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Dynamical gene regulatory 
networks are tuned 
by transcriptional autoregulation 
with microRNA feedback
Thomas G. Minchington1, Sam Griffiths‑Jones2* & Nancy Papalopulu1*

Concepts from dynamical systems theory, including multi-stability, oscillations, robustness and 
stochasticity, are critical for understanding gene regulation during cell fate decisions, inflammation 
and stem cell heterogeneity. However, the prevalence of the structures within gene networks that 
drive these dynamical behaviours, such as autoregulation or feedback by microRNAs, is unknown. 
We integrate transcription factor binding site (TFBS) and microRNA target data to generate a gene 
interaction network across 28 human tissues. This network was analysed for motifs capable of driving 
dynamical gene expression, including oscillations. Identified autoregulatory motifs involve 56% of 
transcription factors (TFs) studied. TFs that autoregulate have more interactions with microRNAs 
than non-autoregulatory genes and 89% of autoregulatory TFs were found in dual feedback motifs 
with a microRNA. Both autoregulatory and dual feedback motifs were enriched in the network. TFs 
that autoregulate were highly conserved between tissues. Dual feedback motifs with microRNAs were 
also conserved between tissues, but less so, and TFs regulate different combinations of microRNAs in 
a tissue-dependent manner. The study of these motifs highlights ever more genes that have complex 
regulatory dynamics. These data provide a resource for the identification of TFs which regulate the 
dynamical properties of human gene expression.

Cell fate changes are a key feature of development, regeneration and cancer, and are often thought of as a “land-
scape” that cells move through1,2. Cell fate changes are driven by changes in gene expression: turning genes on or 
off, or changing their levels above or below a threshold where a cell fate change occurs. “Omic” technologies have 
been successful in cataloguing changes in gene expression during cell fate transitions. Many computational tools 
have been developed for the ordering of gene expression changes in pseudotime, delineating cell fate bifurcation 
points and linking genes into networks3–5. However, while we have a good understanding of the fates/states that 
cells transition through and their order in time/space, the mechanisms that allow cells to move through the fate/
state landscape are not well understood.

Gene regulatory networks are maps of interactions between different transcription factors (TFs), cofactors, 
and the genes or transcripts they target6. Networks are commonly represented diagrammatically as graphs of 
the connecting components, such as TFs and their targets. Network motifs are small repeating patterns found 
within larger networks6. Modelling of networks in this manner allows us to develop an understanding of how 
components interact and what behaviours they may generate6–9.

Although it is clear that gene interactions are dynamic and change over time, current approaches in many 
biological studies focus on the qualitative analysis of genes or simple interactions between gene pairs: in short, 
how the perturbation of one gene affects the expression of another. However, gene expression is more nuanced 
than these traditional binary approaches can reveal. Biological networks are dynamical systems, that is systems 
that not only transform over time but resolve differentially depending on their parameter values, initial and 
boundary conditions, time delays, noise and the non-linearity of reactions. Autoregulation and cross-regulation 
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of components are the heart of a dynamical network’s structure10. Dynamical models are better suited than binary 
systems to explain biological systems because they can account for phenomena such as robustness and plasticity11.

Oscillations can emerge as a ‘hallmark’ of a dynamical system with multiple attractors. The fundamental 
properties that generate oscillations, such as the non-linearity of reactions, instability of components and time 
delays, are also the very properties that endow systems, including gene expression, with the ability to transition 
between different dynamic regimes. Oscillatory gene expression is now a well-recognised feature of several key 
TFs and signalling molecules. For example, p53 is expressed in an oscillatory manner following DNA damage, 
leading to the arrest of the cell cycle and DNA-repair, although, sustained expression of p53 leads to cell senes-
cence (reviewed in Hafner et al12). p53 dynamics can also be altered in response to different stimuli13. Oscillatory 
vs sustained expression of p53 may differentially regulate target genes, leading to various outcomes including 
cell cycle arrest, or growth and recovery14.

Another example is the oscillatory dynamics of the Hes genes, which play essential roles in many different 
developmental processes. Notably, oscillations in Hes7 govern the timing of the somite segmentation during 
embryogenesis15, whereas oscillations of Hes1 have been shown to regulate the direction and timing of cell fate 
decisions in the developing neural tissue16,17. Oscillations may be decoded by the phase, amplitude or duration 
of the oscillatory phase18–20.

While gene expression oscillations are important, they may be viewed as only one of the possible states that 
a gene network can assume. Dynamical systems can have non-intuitive behaviours and it is necessary to employ 
mathematical modelling and quantitative approaches to understand their behaviour. Knowing which networks 
may show these properties is the first step. Coupling this approach to appropriate functional experimentation 
and mathematical modelling will allow a mechanistic understanding of cell fate/state transitions. Thus, we argue 
that discovering network motifs in biological networks that can drive a range of dynamics will facilitate a new 
conceptual and experimental approach to cell fate or cell state transitions, applicable to development, regenera-
tion and disease, including cancer.

Results from synthetic biology show that the most straightforward motif that can produce oscillations is an 
autoregulatory negative feedback loop21,22. Autoregulation is a critical component of other oscillatory motifs, 
including the amplified feedback23,24 and dual feedback loops22. A common element of the oscillatory motifs 
outlined here is negative feedback coupled with instability and delay. The repressilator, a synthetic gene interac-
tion network of three repressors, forming a circuit of repression, utilised these principles to produce oscillatory 
expression of a fluorescent protein in Escherichia coli25.

In addition to the network structure, gene expression oscillations have other principles in common, such as 
time delays and instability of the components (mRNA and protein). Recent evidence suggests that mRNA stability 
is key to the generation of oscillatory gene expression26, and this may be regulated by microRNAs. MicroRNAs 
are a class small non-coding RNAs around 22nts in length and are critical regulators of gene expression, modi-
fying mRNA stability and translation27. MicroRNAs are transcribed from either intergenic microRNA genes or 
intragenic loci producing primary transcripts containing hairpin loops. These primary transcripts are spliced 
into shorter pre-microRNA which are exported from the nucleus where they are subsequently processed into 
a double-stranded microRNA duplex27–29. One of these two transcripts, either the 5′ or 3′ arm, is selected to 
be the mature microRNA and enter into a repressor complex with Argonaute (AGO). MicroRNAs guide RISC 
(RNA-induced silencing complex) members to the 3′ UTRs of target messenger RNAs (mRNAs)27,29. RISC 
protein AGO can then repress translation and increase the rate of mRNA deadenylation of target transcripts30. 
Increased deadenylation leads to decreased stability and therefore increased degradation of the target mRNA27.

MicroRNAs are transcribed by Pol II (and in some cases Pol III) in the same way as mRNAs31–33. As such, 
they are subject to the same regulatory input and are under the regulatory influence of transcriptional regulators 
such as TFs. MicroRNAs therefore are often incorporated into biological gene regulation circuitry, such as in the 
case of the Hes1/miR-9 oscillator and p53 oscillatory modulation by miR-1634,35.

We have a good understanding of the structures that may allow dynamical behaviour in biological networks, 
such as bistability and oscillatory expression. However, the prevalence of such gene regulatory network structures 
is unknown. Are they common, or are they restricted to just a few cases of key TFs?

To address this knowledge gap, we constructed a gene interaction network by integrating data from well 
characterised human TF and microRNA databases. We then interrogated it for the presence of network motifs 
that have the potential of dynamical gene expression, in particular oscillations. Specifically, we have used the 
previously identified network structures of known synthetic and natural periodically expressed genes to inter-
rogate a set of human TFs for the presence of simple motifs that incorporate TF autoregulation and reciprocal 
interaction of microRNAs and TFs. We used well-annotated databases and drew on information for TF bind-
ing from ChIP-seq data incorporated from ReMap database36, as well as microRNA target predictions from 
miRTarBase37. TF and microRNA target predictions from these data were used to generate a network, consisting 
of these genes and their targets.

We report that motifs with the potential to generate oscillatory gene expression (hereafter termed “oscilla-
tory motifs”) are widespread in TF networks. In particular, the autoregulatory motif, which is a core structure 
of all oscillatory motifs examined, is prevalent in our human TF dataset. Oscillations can occur with negative 
autoregulation21,34, or positive autoregulation coupled with indirect negative feedback22,23. We also demonstrate, 
through the use of tissue-specific sub-networks, that autoregulation with microRNA feedback is well conserved 
between tissues in terms of network topology. Surprisingly TFs were found to utilise different microRNAs 
for preserving the network structure in different cellular environments; possibly by utilising the expression of 
tissue-specific microRNAs.
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Results
Most TFBS cluster in cis‑regulatory modules.  To understand the prevalence of network motifs within 
transcriptional and post-transcriptional networks, we collected datasets of experimentally-validated TF and 
microRNA interactions to construct a gene regulatory network. For the TFBS data, we took advantage of the 
ReMap project, which acquired human ChIP-seq experiments from GEO38 (Gene Expression Omnibus). ReMap 
(v1.2) reprocessed the ChIP-seq data to identify 2,829 high-quality data sets36,39 and combined with ENCODE 
release V340 TFBS data to annotate a total of 80,129,424 TFBS positions for 485 TFs.

The ReMap database defined a set of cis-regulatory modules, which are loci where more than one TF binds. 
The vast majority of binding sites fall within these defined cis-regulatory modules and have at least one overlap-
ping peak from another TF (98.6%; Fig. 1). We reasoned that TFBSs outside of these cis-regulatory modules were 
more likely to represent non-specific binding, and therefore excluded those sites, leaving 79,037,581 peaks, an 
average of 165,005 binding sites per TF.

TFBSs were assigned to the closest annotated Transcriptional Start Site (TSS) in Ensembl within a range of 
50 kb upstream and 10 kb downstream of the annotated TSS. This range is expected to contain the proximal 
promoter region of the gene, but may also include more proximal enhancers41. Of the 79,037,581 TFBS remain-
ing after cis-regulatory module (CRM) filtering, 65,222,825 TFBS (82.5%) were successfully assigned to TSSs 
of potential target genes. Binding-sites outside this range are likely to represent either non-specific binding or 
more distal enhancers. To investigate we compared the loci of the TFBS filtered from the data with candidate 
regulatory elements from SCREEN (Search Candidate cis-Regulatory Elements by ENCODE[75,76]). Of the TFBS 
excluded for falling outside CRMs 0.02% were associated with promoter-like elements (PLS), 0.28% proximal 
enhancer-like elements (pELS) and 2.9% with distal enhancer-liker elements (dELS). For TFBS outside our 
defined promoter range 0.02% intersected PLS, 0.28% pELS and 47% dELS. These results are consistent with 
the CRMs selecting for predicted regulatory elements and sites outside our promoter regions representing more 
distal enhancers. This relatively simple approach to the assignment of TFBS to genes thus provides a good 
approximation of gene regulatory input.

The set of annotated TSSs from Ensembl to which we have mapped our TFBS data include the 5′ ends of 
protein-coding transcripts, but also a number of classes of non-coding RNA, including lincRNAs and micro-
RNAs. 68% of human microRNAs in our datasets overlap with longer transcript annotations; the majority of 
these microRNAs are found in introns of protein-coding genes. Intragenic microRNAs may be co-transcribed 
with their host genes or independently regulated42,43. For example, Marsico et al.44 identified that around 60% of 
intragenic microRNAs share the transcriptional regulation of their host gene. To ensure that regulatory inputs 
for microRNAs are as complete as possible in our network, we combined the regulatory binding sites for the host 
gene with that of any TSS associated with the microRNA itself. Assignment of host gene regulation to microRNA 
results in 72,592,550 TFBS to gene interactions in the network. On average across all intragenic microRNAs, 
13% of the regulatory inputs in our network are associated with the microRNA alone, and 87% come from the 
host gene.

Integrating microRNA target information.  Next, we sought to integrate post-transcriptional regula-
tion by microRNAs into our network. Several options are available for annotation of microRNA binding sites. 
For example, tools are available to predict microRNA target sites; most rely on seed matching45 that is, comparing 
the seed sequence of the microRNA with sequences within the 3′ UTRs of target genes. The signal-to-noise ratio 
for predictions using such short sequence matches is known to be relatively low, leading to high proportions of 
both false positives and false negatives46. Instead, we collected microRNA target information from the miRTar-
Base (r7.0) database and integrated into the network. miRTarBase is an online database of validated microRNA 
targets, utilising experimental data from the literature, including luciferase reporter assays and CLIP-seq data37.

TFBS filtering selects for higher confidence interactions.  Different TFs have substantially different 
numbers of targets in the raw network. For example, ZNF335 and MDM2 have one protein-coding target each 
while MYC and CTCF have over 18,500 targets each, targeting over 93% of all protein-coding genes each. In the 
raw network, the median protein-coding target number for TFs as assigned is 10,651 (> 53% of protein-coding 
genes).

More binding sites for a given TF at a given TSS has previously been shown to be a good indicator of 
regulation47. We therefore developed further filters to select for higher confidence interactions, based on the 
distribution of number of binding sites for each TF across all TSSs. Essentially, we simply remove interactions 
between a TF and a TSS region where the number of binding sites for that TF is fewer than the mean number of 
binding sites per gene for that TF (see “Methods”). In this way, we focus on TF/TSS region interactions where 
the number of TFBSs is above average. After this mean filtering is applied, the median number of protein-coding 
targets per TF is 4,303 (22% of protein-coding genes) a reduction of 60%. Some TFs are identified as targeting up 
to 9,369 protein-coding targets. Filtering TF-target interactions in this manner does not appear to bias or select 
for any particular target type, with the distribution of targets remaining proportional between different classes 
of gene targets, such as microRNA or protein-coding genes (see Fig. 2).

The TF/microRNA regulatory network is highly connected.  The complete network comprises 479 
TFs (ReMap) and 2,599 microRNA (miRTarBase r7.0). The interactions in a network are described as edges 
that link one component (node) to another. These edges can be divided into two groups: in-edges, which are 
receiving signals, such as a TF gene promoter receiving input from another TF; and out-edges, where a TF or 
microRNA regulates a promoter or mRNA. All components of a gene are linked together in our network. In the 
case of protein-coding genes, this means that the interactions at the TSS, mRNA and protein level all link to one 
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component (node). The resulting network is highly connected: TFs on average have 120 in-edges and 170 out-
edges, and microRNAs have 120 in-edges and 145 out-edges. Since we are primarily interested in motifs where 
the targets of transcriptional and microRNA regulation are themselves regulators, we also produced a trimmed 
network using only edges that connect two regulators (TFs and microRNAs). In this trimmed network, the aver-
age TF has 200 in-edges and 830 out-edges, and microRNAs have an average of 120 in-edges and 7 out-edges. 

80,129,424 transcription
factor binding sites (TFBS) 

in REMAP (v1.2)

79,037,581 TFBS 
in CRMS

65,222,825 TFBS 
assigned to TSS

11,055,835 TFBS to target 
interactions in Filtered Network

72,592,550 TFBS to
target interactions

Trimmed network
for randomisation

TFBS loci that fall outside of 
cis-regulatory modules (CRMS) 
defined by REMAP were removed

TFBS were assigned to target 
genes where loci fall within 50kb 
upstream and 10kb downstream of 
a transcriptional start site (TSS)

TFBS to target interactions were 
filtered to enrich for higher 
confidence interactions 
(see methods) 

MicroRNAs were assigned the
input of transcripts for which their
annotations overlap

Non-regulators were removed 
from target list

Figure 1.   Refinement of TFBS data to final network. The original REMAP (v1.2) data contain 80,129,424 TFBS. 
These data were first filtered to keep only those found in CRMs (regions where TFBS were found to overlap). 
These peaks were then assigned to TSS of all genes as annotated in Ensembl 89 in a window of 50 kb upstream 
of the TSS and 10 kb downstream of the TSS (see “Methods”). To increase the confidence in the interactions 
between TFs and target genes, TSS-TF interactions were filtered based on the mean binding profiles of each TF. 
Interactions ≥ mean binding were maintained. This filtering produces the final network. As all interactions in 
which we are interested contain feedback, we produced a trimmed network that only contains genes which are 
both targets and regulators.
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The difference here is due to the quantity of each type of network components—there are far fewer TFs in the 
network than microRNAs.

Transcriptional autoregulation with feedback by TFs and microRNAs is common.  The network 
was interrogated to identify network motifs with structures that match those of existing oscillatory motifs. In 
all cases, the microRNA activity is assumed to be repressive, but the TF may be positively or negatively regulat-
ing. Nonetheless, we expect that a subset of the instances of the motifs identified will be connected in a way 
which could produce oscillations. The motifs selected were M1 (TF autoregulation), M2 (autoregulation with 
microRNA feedback), M3 (autoregulation with TF feedback), and M4 (two autoregulators with co-regulation) 
(Fig. 3A). TF autoregulation (M1) is a key feature of all our chosen network motifs and was observed for 266 of 
479 (56%) TFs in the network (Fig. 3B). 237 of the autoregulating TFs (89%) are subject to microRNA feedback 
(M2). In total, the M2 motif was found 3,809 times within the network (Fig. 3B), comprising combinations of 
237 (49%) TFs and 1,254 (48%) microRNAs (Fig. 3C). The M3 motif was observed 24,381 times and M4 19,622 
times (Fig. 3B). The TFs in M3 and M4 motifs have more targets than in the M2 motifs and are more highly 
interconnected (Fig. 3D).

A randomisation experiment was conducted to determine that motif structure and prevalence is a product 
of underlying biology, not the inherent connectivity of the network. The trimmed network was randomised by 
rewiring, maintaining the number of inputs and outputs of each node. All network motifs investigated include 
an autoregulatory loop. If the autoregulatory loops (M1) are present more often than expected by chance, this 
could lead to all motifs appearing to be enriched. We therefore used two randomisation models: (1) “unlocked” 
randomisation, where all connections in the network are randomised, and (2) “locked” randomisation, where 
autoregulatory edges were fixed. TF-target and microRNA-target interactions were randomised independently 
as they represent fundamentally different levels of control (transcriptional and post-transcriptional regulation, 
respectively). Separating the interaction types also acts to ensure the random networks retain structural com-
parability to the real network.

The randomisation experiment showed that all four studied motifs are found more frequently than would be 
expected by chance. M1 motifs were investigated using the unlocked randomisation, whereas all other motifs 
used the locked method due to the presence of autoregulation in all motifs. M1, M2 and M4 motifs were never 
observed in the 1,000 random networks at numbers greater than or equal to their frequency within the real data 
(p < 0.001; M1 z = 40.4; M2 z = 6.10; M4 z = 4.42). M3 network motifs were less significantly enriched than other 
motifs within the network, though they are still observed more frequently than would be expected by chance 
(p = 0.01; z = 2.42). We therefore conclude that all four of the transcriptional autoregulation motifs, with and 
without feedback from TFs and microRNAs, are over-represented in the gene regulatory network. This over-
representation is likely to reflect their importance in an underlying biological process.

Autoregulatory genes are regulatory nodes in the network.  It has been hypothesised that genes 
which autoregulate do so due to the need for more precise control over the expression of these genes48. Autoregu-
lation, when negative, may also help buffer the response of the gene to multiple inputs to produce more robust 
expression behaviour. Connections into and out of autoregulatory genes were measured in comparison to non-
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autoregulatory genes to assess the connectivity of two groups in the network. Autoregulatory genes were found 
to have significantly more target genes than non-autoregulatory genes, an observation that holds across multiple 
target types (Fig. 4A). The microRNAs within the network were also found to have significantly more autoregu-
latory targets than non-autoregulatory targets (Fig. 4B). This observation did not appear to be specific to the 
group of microRNAs that show a preference for autoregulatory genes. Rather, most microRNAs (62%) regulate 
more autoregulatory genes than non-autoregulatory genes. Autoregulators on average have more inputs and 
outputs than non-auto-regulators independent of regulators or target type. These results taken together may 
indicate that auto-regulators form small local hubs in transcriptional and post-transcriptional networks. Gene 
Ontology enrichment analysis reveals that 70% (185) of the autoregulatory genes are associated with terms 
related to developmental processes (Supplementary Table 1). No enrichment was found for the non-autoregu-
latory group. Control of these genes, provided by autoregulation, may be necessary due to the high number of 
targets and their roles in development.
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Tissue networks reveal conserved motifs between tissues.  The ReMap data contains information 
on the cell types from which all TFBS data were obtained. We used this cell type information to group TFBS 
datasets into 28 tissue types (Supplementary Table 2). This information was exploited to identify patterns of 
interactions between TFs and microRNAs that were maintained between different tissue types. To this end, we 
built sets of tissue-specific networks involving TFs and microRNAs. Each tissue-specific network necessarily 
contains a subset of the nodes and edges present in the entire network. The tissue networks are quite different in 
terms of TFs with 91% of TFs found in fewer than 20% of the networks and each TF on average contributing to 
2.4 (mean) networks. The highest Jaccard index between the TF/target interactions of two networks is 31.3% for 
embryonic stem cells and lung (Supplementary Fig. 1A) with 83% of pairwise comparisons between networks 
resulting in a Jaccard index below 10% (Supplementary Fig. 1B). The difference between tissue-specific networks 
is largely a function of the studies that have been conducted. Of TFs that autoregulate, 43% had binding site data 
in only one tissue type, and were therefore not considered further here. 19% of autoregulating TFs were found 
in 2 tissues, 13% were observed in three tissues, and the remaining 24% were detected in four or more tissues 
(Fig. 5A).

Where TFs have binding site data in more than one tissue, we asked whether their connections were con-
served between those tissues. To this end, we investigated the conservation of M1 and M2 type motifs between 
tissues. M1 autoregulatory motifs are well conserved between different tissue types: the autoregulatory ability of 
over half of all TFs was conserved in 100% of tissues where data exist (Fig. 5B). This suggests that their biologi-
cal function may be linked to their ability to autoregulate. The presence of M2 motifs was only slightly less well 
conserved between tissues (Fig. 5C). When M2 motifs are not conserved between tissues, the most significant 
factor is loss of autoregulation—19% of all M2 motifs lose their autoregulatory signal between tissues, whereas 
only 1.3% of motifs are not conserved because they are missing TF regulation of the microRNA. However, even 
when the presence of the M2 motif is conserved, the identity of the components of the motifs may change. 18% 
of autoregulating TFs in M2 motifs, while retaining a core set of microRNAs, target different miRNAs in dif-
ferent tissues. The data suggest that the specific combinations of microRNAs and TFs vary between tissues, but 
the M2 motif structures themselves are maintained, sometimes by co-option of different microRNAs into those 
regulatory processes (Fig. 5D).

Overall, our data show that autoregulation of TFs is prevalent and that microRNAs engage more frequently 
with autoregulated TFs. Indirect feedback, both with microRNAs and between TFs is also widespread within 
in the network. The variety and quantity of feedback observed here, coupled with the conservation for these 
network structures between tissues, may indicate an important role for these motifs in conferring dynamic 
behaviour to the TFs involved.

Discussion
We generated a human gene interaction network including both transcriptional (TF) and posttranscriptional 
(microRNA) regulation. Previous work has indicated the high prevalence of autoregulatory loops in the human 
gene regulation network49. Kiełbasa and Vingron49 used computational TF target predictions based on binding 
DNA motifs to look for autoregulatory loops. Here we build upon this work by utilising experimentally predicted 
gene targets, rather than relying on DNA binding motifs, while also increasing the number of genes investigated 
from 292 TFs to 479. Our data also include the addition of post transcriptional feedback with the inclusion of 
microRNA target data. The motifs investigated in this study are capable of producing a range of different dynamic 
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which are autoregulatory or non-autoregulatory. MicroRNAs have more autoregulatory targets than non-
autoregulatory targets. The p-values for both A and B were calculated using the Wilcoxon test using R.
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behaviours in their component genes, including noise modulation, bistability and oscillatory expression. Ana-
lysing the prevalence and behaviour of these motifs is therefore essential to our understanding of fundamental 
gene regulatory processes and their resulting molecular and cellular phenotypes.

Autoregulating TFs are highly enriched within our network, consistent with previous observations49,50. These 
autoregulatory genes are also highly connected within the network, possessing more inputs and outputs to pro-
tein and microRNA genes than non-autoregulatory genes. The high number of connections of autoregulatory 
genes indicates that they play central roles in processing both inputs and outputs in the network. The wide range 
of gene expression dynamics which can arise from autoregulation may explain the prevalence of the motif in 
biological networks.

Autoregulation (M1, Fig. 3A) can produce many different behaviours depending on the properties of the 
components involved, and the type of inputs into the system. Negative autoregulation has previously been shown 
to decrease variability in the expression of a gene, buffering the noise of transcription and translation51. Negative 
autoregulation can also decrease the variability in the levels of a gene in a population of cells. Conversely, posi-
tive autoregulation can increase variability of protein levels between cells in a population leading to bistability52. 
Negative autoregulation may also decrease the response time of a gene when compared with simple regulation of 
one gene targeting another53. The response time of a gene is the time required to achieve 50% the concentration 
of steady-state6. Steady-state is achieved when the degradation and production rates of the gene products are 
balanced. Negative autoregulation adjusts the balance between degradation and production by decreasing the 
transcription rate as the level of protein increases. Therefore negative autoregulation leads to faster equilibrium, 
as the degradation rate more quickly matches the production rate53. Positive autoregulation has the opposite 
effect: the rate of transcription increases as the levels of protein increase, and the system therefore takes longer 
to reach an equilibrium state54,55.

MicroRNA feedback has also been previously predicted to be an enriched motif in human and mouse gene 
networks56. While microRNAs themselves are often suggested to act as buffers of gene expression, the interaction 
between a repressing TF and a microRNA in an M2 motif under certain conditions may act as a bistable switch57. 
For example, ZEB and miR-200 form a negative feedback loop where miR-200 inhibits mZEB and ZEB inhibits 
the transcription of miR-200. This loop is thought to be involved in mesenchymal to epithelial-mesenchymal 
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transition58. Modelling of miR-200 and ZEB has shown the system to switch states depending on input: high levels 
of miR-200 and low ZEB levels favour the epithelial phenotype, while low miR-200 low and high ZEB produce a 
mesenchymal phenotype59,60. The M2 motif involving ZEB1 and miR-200b-3p is present in our network analysis 
(Supplementary File 2).

One of the goals of this work was to identify motifs with similar structures to existing oscillators, and thereby 
predict new oscillators. Many motifs investigated in this study are capable of producing oscillatory patterns of 
gene expression, provided the regulatory feedback is negative, whether direct (M1 and M2), indirect (M3) or a 
combination of the two (M4) and other dynamical properties such as component instability and non-linearity of 
reactions are satisfied61. Oscillatory gene expression is an emerging area of research across many fields of biology 
including inflammation, stem cell heterogeneity and neurogenesis62–65. The core conditions required to produce 
oscillations are negative feedback, instability and delay61,66,67. Negative autoregulation is the most straightfor-
ward oscillatory motif and was the first synthetic oscillator to be described21. Oscillations can occur in just this 
simple system if a gene’s mRNA and protein half-lives are shorter than the delay between gene activation and 
autorepression61. Negative autoregulation was shown to produce noisy oscillations in vivo when implemented 
through a synthetic autoregulatory module22.

The addition of negative feedback by a microRNA modifies the M1 motif to the M2 motif. This motif matches 
the network structure of the known ultradian oscillator HES1, a highly conserved oscillatory gene which drives 
cell fate decisions during neurogenesis17,68. HES1 partners miR-9 in an M2 motif, and the levels of miR-9 are able 
to drive neuronal differentiation through the modulation of HES1 dynamics34,69. It has also been hypothesised 
that the microRNA may also act as a self-limiting timer accumulating gradually through rounds of oscillations 
to a level where it destabilises the oscillations34.

The M3 motif (Fig. 3A) is similar in structure to the M2 motif, with the microRNA substituted for a TF. In 
cases where the autoregulator in the M3 motif is a positive regulator of its own transcription, and the second TF 
negatively regulates the first, the M3 motif has been shown in synthetic biology to generate oscillations in vivo23. 
The M4 motif is structurally similar to the M3 motif; however, both TFs are autoregulatory. Work by Stricker 
et al.22 has shown that the M4 motif can produce robust oscillations in situations where one TF is a positive 
regulator of transcription, and the other is negative.

Instances of autoregulation (M1) and autoregulation with microRNA feedback (M2) are highly conserved 
between tissues. The level of conservation indicates that these network motifs are necessary for core functional 
roles in different tissues. The component TFs were found to be conserved in M2 motifs in multiple tissues, 
but in many cases regulating different microRNAs between different tissues. Previous studies have shown that 
microRNAs have highly specific patterns of tissue expression70. The switching of microRNAs in M2 motifs 
between tissues may therefore be due to differential incorporation of microRNAs into the network based on 
their availability in those tissues.

Our data show that autoregulation is prevalent amongst TFs and that genes which autoregulate are highly 
integrated into transcriptional networks. Further, autoregulatory genes preferentially engage with microRNAs, 
targeting and being targeted by more microRNA than non-autoregulatory genes. All of the oscillatory type motifs 
were identified more than would be expected by chance within our data. The wide range of behaviours that TFs 
can exhibit when contained within these motifs suggest that these network structures of TFs, microRNAs and 
their target genes allow dynamic expression to control core cellular processes. Of course, a complete understand-
ing of the detail of how these motifs drive complex behaviours such as oscillations will require extensive and 
in-depth study of individual instances. However, the types of dynamical behaviours that these motifs predict are 
difficult to detect experimentally without real-time single-cell analysis. Our data therefore provides an invaluable 
resource in the search for dynamically expressed genes.

Methods
All scripts can be found at https​://githu​b.com/TMinc​hingt​on/netwo​rk_codes​. All graphs were generated using 
R71 and the ggplot2 library72.

ReMap data filtering.  TFBS data were obtained from the ReMap2018 (v1.2) database (hg38, All peaks). 
The cis-regulatory module data were also downloaded from ReMap2018 for the matching version. ReMap2018 
(v1.2) contains TFBS data for 485 TFs. TF datasets generated using non-specific antibodies were removed from 
the data. For example, the binding data for RUNX contains bindings which are non-specific and may relate to 
any member of the RUNX family. We removed tracks where non-specificity was evident from the ReMap anno-
tation. After this filtering was applied, 479 TFs remained. Transcriptional regulator binding sites were filtered to 
remove sites which were not found within cis-regulatory modules as described in the ReMap paper36. The filter-
ing was performed by running script chip_in_cmfs.py (arguments: CRM_file, chip_file). This custom python 
script uses the coordinates of the cis-regulatory modules from the ReMap database to cycle through the ReMap 
TFBS file and outputs TFBS which have loci contained within the cis-regulatory modules based on the genome 
coordinates.

Assigning TFBSs to target genes.  Human gene annotation data were downloaded from Ensembl 89 
BioMart (human genes; GRCh38.p10). TFBS binding site coordinates for 485 TFs were utilised from the ReMap 
database (V1.2)36. TFBS (ReMap v1.2)36 were assigned to the TSS (Ensembl 89) which was closest within a 60 kb 
region (10 kb downstream and 50 kb upstream of TSSs) using the custom python scripts peak_MULTI.py and 
peakME_functions.py.

https://github.com/TMinchington/network_codes
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Assigning microRNAs to host transcripts.  The coordinates of human genes and exons were down-
loaded from Ensembl73 (89, GRCh38.p10). The genomic positions of microRNAs were downloaded from 
miRBase74 FTP server (release 22.0). MicroRNAs were then assigned to all transcripts with which the annota-
tions overlap. Overlap with transcripts and positions within the transcripts were performed using microME.py. 
MicroRNAs within the peak_MULTI.py output files then inherited a copy of the TSS regulation of the genes in 
which they were contained while also maintaining the TSS as listed in the Ensembl 89 data.

Generating the transcriptional and translational network.  MicroRNA target sites were downloaded 
from MiRTarBase37 (Release 7.0) and converted into a compatible input format using mirTarbase_convert.py. 
Output files from microME_plus2018.py were combined with mirTarbase_convert.py output files to produce an 
edge list of regulators to target interactions. Duplicate interactions were collapsed using collapse_maps.py and 
the number of interactions recorded as an edge weight.

ENCODE cRE comparison.  To compare the number of peaks filtered from the network against promoter 
and enhancer data 3 sets of Candidate cis-Regulatory Elements from SCREEN (Search candidate cis-regula-
tory elements by ENCODE)75,76. Promoter-like, Proximal enhancer-like and distal enhancer-like elements were 
downloaded in BED format for human GRCH38. The peaks filtered from the data were recorded in BED format 
and compared against the promoter and enhancer files use Bedtools277 version v2.29.2-35-g07124422 intersect 
function using the unique option. The filter data were the peaks removed for being outside CRMs and those 
outside the 60 kb region investigated around the promoter.

Mean filtering of TFBS to TSS interactions.  For each dataset the number of binding sites for each TF 
was recorded at each TSS. Following the removal of outliers (> 2 SD of the mean), the mean number of bind-
ing sites for each TF is calculated. If the average number of binding sites at TSSs for a given TF is n, then any 
TSS where fewer than n sites are observed are removed from the network. Means for interactions are calculated 
after removing extreme outliers. TSS, where ≥ n sites are found, would be maintained. Filtering is performed by 
edge_weight_filter.py and run on the collapsed network generated in the previous step.

Correlation coefficients were calculated using cor.test in R with the method ‘spearman’ for both the filtered 
and unfiltered data, due to the non-parametric distribution of both protein coding and microRNA coding targets 
and the non-linearity of the non-filtered data at higher values. The z and p values were obtained by using paired.r 
from the psych library, as a two-tailed test78.

Network numbers.  The number and type of edges in the networks were counted using the count_edge_
type.py script. This cycles over the network and quantifies the type of interactions seen in the network. e.g. 
protein_coding-microRNA, microRNA-protein_coding and protein_coding-protein_coding.

Motif identification.  Network motifs were identified by looking for patterns within the transcriptional–
translational network edge list utilising the custom python script get_motifs_quicker.py. Autoregulatory loops 
are calculated first as other motifs are dependent on these loops. TFs in autoregulatory loops were then used to 
shortlist the search for further motifs. Motif discovery is based on Boolean logic looking for distinct patterns on 
interaction. For example, for autoregulation instances were identified where gene-A targets gene-A. Motifs were 
identified by looking at all patterns of interaction required to generate the motif.

Randomisation of networks.  Gene networks were randomised 1,000 times utilising python script 
rewire_full_csf_array.py and rewire_locked_csf_array.py by randomly swapping network edges. Both scripts 
take two position arguments, the network to be randomised supplied as an edge list and the repeat number. 
This allows multiple instances to be run in parallel in a distributed computing environment. Network rewiring 
is a principle previously employed in the randomisation of networks79. The swapping of edges was constrained 
such that microRNA to target interaction and TF to microRNA interactions were randomised separately. This 
prevents microRNAs being able to target the TSS of genes for example. Motifs were identified in each random 
network and compared to the real data. The number of edges exchanged was 1.1 × the number of edges per group 
(protein_coding, microRNA). Any edge swaps which resulted in the same edge or duplicated an edge already 
in the network were discarded. Locked randomisation was used for testing the enrichment of all motifs accept 
autoregulation which was investigated using the full randomisation method. Networks statistics were calculated 
as in Eqs. (1) and (2)80.

Equation 1: Number of observations in random data greater than the observed data

Equation 2: p-value

Gene Ontology enrichment.  Gene ontology enrichment analysis was performed using GOnet81. The set 
of TFs tested (autoregulators/non-autoregualtors) for enrichment were supplied as a CSV file. Enrichment was 

(1)r = n ≥ observed data.

(2)p =
(r + 1)

(n+ 1)
.
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performed for the GO namespace “biological_process”. The complete list of TFs was supplied as a background. 
The q-value threshold was left at the default value of ≤ 0.05.

Tissue networks.  Tissue networks were generated by using the cell type and experiment data from the 
ReMap database and manually curating it into 28 tissue groups. Grouping was performed manually by identify-
ing the tissue associated to each cell type. The network edges were then divided into network specific files based 
on the which tissue the data was grouped into.

Motifs were recalculated as above for each tissue network. The presence of each motif was then compared 
between each tissue network. The number of networks each TF was located in was calculated. If a TF was only 
found in one tissue network, then the data were discounted. For each motif a TF was located in was then com-
pared between the tissue networks for which data for a given TF was found. Conservation was therefore the 
number of tissues where the motif was found as a percentage of the tissues where data for the TF exists.

To investigate the similarity of the tissue networks we calculated the Jaccard index between all combinations 
of pairs of tissues. For this analysis, we only considered TF/target interactions, as we do not have tissue-specific 
data with which to filter microRNA interactions, and the microRNA edges are therefore identical in each tissue 
network. The Jaccard index between a pair of networks was calculated by dividing the number of edges found 
in both networks by the number of edges unique to each network.

Data availability
TFBS and CRM data was obtained from ReMap2018 database (https​://pedag​ogix-tagc.univ-mrs.fr/remap​/). 
MicroRNA loci were obtained from miRBase (r22.0, https​://www.mirba​se.org/). MicroRNA target data was 
obtained from miRTarBase (https​://mirta​rbase​.mbc.nctu.edu.tw/php/index​.php). Genome coordinates and TSS 
were downloaded from Ensembl (89) (https​://www.ensem​bl.org/index​.html). The networks are available at https​
://githu​b.com/TMinc​hingt​on/netwo​rk_codes​.
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