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Deep learning on the 2‑dimensional 
Ising model to extract 
the crossover region 
with a variational autoencoder
Nicholas Walker1*, Ka‑Ming Tam1,2 & Mark Jarrell1,2

The 2‑dimensional Ising model on a square lattice is investigated with a variational autoencoder 
in the non‑vanishing field case for the purpose of extracting the crossover region between the 
ferromagnetic and paramagnetic phases. The encoded latent variable space is found to provide 
suitable metrics for tracking the order and disorder in the Ising configurations that extends to the 
extraction of a crossover region in a way that is consistent with expectations. The extracted results 
achieve an exceptional prediction for the critical point as well as agreement with previously published 
results on the configurational magnetizations of the model. The performance of this method provides 
encouragement for the use of machine learning to extract meaningful structural information from 
complex physical systems where little a priori data is available.

Machine learning (ML) and consequently data science as a whole have seen rapid development over the last 
decade or so, due largely to considerable advances in implementations and hardware that have made computa-
tions more accessible. Conceptually, the ML approach can be regarded as a data modeling approach employing 
algorithms that eschew explicit instructions in favor of strategies based around pattern extraction and inference 
driven by statistical analysis. This presents a colossal opportunity for modern scientific investigations, particu-
larly numerical studies, as they naturally involve large data sets and complex systems where obvious explicit 
instructions for analysis can be elusive. Conventional approaches often neglect possible nuance in the structure 
of the data in favor of rather simple measurements that are often untenable for sufficiently complex problems. 
Some ML methods such as inference methods have been routinely applied to certain physical problems, such 
as the maximum likelihood method and the maximum entropy  method1,2, but applications which utilizing ML 
methods have only recently attracted attention in the physical sciences, particularly for the study of interacting 
systems on both classical and quantum  scales3. There is a unique opportunity to take advantage of the advances 
in ML algorithms and implementations to provide interesting new approaches to understanding physical data 
and even perhaps improve upon existing numerical  methods4. Outstanding problems involving the predictions 
of transition points and phase diagrams are also of great interest for treatment with ML methods.

In order to utilize ML approaches for studying phase transitions, one must assume that there is some pat-
tern change in the measured data across the phase transition. Fortunately, this is in fact exactly what happens in 
most phase transitions. The widely adopted Lindemann parameter, for example, is essentially a measure of the 
deviations of atomic positions in the system from equilibrium positions and is often used to characterize the 
melting of a crystal  structure5. Similar form of pattern changes in the positions of the constituent atoms are often 
present in molecular systems in general. Perhaps more importantly, for some sufficiently complex systems, their 
phase transitions do not have obvious order parameters, often prohibiting the detection of such pattern changes 
using conventional methods. This is not a hypothetical situation, indeed hidden orderings for some interesting 
materials, such as heavy fermion materials and cuprate superconductors, have been proposed for long  time6–8.

Other systems may not even exhibit a true phase transition, but rather a crossover region where there is no 
singularity across different phases that can be difficult to characterize with conventional methods. A conventional 
phase transition can be identified in two ways, with the first being a singularity in a derivative of the free energy 
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as proposed by Ehrenfest and the second being a broken symmetry exhibited by an order parameter as proposed 
by Landau. Unlike a conventional phase transition, a crossover is not identified by a singularity in the free energy. 
There is also no broken symmetry in such a situation and thus no order parameter is associated with a crossover. 
The order parameter and singularity in the free energy are presumably sharp and obvious features which can be 
rather easily identified. The absence of such features clearly present a challenging situation in the prediction of 
a crossover region by ML. ML is a new route of studying these systems by searching for hidden patterns in the 
measured data where readily applicable a priori information is in short supply.

A viable ML method for detecting a crossover will find its use in many interesting systems related to the 
quantum phase  transition9. While the quantum phase transition is a second order phase transition controlled by 
non-thermal parameters at zero temperature, all experiments and most numerical simulations are conducted at 
finite albeit low temperatures for practical reasons. As a consequence of said thermal conditions, quantum critical 
points at low temperatures behave as crossover phenomenona. It is widely believed that many interesting materi-
als, particularly high temperature cuprate superconductors, harbor a quantum critical point. An ML approach 
for detecting the crossover phenomenon can thus be an important tool for studying quantum critical points.

Work has been done on various problems to characterize phase transitions in physical systems using ML 
methods, including the Ising model in the vanishing field  case3,10–20. This work will use a similar approach to 
those seen in these papers, but will focus on the crossover regions that are introduced in the non-vanishing 
field case of the 2-dimensional Ising model instead of seeking only the exactly known transition point in the 
vanishing field  case21. This is a somewhat more difficult problem, as there is no explicit transition to be found, 
but it remains an interesting problem nonetheless and possibly carries much greater implications for crossover 
regions in more complicated problems.

The Ising model itself is a mathematical model for ferromagnetism that is often explored in the field of 
statistical mechanics in physics to describe magnetic  phenomena22. Originally, the Ising model was developed 
to investigate magnetic phenomena, as mentioned earlier. With the discovery of electron spins, the model was 
designed to determine whether or not local interactions between magnetic spins could induce a large fraction of 
the electronic spins in a material to align in order to produce a macroscopic net magnetic moment. It is expressed 
in the form of a multidimensional array of spins si that represent a discrete arrangement of magnetic dipole 
moments of atomic  spins22. The spins are restricted to spin-up or spin-down alignments such that si ∈ {−1,+1} . 
The spins interact with their nearest neighbors with an interaction strength given by Jij for neighbors si and sj . The 
spins can additionally interact with an applied external magnetic field Hi (where the magnetic dipole moment 
µ has been absorbed). The full Hamiltonian describing the system is thus expressed as

where 〈i, j〉 indicates a sum over adjacent spins. For Jij > 0 , the interaction between the spins is ferromagnetic, for 
Jij < 0 , the interaction between the spins is antiferromagnetic, and for Jij = 0 , the spins are noninteracting. Fur-
thermore, if Hi > 0 , the spin at site i tends to prefer spin-up alignment, if Hi < 0 , the spin at site i tends to prefer 
spin-down alignment, and if Hi = 0 , there is no external magnetic field influence on the spin at site i. The model 
has seen extensive use in investigating magnetic phenomena in condensed matter  phhysics24–29. Additionally, the 
model can be equivalently expressed in the form of the lattice gas model, described by the following Hamiltonian

where the external field strength H is reinterpreted as the chemical potential µ , J retains its role as the interaction 
strength, and ni ∈ {0, 1} represents the lattice site occupancy. The original Ising Hamiltonian can be recovered 
using the relation σi = 2ni − 1 up to a constant. This model describes a multidimensional array of lattice sites 
which can be either occupied or unoccupied by a hard shell atom, disallowing occupancy greater than one. The 
first term is then interpreted as a short-range attractive interaction term while the second is the flow of atoms 
between the system and the reservoir. This is a simple model of density fluctuation and the liquid-gas transfor-
mations used primarily in chemistry, albeit often with  modifications30,31. Additionally, modified versions of the 
lattice gas models have been applied to binding behavior in  biology32–34.

Typically, the model is studied in the case of Jij = J = 1 and the vanishing field case Hi = H = 0 is of particu-
lar interest for dimension d ≥ 2 since a phase transition is exhibited as the critical temperature is crossed. For 
two dimensions, the critical temperature can be identified by exploiting Kramers-Wannier duality  symmetry35–37. 
At low temperatures with a vanishing field, the physics of the Ising model is dominated by the nearest-neighbor 
interactions, which for a ferromagnetic model means that adjacent spins tend to align with one another. How-
ever, as the temperature is increased, the thermal fluctuations will eventually overpower the interactions such 
that the magnetic ordering is destroyed and the orientations of the spins can be considered independent of one 
another. This is called a paramagnet.

In such a case, if an external magnetic field were to be applied, the paramagnet would respond to it and tend 
to align with it, though for high temperatures, a sufficiently strong external field will be required to overcome 
the thermal fluctuations. Since the magnetization smoothly decreases to zero with increasing temperature in the 
presence of an external magnetic field, there is no phase transition where the magnetization abruptly vanishes. 
Instead, the region in which the system goes from an ordered to a disordered state is referred to as the crossover 
region. Generically, a crossover refers to when a system undergoes a change in phase without encountering a 
canonical phase transition characterized by a critical point as there are no discontinuities in derivatives of the 
free energy (as determined by Ehrenfest classification) or symmetry-breaking mechanisms (as determined by 
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Landau classification). A well known example is the BEC-BCS crossover in an ultracold Fermi gas in which tun-
ing the interaction strength (the s-wave scattering length) causes the system to crossover from a Bose-Einstein-
condensate state to a Bardeen-Cooper-Schrieffer  state38. Additionally, the Kondo Effect is important in certain 
metallic compounds with dilute concentrations of magnetic impurities that cross over from a weakly-coupled 
Fermi liquid phase to a local Fermi liquid phase upon reducing the temperature below some  threshold39. Fur-
thermore, examples of strong crossover phenomena have also been recently discovered in classical models of 
statistical mechanics such as the Blume-Capel model and the random-field Ising  model40,41.

The organization of this work is as follows. The next section details the data science and ML methods explored 
in this work. In sect. 3, the results of the analysis of the 2-dimensional square Ising model are reported. Section 4 
concludes this work with a discussion of the interpretation, implications, and greater impacts of these findings.

Methods
The Ising configurations are generated using a standard Monte Carlo algorithm written in Python using the 
NumPy  library42,43. The algorithm was also optimized to be parallel using the Dask library and select subroutines 
were compiled at run-time for efficiency using the JIT compiler provided by the Numba  library44,45. The Monte 
Carlo moves used are called spin-flips. A single spin flip attempt consists of flipping the spin of a single lattice 
site, calculating the resulting change in energy �E , and then using that change in energy to define the Metropolis 
criterion exp(−�E

T ) . If a randomly generated number is smaller than said Metropolis criterion, the configura-
tion resulting from the spin-flip is accepted as the new configuration. The data analyzed in this work consists of 
1,024 square Ising configurations of side length 32 with periodic boundary conditions across 65 external field 
strengths and 65 temperatures respectively uniformly taken from [−2, 2] and [1, 5]. The interaction energies 
were set to unity such that Jij = J = 1 . Each sample was equilibrated with 8,192 Monte Carlo updates before 
data collection began. Data was then collected at an interval of 8 Monte Carlo updates for each sample up to a 
sample count of 1,024. At the end of each data collection step, a replica exchange Markov chain Monte Carlo 
move was performed across the full temperature range for each set of Ising configurations that shared the same 
external field  strength46–48. This allows for more robust sampling of the ensemble across the temperature range 
by allowing high-temperature states to be available at low temperatures as well as the inverse. Additionally, this 
helps to prevent samples on the vanishing field line from relaxing into either positive or negative magnetization 
states since two states at temperatures close to one another opposite spins would be very likely to swap.

In this work, the Ising spins were rescaled such that a spin-down atomic spins carry the value 0 and spin-up 
atomic spins carry the value 1, which is a standard setup for binary-valued features in data science. Physically, 
this would be interpreted as the lattice gas model as described in the prior section.

The goal is to map the raw Ising configurations to a small set of descriptors that can discriminate between the 
samples using a structural criterion inferred by an ML algorithm. This application is referred to as representation 
learning and is often presented as dimensionality reduction. There are many methods in the field of unsuper-
vised ML that seek to achieve such data dimensionality  reduction49,50 however, such methods do not respect the 
multidimensional structure of the input data, so a deep neural network will be used instead to accomplish the 
data dimensionality reduction in the form of a self-supervised variational autoencoder (VAE)51. Such a neural 
network is composed of three main components, an encoder network, a decoder network, and a sampling func-
tion. The encoder and decoder neural networks are implemented as deep convolutional neural networks (CNN) 
in order to preserve the spatially dependent 2-dimensional structure of the Ising  configurations52. The general 
idea of a VAE is to encode configurations into a latent variable space composed of the parameters for a chosen 
prior distribution. A multidimensional Gaussian distribution was used for this work. Random variables from 
these distributions can then be decoded to recover the original input configurations. In this way, VAEs are both 
generative models and latent variable models. Assuming a model is sufficiently trained, new sample data can be 
generated through traversing the latent space input to the decoder network.

The purpose for using a VAE in this manner is to extract a low-dimensional representation of the Ising 
configurations that are otherwise unwieldy to compare directly in a meaningful manner without a priori knowl-
edge of the important derived measurements from statistical physics used to accomplish the same tasks. The 
motivation then for using a VAE to encode and decode the Ising configurations lies in the desire to automate the 
parameterization of the Ising configurations without conventional methods from statistical physics, preferring 
instead to allow the neural network to learn and discover the important features itself directly from the struc-
tures of the configurations. The latent representations of the configurations will be small sets of descriptors for 
the configurations that can be used to discriminate between them by relying on the assumption that proximities 
between latent representations of the Ising configurations in the latent space are notions of structural similarity 
between the configurations in their original 2-dimensional lattice representations. In this way, the VAE is is used 
as an alternative to conventional statistical mechanics algorithms to accomplish the same task of characterizing 
the structural features of input configurations.

The encoder CNN uses four convolutional layers with kernel shapes of (3, 3) following the input layer with 
kernel strides of (2, 2) and increasing filter counts by a factor of 4. Zero-padding is used to ensure that the entire 
input is reached with convolutions. Furthermore, each convolutional layer uses scaled exponential linear unit 
activation functions (SELU) and LeCun normal initializations as well as kernels of shape (3, 3)53. The output of 
the final convolutional layer is then flattened, feeding into two dense layers of eight neurons respectively rep-
resenting the latent variables that correspond to the means µi and logarithmic variances log σ 2

i  of multivariate 
Gaussian distributions using linear activations. A random variable zi is drawn from the distribution such that 
zi = µi + exp[ 12 log σ

2
i ]N0,1 , where N0,1 is the standard normal distribution. The logarithmic variance is used in 

favor of the standard deviation directly in the interest of maintaining numerical stability. The random variable 
zi is then used as the input layer for the decoder CNN, where zi is mapped to a dense layer that is then reshaped 
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to match the structure of the output from the final convolutional layer in the encoder CNN. From there, the 
decoder CNN is simply the reverse of the encoder network in structure, albeit with convolutional transpose layers 
in favor of standard convolutional layers. The final output layer from the decoder network is thus a reproduction 
of the original input configurations to the encoder network using a sigmoid activation function. The structures 
of the VAE as a whole is shown in Fig. 1 as well as an example of a convolution operation that composes the bulk 
of the operations in the encoder and decoder networks is shown in Fig. 2.

The loss term consists of two separate components. The first is the standard reconstruction loss, which was 
implemented using the binary crossentropy between the encoder input and decoder output in this work. Other 
choices for the reconstruction loss are still valid, however, such as mean squared error or mean absolute error. 
The second loss term is a Kullback-Liebler divergence term which acts as a regularizer to ensure the latent vari-
ables µi an σi faithfully represent multivariate Gaussian parameters. The combination of the reconstruction loss 
and the Kullback–Leibler divergence is called the tractable evidence lower bound, often referred to as ELBO. In 
this work, the Kullback–Leibler term was decomposed in a manner similar to a β− total correlation VAE ( β−
TCVAE) network, separating it into three parts describing the index-code mutual information, total correlation, 
and dimension-wise Kulback-Leibler  divergence54. Minibatch stratified sampling was also employed during 
 training54. The specific parameters of the decomposition used were α = � = 1 and β = 8.

The Nesterov-accelerated Adaptive Moment Estimation (Nadam) optimizer was used to optimize the loss, 
though many other choices are  available55. It was found that the adaptive nature of the Nadam optimizer more 
efficiently arrived at minimizing the loss during training of the β−TCVAE model than other optimizers. The 

Figure 1.  A diagram depicting the structure of the VAE where X is the input Ising configuration, E(X) is the 
encoder network, µ and σ are the latent means and standard deviations, z is the random Gaussian sample 
from the distribution described by µ and σ , D(z) is the decoder network, and X̂ is the reconstructed Ising 
configuration.

Figure 2.  A diagram depicting the convolution operation for a single kernel of shape (3, 3) with a stride of 
(2, 2) acting on an input of shape (4, 4) with zero-padding denoted by the striped input region to produce an 
output feature map of shape (2, 2). Each stride is color coded such that each entry in the output is the sum of the 
products of the kernel weights and input entries over the subvolume corresponding to the same color. Since the 
stride is less than the kernel size, the subvolumes overlap.
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specific parameters used for the Nadam optimizer were β1 = 0.9 , β2 = 0.999 , a schedule decay of 0.4, and the 
default epsilon provided by the Keras library. A learning rate of 0.00001 was chosen. Training was performed 
over 16 epochs with a batch size of 845 and the samples were shuffled before training started. A callback was 
used to reduce the learning rate on a loss plateau with a patience of 8 epochs.

After fitting the β−TCVAE model, the latent encodings of the Ising configurations were extracted for further 
analysis. Principal component analysis (PCA) was used on the latent means and standard deviations indepen-
dently to produce linear transformations of the Gaussian parameters that more clearly discriminate between the 
samples using the scikit-learn package in an attempt to further disentangle the representations provided by the β
-TCVAE49. This is done by diagonalizing the covariance matrix of the original features to find a set of independ-
ent orthogonal projections that describe the most statistically varied linear combinations of the original feature 
 space49. The PCA projections are then interpreted for the 2-dimensional Ising model. The motivation for using 
the principal components (PC) of the latent variables instead of the raw latent variables is to more effectively 
capture measurements that are both statistically independent due to the orthogonality constraint and also explain 
the most variance possible in the latent space under said constraint. Given that the latent representations char-
acterize the structure of the Ising configurations, the principal components of the latent representations allow 
for more effective discrimination between the different structural characteristics of the configurations than the 
raw latent variables do. The β−TCVAE model used in this work was implemented using the Keras ML library 
with TensorFlow as a  backend56,57.

Results
All of the plots in this section were generated with the MatPlotLib package using a perceptually uniform 
 colormap58. In each plot, the coloration for a square sector on the diagram represents the average value of the 
measurement at that sector on the diagram, with lightness corresponding to magnitude.

The latent means µi contain only one PC with noticeable statistical significance as it explains 77.1% of the 
total statistical variances between the µi encodings of the Ising configurations while the rest explained less than 
4% each. This PC will be denoted with ν0 . These results reflect the accomplishments of prior published  works3.

By comparing ν0 depicted in Fig. 3 to the calculated magnetizations m of the Ising configurations in Fig. 4, it 
is readily apparent that ν0 is rather faithfully representing the magnetizations of the Ising configurations. There 
are some inaccuracies in the intermediate magnetizations produced by a relationship resembing a sigmoid 
between ν0 and m, but a very clear discrimination between the ferromagnetic spin-up and ferromagnetic spin-
down configurations is shown. Since the magnetizations act as the order parameter for the 2-dimensional Ising 
model, this shows that the extraction of a reasonable representation of the order parameter is possible with a 
VAE. It is important to note that since the magnetization is a linear feature of the Ising configurations, a much 
simpler linear model would be sufficient for extracting the magnetization.

The latent standard deviations σi show much more interesting behavior, however. Two PCs of the σi encodings, 
denoted as τ0 and τ1 , are investigated with respect to the external field strengths and the temperatures.

By comparing τ0 depicted in Fig. 5 to the calculated energies E of the Ising configurations shown in Fig. 6, it 
is clear that τ0 exhibits a strong discrimination between the low to intermediate energy regions and the highest 
energy region characterized by a cone starting at the vanishing field critical point approximated at TC ≈ 2.25 
that extends symmetrically to include more external field values with rising temperature, which is rather similar 
to the critical point predicted using a dense  autoencoder15. This is in effect capturing the concretely paramagnetic 
samples and the relative error in the estimation of the critical temperature is acceptable with a 0.85% overestimate 
error with respect to the exact value of TC = 2

ln[1+
√
2] ≈ 2.2721. Given that the paramagnetic samples are essen-

tially noise due to entropic contributions from thermal fluctuations destroying any order that would otherwise 
be present, it makes sense that these would be easy to discriminate from the rest of the samples using a β−TCVAE 
model. This is because the samples with ν0 values corresponding to nearly zero magnetizations and rather high 
values for τ0 will resemble Gaussian noise with no notable order preference, which is indeed reflected in the raw 
data. In this way, it seems that ν0 is suitable for tracking the ferromagnetic ordering while τ0 is suitable for char-
acterizing the paramagnetic disorder.

The behavior of τ1 shown in Fig. 7 is even more interesting, as it is not simply discriminating samples with 
intermediate energies from the rest of the data set. If this were true, then some samples at temperatures below the 
critical point at non-zero external field strengths would be included, as is readily apparent in the energies shown 
in Fig. 6. Rather, there is another cone shape as was seen with τ0 , albeit much wider and with the the samples 
represented strongly by τ0 omitted. In effect, it would appear as if τ1 is capturing regions in the diagram with 
intermediate structural disorder as opposed to the highly disordered structures captured by τ0 . Interestingly, τ1 
bears a rather strong resemblance to the specific heat capacity C depicted in Fig. 8. It is worth noting that there 
is a slight asymmetry between the spin up and the spin down configurations in τ1 , but it has negligible effects 
on the relevant analysis.

The distribution of the error between the true and β−TCVAE predicted values for the Ising model spins is 
shown in Fig. 9. The distribution is very sharply centered around and reasonably symmetric about zero, showing 
suitable spin prediction accuracy without a considerable bias towards one spin over the other. The distribution 
of the absolute errors between the true and β−TCVAE predicted values is shown in Fig. 10, showing that the 
bulk of the predictions exhibit very little error. The distribution of the Kullback–Leibler divergences is depicted 
in Fig. 11 and is well-behaved with few outliers.
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Figure 4.  The ensemble average magnetization m with respect to the external field strengths and temperatures.

Figure 3.  The ensemble average ν0 with respect to the external field strengths and temperatures.
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Figure 5.  The ensemble average τ0 with respect to the external field strengths and temperatures.

Figure 6.  The ensemble average energy E with respect to the external field strengths and temperatures.
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Figure 8.  The ensemble Ising specific heat C with respect to the external field strengths and temperatures.

Figure 7.  The ensemble average τ1 with respect to the external field strengths and temperatures.
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Figure 9.  The distribution of errors in the β−TCVAE Ising spin predictions.

Figure 10.  The distribution of absolute errors in the β−TCVAE Ising spin predictions.

Figure 11.  The distribution of Kullback–Leibler divergences of the β−TCVAE model latent encodings.



10

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:13047  | https://doi.org/10.1038/s41598-020-69848-5

www.nature.com/scientificreports/

Discussion
In essence, using a VAE to extract structural information from raw Ising configurations exposes interesting 
derived descriptors of the configurations that can be used to not only identify a transition point, but also a crosso-
ver region amongst other regions of interest. The crux of this analysis is in the interpretation of the extracted 
feature space as represented by the latent variables. This is done by studying the behavior of the latent variable 
mappings of the Ising configurations with respect to the external magnetic fields and temperatures.

Considering that ν0 reflects the magnetization for the 2-dimensional Ising model, this means it can be readily 
interpreted as an indicator for the ferromagnetic ordering exhibited by the configurations. By contrast, τ0 and τ1 
can be interpreted as an indicator of paramagnetic disorder that also provides a suitable estimate of the transition 
temperature. The extracted region from τ1 can readily be interpreted as the crossover region, as these configura-
tions exhibit order preferences alongside a significant amount of noise brought on by the entropic contributions 
from the thermal fluctuations at higher temperatures. As would be expected of the crossover region, it shifts to 
higher temperatures with increasing external magnetic field strengths.

These results potentially carry broad implications for the path towards formulating a generalized order param-
eter alongside a notion of a crossover region with minimal a priori information through the use of ML methods, 
which would allow for the investigation of many interesting complex systems in condensed matter physics and 
materials science. The advantage of the present method is in its capability of capturing the crossovers. This opens 
a new avenue for the study of quantum critical points from the data obtained at low but finite temperatures that 
instead exhibits crossover regions. Examples of these include data from large scale numerical Quantum Monte 
Carlo simulations for heavy fermion materials and high temperature superconducting cuprates for which quan-
tum critical points are believed to play crucial roles for their interesting  properties60–61.

There are many opportunities beyond investigating more complex systems by introducing improvements to 
this method beyond the scope of this work. For instance, finite-size scaling is an important approach towards 
addressing limitations presented by finite-sized systems for investigation critical  phenomena62. Establishing cor-
respondence between the VAE encodings of different system sizes is a challenging proposition, as different VAE 
structures will need to be trained for each system size, which in turn may require different hyperparameters and 
training iteration counts to provide similar results. Consequently, numerical difficulties can arise when perform-
ing finite-size scaling analysis, as the variation of predicted properties with respect to system size may be difficult 
to isolate from the systemic variation due to different neural networks being used to extract said properties. 
Nevertheless, this would be a significant step towards improving VAE characterization of critical phenomena.
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