesity and the development of T2D. Our present work 
focused on the localization of FTO protein in pig tissues. To extend our knowledge regarding the possible role of 
FTO protein, we used a pig model, because it is much closer to human physiology than rodent models. We found 
that FTO protein is rather abundantly expressed throughout the studied palette of porcine tissues. Specifically, we 
detected: a dominant presence in the cerebellum, salivary gland, and kidney; a minor presence in the pancreas, 
liver, duodenum, small intestine, thyroid, spleen, and adrenal gland; and nearly undetectable in skeletal muscles 
and adipose tissue. On the other hand, low levels of FTO protein in some tissues were associated with high expres-
sion of FTO protein in specific cells within these tissue, such as pancreatic β-cells. Importantly, for the first time, 
we identified tissues showing FTO presence in the cytoplasm of cells in vivo. Moreover, this unusual cytoplasmic 
presence was tissue specific. The cytoplasmic expression suggests that in this compartment, FTO protein may play 
a different function than in the nucleus, such as modifying nucleoprotein complexes. Interestingly, we did not 
detect FTO protein in the cell excretions, such as bile and saliva, nor in the blood plasma, indicating that FTO 
protein probably does not take a part in cell-to-cell communication. Further, our comparison of pigs of various 
ages, metabolic states, and on different diets provides novel insights into possible involvement of FTO protein 
in a number of metabolic processes. We showed that FTO expression in tissues depends on the metabolic status 
and age, although we have not yet explored the molecular mechanisms governing this dependency.

In future, the highly specific pancreatic co-localization of the FTO protein with insulin granules within the 
β-cells should be investigated. Also, a greater understanding of the role of FTO in tissues with very high FTO 
expression, such as the salivary gland, cerebellum and kidney is required. This work also gives evidence that not 
just FTO protein level might be determined by age, diet and metabolic status and, thus, future studies should 
continue developing this knowledge.

Materials and methods
Animals and tissue collection.  The protocol was conducted in compliance with the European Union’s 
regulations concerning the protection of experimental animals. The study protocol was approved by the Local 
Ethical Committee, Warsaw University of Life Sciences, Warsaw, Poland. A total of 40 male and female pigs 
(Sus scrofa domesticus, crossbreed Polish Landrace 50% ♀ and Duroc 25%, Pietrain 25% ♂) from the university 
research pig farm were used. The herd was virus-negative for porcine reproductive and respiratory syndrome; 
mycoplasmosis-negative and rhinitis atrophicans infectiosa suum-negative, as confirmed by serum ELISA tests; 
and leptospirosis-negative as confirmed by the microagglutination test. All piglets were delivered by multipa-
rous sows at term and were clinically healthy, including the newborns that were defined as intrauterine growth 
retarded (IUGR). Sows were fed a standard diet for pregnant sows (dry matter (DM) 87.6%, metabolizable 
energy (ME) 11.35 MJ/kg, and crude protein (CP) 12.9%). After farrowing, the diet was switched to the diet for 
lactating sows (DM 87.3%, ME 12.93 MJ/kg, CP 17.1%). On postnatal days 3 and 17 (PD 3 and 17), all newborn 
piglets were injected intra-muscularly with 100 mg iron dextran (FeDex, Ferran100, 10% solution, Vet-Agro, 
Lublin, Poland). The males were castrated in the first postnatal week. From PD 10, piglets were creep fed ad libi-
tum with pre-starter (DM 88.6%, ME 13.3 MJ/kg, CP 18.3%). Piglets were weaned on PD 28 on a standard 
commercial starter diet (DM 88.6%, ME 13.2 MJ/kg, CP 18.1%). The feed and water were provided ad libitum.

In the first study, a total of 26 pigs from four litters were used. Pigs were weaned on PD28. Six weeks after 
birth (i.e., on PD42), pigs were divided into three groups. The first group (Cont, n = 6) continued to be fed with 
a starter diet, then with grower (PD 56–120: DM 88.6%, ME 13.0 MJ/kg, CP 17.0%), grower2 (PD 120–180: DM 
88.5%, ME 12.7 MJ/kg, CP 16.0%), and finisher (PD 180–320: DM 88.2%, ME 12.4 MJ/kg, CP 15.0%) diets. The 
second group was fed with a low energy diet (LE, 50% of the nutritional energy, n = 6). The third group was fed 
with a high energy diet (HE, 150% of the nutritional energy, n = 14). The increase of energy in the HE group 
was achieved by the addition of sucrose and rape oil to the standard diet. Animals were adapted to the LE and 
HE diets over 2 weeks. The diets were continued for nine months, until slaughter. Within this time, 10 out of 14 
HE pigs developed insulin resistance, as confirmed by preprandial measurements of blood glucose, triglyceride 
concentrations, and oral glucose tolerance tests. The six HE pigs manifesting insulin resistance were used in 
this study.

In the second study, seven pairs of littermate neonates were chosen, each pair from a different litter. In each 
pair, one piglet was of normal body weight at birth (NBW), i.e., representing the average weight of all littermates 
(range between 1.3 and 1.6 kg), and the second piglet was of low birth weight (range between 0.6 and 0.9 kg), 
recognized as asymmetric IUGR​66 with spontaneous background. The NBW and IUGR piglets were kept together 
with their litters and were fed by the sow until the slaughter on postnatal day seven (PD7).

Pigs from the first and second study were killed by barbiturate overdose (Morbital, Biowet Puławy Sp. z o.o, 
Puławy Poland) and exsanguinated. Tissue samples were immediately collected from the brain, liver, spleen, pan-
creas, small intestine, left submandibular salivary gland, left adrenal gland, left kidney, thyroid, bile, subcutaneous 
and visceral adipose tissue, and left muscle quadriceps and frozen in liquid nitrogen or fixed in buffered formalin.

FTO SNPs sequencing.  Genomic DNA (gDNA) was isolated from livers using the Phenol–Chloroform 
Isopropanol (PCI, Sigma-Aldrich) DNA Extraction protocol. PCI was added to the sample, vortexed and centri-
fuged for 10 min at 30,000×g. The supernatant was placed in a fresh tube and the CI was added. DNA was pre-
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cipitated with isopropanol, rinsed with 70% ethanol, and resuspended in distilled water. PCR primers (forward: 
5′-TGG​CAG​CTG​AAA​TAC​CCT​AA-3′, 5′-GAC​GGG​AAC​CTT​GGA​TTA​CA-3′; reverse: 5′-CTT​CAC​AGC​TAT​
AAT​TGT​AC-3′, 5′-AAG​CCC​TTA​CCT​CGT​TGT​GG-3′) were used to amplify exons 3 and 6 of the FTO gene 
using 500 ng of gDNA and MARATON polymerase (A&A Biotechnology). The PCR protocol was as follows: 
denaturation for 5 min at 95 °C; 30 cycles of 30 s at 95 °C, 30 s at 55 °C and 60 s at 68 °C; the final extension step 
lasted 10 min at 68 °C. The obtained products were subjected to sequencing (Oligonucleotides Synthesis and 
DNA Sequencing Laboratory, IBB) with the aforementioned primers. The sequencing results were analyzed with 
Geneious 10.2.6 software67.

Immunofluorescence and histology studies.  After paraffin fixation, tissue samples were sliced into 
5 µm sections and rehydrated. For the histology studies, a standard hematoxylin and eosin staining protocol was 
used. Analysis was performed using light microscope (Olympus BX43) with software cellSens Stanard 1.9. For 
the immunofluorescence studies, antigen retrieval was performed by boiling the slides in citrate buffer. Non-
specific binding was blocked with 1% BSA (Sigma-Aldrich) in PBS at room temperature for 1 h. For the analysis, 
the primary antibody against FTO (Santa-Cruz Biotechnology sc-271713) was used at a 1:50 ratio with 0.1% 
BSA in PBS and the slides were incubated overnight at 4 °C. The secondary antibody (Thermo Fisher Scientific 
AlexaFluor 568, A-11011) was applied at room temperature for 1 h at a dilution of 1:200. Cell nuclei were stained 
with Hoechst 33342 (Life Technologies) at 10 μg/ml for 30 s at room temperature. Insulin was identified using 
a primary antibody (Santa Cruz, sc-8033) and visualized by a secondary antibody labeled with Alexa Fluor 
488 (Thermo Fisher, A-11059). The slides were mounted in Fluoromount Aqueous Mounting Medium (Sigma 
Aldrich). For each set of tissue types, a negative control for the analysis of nonspecific signals was performed fol-
lowing the same protocol, but without addition of the primary antibodies. Sequence scanning was used to omit 
cross-talk between fluorescent dyes. Confocal microscopy (Olympus FV500) with software Fluoroview v5 was 
employed to obtain quality images. The basic microscope settings were as follows: scan = 200 μm; Kalman = 8; 
offset = 0%; scanning: sequential for each channel: for Alexa Fluor 488—blue laser (Ar 488 nm); for Alexa Fluor 
568- green laser (HeNe 543 nm); for Hoechst 33342 (UV Ar, 351 nm). For the in-tissue cytometry and mapping, 
whole cross-sections of 100 fields of view (10 × 10, objective 20x) were scanned and the fluorescence intensity of 
the stained cell nuclei and the expression of FTO protein were measured for each cell. Data were analyzed with 
scanning cytometry system (SCAN^R, Olympus Poland) with the cell nucleus as a reference point, as described 
previously68,69.

Tissue samples and Western blot analysis.  Frozen samples were homogenized in liquid nitrogen and 
extracted with RIPA buffer (Sigma-Aldrich) supplemented with 50 mM EDTA and 4 mM PMSF in the presence 
of protease inhibitor cocktail (Sigma-Aldrich). Cellular debris were spun down and the supernatant’s protein 
content was measured using the Bradford assay (Bio-Rad). Samples were diluted with SDS-PAGE loading buffer 
to a protein concentration of 2.5–5 μg/μl and 10 μl portions were loaded onto Mini-PROTEAN TGX 4–15% 
gradient gels (Bio-Rad). The western blot analysis was performed with specific primary monoclonal antibodies 
against FTO protein (Santa Cruz Biotechnology), used at dilutions of 1:500, and with the appropriate 1:2000 
diluted secondary anti-mouse IgG antibody (Sigma-Aldrich) conjugated with horseradish peroxidase. All incu-
bations were performed in 5% milk/PBST (PBST—phosphate buffer saline with 0.1% TWEEN-20). Chemilu-
minescence was measured using the ChemiDoc MP Imaging System (Bio-Rad) and ImageLab, version 5.0 build 
18 software (https​://www.bio-rad.com/en-pl/produ​ct/image​-lab-softw​are?ID=KRE6P​5E8Z). The total protein 
content was standardized using four steps: (1) equal amounts of tissue were taken for extraction in RIPA buffer 
(50 mg); (2) the extracts were assayed for protein content by the Bradford method; (3) equal amount of the 
extracts were loaded onto gels and the amounts were verified by Stain-free staining using ImageLab software; (4) 
the proteins, transferred to nitrocellulose membranes, were visualized by Ponceau-S reversible staining prior to 
the final Western blot. Primary monoclonal anti-FTO antibodies were verified by performing silencing of FTO 
expression in HeLa cell line, using small interfering RNA (siRNA) and subsequent analysis by the Western blot 
method. After using siRNA, we observed a very week signal of the FTO protein, corresponding to a molecular 
weight of ~ 58 kDa, as compared to control. Samples were standardized using total protein70. The sensitivity of 
the detection method was 4 ng per sample.

RNA interference of FTO and cell culture.  To validate the quality of antibodies, RNA interference was 
performed on HeLa cell lines using the lipofectamine RNAiMAX reagent (Invitrogen) and ready-to-use siRNA 
mixture of FTO genes (Santa Cruz Biotechnology). 1 × 106 cells were seeded onto 100 mm diameter dishes. HeLa 
cells were cultured in DMEM medium (Life Technology) with 10% fetal bovine serum (Life Technology) and 
0.1% antibiotics (penicillin/streptomycin, Life Technology). Cells were grown in a humidified atmosphere of 
CO2/air (5/95%) at 37 °C. The HeLa cell line was provided by Culture Collection, Public Health England, Porton 
Down, Salisbury, UK (Cat. No.: 93021013). The siRNAs mixtures were added after a 24 h incubation; after 48 h, 
the cells were collected for Western blot analysis. Adherent cells were scraped and centrifuged (800×g, 10 min, 
4 °C). Next, the cells were resuspended in RIPA buffer with a 1 × mammalian protease inhibitor cocktail (Sigma-
Aldrich). The lysates were spun down at 30,130×g and supernatants were assayed for protein content using the 
Bradford assay. 20 μg of each sample was taken for Western blot analysis. The obtained FTO bands were quanti-
fied by densitometry using ChemiDoc MP Imaging System (Bio-Rad).

Statistical analysis.  The results were subjected to three-stage statistical analysis. In the first step, we 
checked the uniformity of the SD and performed the Kolmogorov–Smirnov test of the normal distribution. In all 
examined groups, there were no indications for exclusion based on the assumption of normality of distribution. 

https://www.bio-rad.com/en-pl/product/image-lab-software?ID=KRE6P5E8Z


15

Vol.:(0123456789)

Scientific Reports |        (2020) 10:13029  | https://doi.org/10.1038/s41598-020-69856-5

www.nature.com/scientificreports/

Next, the MANOVA test was performed to check if there are statistical differences in FTO levels among all tis-
sues. A further ANOVA test with Benjamini–Hochberg adjustment was used to evaluate the tissues that differed 
between the groups. The data were then analyzed with an unpaired t test with Benjamini–Hochberg adjustment. 
All analyses were performed using the software R (version 3.3.0, www.r-proje​ct.org) with ‘cowplot’, ‘scales’, ‘stats’, 
‘gridExtra’, ‘outliers’ and ‘ggplot2′ packages71–76. The significance level α of 0.05 was used for all statistical tests.

Ethics approval and consent to participate.  The protocol was conducted in compliance with the Euro-
pean Union regulations concerning the protection of experimental animals. The study protocol was approved by 
the Local Ethical Committee, Warsaw University of Life Sciences, Warsaw, Poland No. 7/2015 and No. 8/2015.
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