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integrated bioinformatics 
analysis to decipher molecular 
mechanism of compound 
Kushen injection for esophageal 
cancer by combining WGcnA 
with network pharmacology
Wei Zhou, Jiarui Wu*, Jingyuan Zhang, Xinkui Liu, Siyu Guo, ShanShan Jia, 
Xiaomeng Zhang, Yingli Zhu & Miaomiao Wang

compound Kushen injection (cKi), a medicine in widespread clinical use in china, has proven 
therapeutic effects on cancer. However, few molecular mechanism analyses have been carried out. To 
address this problem, bioinformatics approaches combining weighted gene co-expression network 
analysis with network pharmacology methods were undertaken to elucidate the underlying molecular 
mechanisms of CKI in the treatment of esophageal cancer (ESCA). First, the key gene modules related 
to the clinical traits of ESCA were analysed by WCGNA. Based on the results, the hub genes related to 
CKI treatment for ESCA were explored through network pharmacology. Molecular docking simulation 
was performed to recognize the binding activity of hub genes with CKI compounds. The results 
showed that the potential hub targets, including EGFR, ErbB2, CCND1 and IGF1R, are therapeutic 
targets of CKI for the treatment of ESCA. Moreover, these targets were significantly enriched in many 
pathways related to cancer and signalling pathways, such as the PI3K-Akt signalling pathway and 
ErbB signalling pathway. In conclusion, this research partially highlighted the molecular mechanism of 
CKI in the treatment of ESCA, offering great potential in the identification of the effective compounds 
in CKI and biomarkers for ESCA treatment.

Esophageal cancer (ESCA) is widespread worldwide. According to Global Cancer Statistics 2018, it ranks sev-
enth in incidence and sixth in  mortality1. The 5-year survival rate of ESCA is between 12 and 20% and differs 
substantially by  sex2. China is a high-risk area for ESCA, especially in some rural areas, where the incidence rate 
far exceeds that of urban areas due to lifestyle and environmental  reasons3. ESCA can be divided into esophageal 
adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC) according to histological classification. 
In recent decades, the incidence of EAC in Western countries has increased several times, and the proportion of 
ESCC has exceeded 90% throughout  China4,5. The introduction of chemo(radio)therapy and surgical therapy 
led to increased survival rates and reduced the incidence of  recurrence6. Because conventional methods do 
not adequately improve patient survival of ESCA, however, scientists are seeking more effective treatments. 
Recently, traditional Chinese medicine (TCM) has taken the world stage as complementary and alternative 
 medicine7. Compound Kushen Injection (CKI) consists of two herbs, Kushen (Radix Sophorae Flavescentis) 
and Baituling (Rhizoma Smilacis Glabrae). CKI mainly contains various anticancer ingredients, such as matrine 
and oxymatrine, which can inhibit the growth of tumour cells, overcome resistance to metastasis and multidrug 
resistance, and protect human  immunity8. CKI has been utilized in clinical practice for decades to treat various 
solid tumour types, including liver cancer, breast cancer, gastric cancer, and other cancer  types8,9. The analysis 
of medical data on 2,550 ESCA patients from 22 large-scale hospitals in China confirmed that CKI has been 
relatively widely used in the clinical treatment of ESCA of different  severities10. In addition, a previous study 
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reported that CKI limited cancer pain both directly by blocking TRPV1 signalling and indirectly by reducing 
tumour  growth11. For ESCA, it is worth noting that CKI used alone or combined with conventional radiotherapy 
can not only enhance antitumor efficacy but also reduce the toxicity induced by radiotherapy, thereby improving 
the quality of  life12. Our early studies also found that combination with CKI can improve the clinical effective-
ness rate and performance status of radiotherapy for ESCA. Furthermore, CKI can also provide treatment by 
reducing gastrointestinal reactions and radiation  esophagitis13.

Tumorigenesis is a complex process that is driven by a combination of networks of genes and environmental 
factors; there is a lack of effective methods to identify functional networks that Chinese medicine interferes with 
 tumorigenesis14–17. To better analyse and predict the molecular mechanism of CKI in the treatment of ESCA, this 
study adopted weighted gene co-expression network analysis (WGCNA) integrated with the network pharma-
cology method. WGCNA can be used to find clusters (modules) of highly related genes, correlate modules and 
correlate with external sample traits and can be used to identify candidate biomarkers or therapeutic  targets18. 
Network pharmacology not only caters to the “multi-component, multi-target” characteristics of TCM but also 
identifies drug-gene-disease links, explaining the therapeutic mechanism of drugs at the molecular  level19–21.

In the present work, we first used WGCNA to analyse ESCA mRNA datasets from The Cancer Genome Atlas 
(TCGA) to predict significant gene modules. Second, gene modules were combined with predicted targets of key 
CKI components to form a drug-gene-disease network and further analysed. In addition, molecular docking 
methods were adopted to confirm the degree of binding between the hub gene and the component. This study 
is intended to explain the mechanism of action of CKI in the treatment of ESCA at the molecular level and to 
provide a better basis for the diagnosis, treatment and prognosis of ESCA. Figure 1 depicts a flowchart of the 
technical strategy used in this study.

Results
WGCNA module construction. A total of 161 samples and 5,000 genes were screened for the next 
WGCNA analysis. After normalization, no outlier samples were eliminated. In this study, the power of β = 6 
(scale free R2 = 0.85) was selected as the soft-thresholding parameter to ensure a scale-free network. (Fig. 2A) A 
total of 10 modules were identified via average linkage hierarchical clustering (Fig. 2B).

WGCNA hub module screening. ME reflected the gene expression level of the entire module, and the 
relationship between ME and clinical traits was assessed by Pearson’s test. The module and clinical traits were 
considered statistically significant when p < 0.05. The blue module and the turquoise module were considered 
to be hub modules through the association of modules with clinical traits (race, age, vital status, new tumour 
events, cancer status, histological type, pathologic T, pathologic N, pathologic M, stage, Barretts, smoking, alco-
hol) (Fig. 3). The topological overlap measure (TOM) was visualized with a heatmap that could depict adjacen-
cies or topological overlaps (Fig. 4). Each module contained a set of RNAs that were co-expressed and had a high 
TOM. The same module genes could form networks and may participate in similar biological processes. The 
network building the key modules was filtered with a weight Cutoff = 0.1 between the genes. The blue module 
consists of 618 genes and 31,042 gene linkages. The turquoise module consists of 1,243 genes and 49,230 gene 
linkages. In addition, the top 100 genes in terms of degree were visualized using Cytoscape (Fig. 5).

Compound-predicted target network. Following a literature  search8,22, the 23 active ingredients con-
tained in CKI were selected for investigation, and the three-dimensional structure data of 16 active ingredients 
were obtained from the PubChem  database23.

The 16 active compounds of CKI are shown in Table 1. After Cytoscape visualization, 301 points (16 com-
pound points and 285 gene points) and 636 edges were obtained (Fig. 6).

Potential target network for the treatment of ESCA with CKI. The compound-predicted target 
network was combined with the blue and turquoise module genes. Thirty-two identical gene targets were con-
sidered potential targets for the CKI treatment of ESCA (Fig. 7A). To further unveil the therapeutic mechanism, 
STRING was used to construct a PPI network of 32 overlapping genes between the compound targets and key 
module targets. As shown in Fig. 7B, the potential therapeutic PPI network involved 41 nodes and 174 linkages 
between genes. Moreover, after network analysis, a target with a greater degree value than the mean based on the 
topological characteristics is a key gene for the CKI treatment of ESCA. The results of network analysis show 16 
nodes with an average degree ≥ 8.49, including EGF, EGFR, ErbB2, HRAS, INS, STAT3, CCND1, IRS1, KRAS, 
IGF1R, IGF1, SHC1, GRB2, CBL, PTPN1 and CDKN1B.

GO functional and KEGG pathway enrichment analysis. To clarify the multiple mechanisms of 
CKI on ESCA on a systematic level, we performed GO enrichment analysis including the biological process 
(BP), molecular function (MF), and cellular component (CC) and KEGG functional enrichment analysis of the 
selected PPI targets. Eventually, 559 enriched GO terms were identified, of which 477 were BPs, 54 were MFs, 
and 27 were CCs (FDR < 0.01 and P < 0.01). Figure 8A shows the top ten entries for BP, MF and CC, most of 
which were related to the cell cycle. To gain insights into the pharmacological mechanisms of CKI on ESCA, we 
performed KEGG analysis. The results demonstrated that 92 entries satisfy FDR < 0.01 and P < 0.01. Moreover, 
these targets were significantly enriched in many pathways related to cancer and signalling pathways, such as the 
PI3K-Akt signalling pathway, ErbB signalling pathway and FoxO signalling pathway (Figs. 8B, 9).
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Molecular docking verification. Four of the hub genes (EGFR, ErbB2, CCND1 and IGF1R) were directly 
related to the CKI active ingredients (adenine, N-methylcytisine and matrine). These 4 potential target pro-
teins and their corresponding small-molecule ligand components were docked by AutoDock Vina. The docking 

Figure 1.  Workflow of this integrated bioinformatics analysis.
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results showed that the binding affinity was not greater than −6.0 kcal/mol, which proved that CKI components 
had good binding ability to the targets (Table 2). Figure 10 illustrates the interaction of the target compounds of 
the docking simulation. Adenine mainly forms two hydrogen bonds with the TYR-801 and ASN-808 residues 
on the EGFR protein, and a total of 6 residues are bound to the protein by hydrophobic interaction. In addi-
tion, the same EGFR protein formed two hydrogen bonds with residues LYS-852 and ARG-776 in addition to 7 
hydrophobic bonds. Adenine formed 4 hydrogen bonds and 6 hydrophobic bonds with the ERBB2 protein and 
IGF1R protein, respectively, which proved that they are relatively tightly bound. Finally, although matrine does 
not form a hydrogen bond with CCND1, it binds to 10 residues of the protein by hydrophobic interaction.

Figure 2.  Clustering dendrogram. corFnc = “pearson”; power = 6; min. module size = 30; mergeCutHeight of 0.2.

Figure 3.  Module-trait relationship. Each row corresponds to an ME, and each column corresponds to a 
clinical trait. Each cell contains a corresponding correlation.
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Survival analysis. Kaplan–Meier survival analysis was performed to investigate overall survival. The results 
demonstrated that high expression of EGFR and IGF1R may be considered an effective prognostic indicator for 
ESCA patients (Fig. 11).

Discussion
ESCA is one of the most common malignant tumours worldwide. With the development of medical technology, 
the treatment and prognosis of ESCA have improved, but it also poses a great threat to human  life24. Although 
the pathogenesis of ESCA is still unclear, there are many causes, such as eating excessively hot food, smoking and 
drinking, obesity and gastroesophageal reflux  disease25,26. ESCA also differs by region, sex, and  race27. CKI has 
been proven to be immensely useful in the treatment of various cancers and also has relief and treatment effects 
for cancer  pain28. According to real-world research in hospital systems, the application of CKI in the clinical 
treatment of ESCA is also famously  used10.

In this study, we used integrated bioinformatics methods to explore the molecular mechanisms of CKI in the 
treatment of ESCA. WGCNA was employed to analyse key genes in ESCA and combined with network pharma-
cology to predict the therapeutic mechanism of CKI. Moreover, molecular docking methods were performed to 
verify the binding affinity of CKI with hub targets to validate the medicinal effects of CKI.

Figure 4.  Network TOM heatmap plot. The TOM plot is made up of 400 randomly selected genes. Each row 
and column represents a module and the genes of the module. This diagram shows the degree of correlation 
within the module.
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First, this study used the WGCNA method to explore the pathogenesis of ESCA and to study the link between 
gene expression data and clinical traits to screen for important gene modules. According to the WGCNA results, a 
total of 10 related modules were obtained, among which the blue module and the turquoise module were strongly 
related to multiple clinical traits, such as blue-new tumour event (p = 5e−04), blue-histological type (p = 2e−29), 
turquoise-cancer status (p = 2e−05) and turquoise-pathologic T (p = 0.008). Blue modules and turquoise modules 
were selected for network pharmacology analysis with the CKI predicted targets. Through network merging and 
PPI, a total of 16 gene targets were obtained with topological characteristics degree greater than the average. 
Among them, EGFR (degree = 21), ERBB2 (degree = 18), CCND1 (degree = 16) and IGF1R (degree = 15) were 
the predicted targets directly corresponding to the CKI components that were considered to be the hub genes 
related to CKI treatment of ESCA, and detailed discussions were conducted.

Epidermal growth receptor factor (EGFR) is an expression product of the proto-oncogene c-erb-B1 and is a 
member of subtype 1 of the receptor tyrosine kinase (RTK) family. The family also includes ErbB2, ErbB3 and 
 ErbB429. The binding of EGFR to a ligand activates intracellular tyrosine protein kinase activity, which phos-
phorylates the terminal tyrosine to activate downstream enzymes and initiate downstream  signalling30. EGFR 
is overexpressed or mutated in most tumours, resulting in dysregulation of the signal transduction pathway, 
uncontrolled cell growth, and inhibition of cancer cell  apoptosis31. Therefore, EGFR-targeted drugs are clinically 
used in a variety of cancers, and EGFR is also a hot target for tumour diagnosis and treatment. EGFR is highly 
expressed in both EA and ESCC. In addition, high expression of EGFR is closely related to the proliferation, infil-
tration and poor prognosis of ESCA  cells32–34. Thus, abnormal EGFR expression is one of the serious pathogenic 
factors of ESCA. CKI can treat ESCA by regulating EGFR. ErbB2 is a transmembrane glycoprotein with protein 
tyrosine kinase (PTK) activity and a proto-oncogene of the human epidermal growth factor receptor  family35. 
Overexpression of ErbB2 accelerates tumour growth, metastasis, and tumour blood vessel formation, increas-
ing its invasion in vitro36. Equally important, ErbB2 can further improve the ability of tumour cells to migrate 
and adhere, promote tumour invasion and encourage local and/or distant  metastasis37.  Hoffmann38 proposed a 
diagnostic method to detect ErbB2 amplification in single disseminated cancer cells, demonstrating that ErbB2 
amplification in esophageal cancer patients is significantly correlated with short-term survival. Previous studies 
have shown that ESCA can be treated by taking ErbB2 inhibitors such as trastuzumab and  ramiximab39. The 
molecular docking results obtained in this study are similar to the docking results of the ErbB2 small-molecule 
antibody drugs erlotinib and lapatinib in the Rambabu Gundla  study40. SER-783, THR-862, THR-798 and ASP-
863 residues can all generate hydrogen bonds to connect with the compound. Therefore, we believe that CKI can 
treat ESCA by inhibiting ErbB2. CCND1 is a cell cycle regulating protein that can control the transition of the cell 
cycle from G1 to S phase, which is closely related to the occurrence and development of many  tumours41. Matrine 
is one of the active components of CKI and has been shown to have anti-inflammatory, immunosuppressive, 
antitumour and antifibrotic  effects42. Studies have shown that matrine can mediate the expression of CCND1 in 
breast cancer cells and thus inhibit cancer  cells43.  Guo44 detected rhabdomyosarcoma cells treated with matrine 
at different concentrations by MTT, flow cytometry, and RT-PCR and found that matrine significantly inhibits 
the proliferation of rhabdomyosarcoma cells by reducing the expression of CCND1 mRNA and blocking the cell 
cycle of the G0/G1 phase. Genome-wide screening revealed that the amplification of cyclin D1 is one of many 
genetic changes in ESCC. Accordingly, CKI may be used as an inhibitor of CCND1 to treat  ESCA45. Insulin-like 
growth factor-1 receptor (IGF1R) is a tyrosine kinase that is involved in the pathogenesis of many cancers. After 
binding to the ligand, IGF1R can activate PI3K/AKT/mTOR and Ras/Raf/MEK/to activate the MAPK pathway, 

Figure 5.  The top 100 genes in the degree of hub modules. (A) Blue module. (B) Turquoise module.
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which can regulate cell proliferation, survival, differentiation, movement, invasion and  angiogenesis46,47. Studies 
have shown that IGF1R is overexpressed in cancer tissues compared to normal tissues adjacent to the cancer. In 
addition, a mouse xenograft model was used to test the function of IGF-1R in vitro and in vivo. IGF1R was found 
to have carcinogenic effects in regulating cell proliferation, colony formation, the cell cycle and  apoptosis48,49.

The enriched GO analysis indicated that the hub genes localized mainly to the cyclin-dependent protein 
kinase holoenzyme complex, protein kinase complex and serine/threonine protein kinase complex, while their 
molecular functions were associated with the cell cycle. Similarly, KEGG pathway analysis showed enrichment 
in some cancer pathways and signalling pathways, such as the PI3K-Akt signalling pathway and ErbB signalling 
pathway. The ErbB family, after binding to its corresponding ligands (EGF, TGF, AR, etc.), downstream related 
genes such as PI3K/AKT and MAPK can be activated, thereby regulating cell proliferation, differentiation, 
migration, and apoptosis  activities50. Studies have shown that the PI3K/AKT pathway is abnormally activated 
in a variety of cancers, such as esophageal, gastric, and breast  cancer51–53.

Upstream genes such as ErbB2 and various growth factors such as EGF and IGF1 can activate PI3K, resulting 
in aberrant activation of the PI3K/AKT  pathway54. Additionally, the deviant activation of the PI3K/AKT pathway 
inhibits the degradation of CCND1, increases its expression, promotes its shift to the nucleus, and interferes 
with the transition from G1 to S phase of the cell  cycle55. The ligands IGF-1 and IGF-2 bind to IGF1R, leading 

Table 1.  Information on the active ingredients of CKI.

PubChem CID Compound Structure PubChem CID Compound Structure

15,385,684 9α-Hydroxymatrine 87,752 Lamprolobine

190 Adenine 226,371 Liriodendrin

621,307 Baptifoline 9,576,780 Macrozamin

5,271,984 Isomatrine 91,466 Matrine

115,269 Sophocarpine 670,971 N-methylcytisine

12,442,899 Sophoranol 24,864,132 Oxymatrine

165,549 Sophoridine 24,721,085 Oxysophocarpine

442,827 Trifolirhizin 6,710,641 Piscidic acid



8

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:12745  | https://doi.org/10.1038/s41598-020-69708-2

www.nature.com/scientificreports/

to receptor autophosphorylation and the activation of various signalling pathways, including the PI3K/AKT 
pathway, which leads to cell proliferation and prevents  apoptosis56. Abnormal activation of pathways caused by 
abnormal expression of these proteins is a critical factor affecting the progression of esophageal cancer.  Zhang57 
found that CKI can increase the ability to inhibit lung cancer cell proliferation and increase sensitivity to gefitinib 
by downregulating the PI3K/AKT pathway. A study has also shown that matrine derivatives, which are one of 
the main components of CKI, can be downregulated, CCND1, and attenuated the PI3K/Akt pathway to induce 

Figure 6.  Compound-predicted target network. Sixteen compound nodes are green, and 285 target nodes are 
yellow.

Figure 7.  (A) Venn plot of modules and compound-predicted targets. (B) Potential target network for the 
treatment of ESCA with CKI. Blue and turquoise nodes indicate their corresponding colour module genes, and 
purple nodes represent PPI-related human targets.
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G1 cell cycle arrest and autophagy in cancer cells through immunofluorescence analysis, western blotting and 
murine  models58. Therefore, these potential targets and pathways may be the key to the CKI treatment of ESCA.

The central idea of TCM has a lot in common with network pharmacology, which can explain the treatment 
process of many complex diseases in a system  manner59. In previous studies,  Li60 provided a powerful means for 
identifying mechanisms of Ge–Gen–Qin–Lian decoction in the treatment of type 2 diabetes through the network 
pharmacology strategy.  Liang61 exploited drugCIPHER to incorporate the traditional network pharmacology 
concept to analyse the target network of the TCM traditional prescription Liu-Wei-Di-Huang pill. This study was 
based on the network pharmacology method combined with WGCNA analysis, aiming to accurately detect the 
genes related to ESCA from the aspect of close to clinical traits to analyse the mechanism of CKI treatment of 
ESCA. However, there are some limitations in this method. First, our data collection is based on existing database 
information, so it may produce deviations and incomplete results. Second, biological experiments are urgently 
needed to validate our results because our study was performed based on data analysis.

conclusion
In summary, by combining WGCNA and a network pharmacology method, we revealed that CKI controlled 
the growth of ESCA by regulating potential hub genes, such as EGFR, ErbB2, CCND1 and IGF1R, as well as 
important related pathways. The study preliminarily verified and predicted the molecular mechanism of CKI 
against ESCA but still needs further experimental verification. These findings provide insights into the underly-
ing mechanism of CKI for the treatment of ESCA and provide a reference for the study of the more complex 
mechanism of action of this Chinese herbal compound.

Figure 8.  Bubble chart of functional enrichment for hub genes. (A) GO function enrichment (B) KEGG 
function enrichment.

Figure 9.  Regulatory pathways are mainly involved in the CKI treatment of ESCA. Green arrows indicate 
activation, red indicates inhibition, and yellow lines denote binding. P represents phosphorylation.
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Methods
Data collection and preprocessing. RNA sequencing data in fragments per kilobase million (FPKM) 
of ESCA were obtained from the TCGA data portal (https ://porta l.gdc.cance r.gov) in September 2019, with 
a total of 164 samples. The clinical metadata of the 164 samples were also downloaded and filtered for useful 
information. After the removal of samples containing incomplete analytical data and/or other malignancies, 161 
samples were retained. Since some genes lacked significant changes in expression between samples, we chose 
the top 5,000 genes that were most important in terms of differential expression for the next WGCNA analysis.

Weighted gene co-expression network analysis and module preservation. The gene co-expres-
sion networks were constructed by the WGCNA package. We used the similarity between gene expression pro-
files to construct a similarity matrix based on pairwise Pearson correlation coefficient matrices. The similarity 
matrix was transformed into an adjacency matrix using a power adjacency  function18,62. The appropriate soft 
threshold power β was selected by using the integration function (pickSoftThresshold) in the WGCNA soft-
ware package. With this soft threshold function, the co-expression similarity was improved to achieve a scale-
free  topology63,64. Then, we reconstructed the topological overlap matrix by calculating the topological overlap 
measure (TOM), which is a robust measure of network  interconnectedness65,66. The dynamic tree-cut algorithm 
method was adopted to identify the module of gene co-expression with the maxBlockSize of 6,000, minModule-
Size of 30 and mergeCutHeight of 0.2.

Identification of clinically significant modules. Module eigengene (ME) is the first principal compo-
nent of each gene module, and the expression of ME is considered representative of all genes in one module. The 
module membership (MM) is the correlation between the ME and the gene expression profile. Gene Significance 
(GS) is the absolute value of the correlation between a specific gene and a clinical trait. According to ME, GS, and 
MM, we can associate modules with clinical traits not only to calculate the correlation between ME and clinical 
traits but also to analyse clinically vital  modules18.

Construction of predictive target network for CKI components. The 3D chemical structure data of 
16 active ingredients were imported into the Search Tool for Interactions of Chemicals (STITCH)67,  SuperPred68, 
 SwissTargetPrediction69 and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Plat-

Table 2.  Molecular docking information.

No Protein name PDB ID Protein structure Test compounds
Affinity
(kcal/mol)

1 EGFR 6DUK Adenine − 6.3

2 EGFR 6DUK N-methylcytisine − 6.7

3 ErbB2 3PP0 Adenine − 6.2

4 IGF1R 5HZN Adenine − 6.0

5 CCND1 6P8G Matrine − 6.1

https://portal.gdc.cancer.gov
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Figure 10.  Molecular docking of the hub gene with its corresponding component. (A) EGFR with adenine; (B) 
EGFR with N-methylcytisine; (C) ErbB2 with adenine; (D) IGF1R with adenine; (E) CCND1 with matrine.
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form (TCMSP) 70 databases for retrieval. The predicted multiple target information of the compounds and the 
obtained information were introduced into Cytoscape 3.6.1 (https ://www.cytos cape.org/) to obtain a compound-
predicted target network map. Cytoscape is bioinformatics analysis software that visualizes biological pathways 
and intermolecular interaction networks and provides a basic set of data integration, analysis and visualization 
capabilities for complex network  analyses71.

Network construction and analysis of CKI in the treatment of ESCA. The compound-predicted 
target network and clinically important module network obtained from WGCNA analysis were merged in 
Cytoscape. The overlapping proteins in the two networks are likely to be potential targets for the treatment 
of ESCA by the active ingredients of CKI. The Search Tool for the Retrieval of Interacting Genes/Proteins 
(STRING) 10.5 (https ://strin g-db.org/) is a database of known and predicted protein interactions that contains 
direct and indirect protein  associations72. The overlapping genes were input into the STRING 10.5 database, 
and the species selection "Homo sapiens" was selected as the confidence data with a scoring value greater than 
0.7 and  1st shell no more than 20. Then, the data were introduced into Cytoscape to construct a protein–protein 
interaction (PPI) network.

Gene ontology (Go) functional and kyoto encyclopedia of genes and genomes (KeGG) path-
way enrichment analysis. The GO database (https ://geneo ntolo gy.org/) was used to identify the possible 
biological mechanisms using high-throughput genome or transcriptome  data73. KEGG is a reference knowledge 
base for biological interpretation of genome sequences and other high-throughput data, which is a reference 
for biological interpretation of genome sequences and other high-throughput  data74. In addition, the R package 
clusterProfiler was used to perform GO and KEGG functional enrichment  analysis75.

Molecular docking simulation. Molecular docking can reflect the binding energetics of drug molecules 
to protein receptors by calculating the binding affinity between ligands and receptors and the corresponding 
intermolecular  interactions76,77. The potential targets that were directly related to the CKI active components 
were imported into the Protein Data Bank (PDB) (https ://www.rcsb.org/) database to find their 3D  structure78. 
Proteins that met the following conditions were considered appropriate protein conformations: (1) The 3D 
protein structures were determined by X-ray crystallography. (2) Crystal resolution Protein was less than 3 Å; 
(3) Genotype protein analysis was reliable. Molecular docking simulation of potential targets and their corre-
sponding components was performed using AutoDock 4.2 and AutoDock Vina software according to published 
 methods79,80. A suitable grid box size with a spacing of 1.0 Å between grid points was generated to cover almost 
the entire favourable protein binding site. The X, Y and Z centres are adjusted according to different macromo-
lecular forms. The results of docking are displayed by Pymol and  Ligplot81.

Survival analysis of hub genes. Survival analysis was conducted using the Kaplan–Meier method and 
log-rank tests. Hazard ratios (HRs) were calculated using a Cox proportional hazards model with R software and 
the “survival” R package. In the survival analysis, death from any cause was considered an  event82.

Ethics approval and consent to participate. Ethical approval was not necessary in the current study 
because our study gathered data from TCGA, and this procedure did not address any patients’ personal data or 
harm any patient.

Data availability
CKI compounds, cut off 0.1 blue network nodes and cut off 0.1 turquoise network nodes are available in the 
Supplementary Source files.

Received: 7 February 2020; Accepted: 13 July 2020

Figure 11.  Survival analysis of hub genes. (A) EGFR; (B) IGF1R.

https://www.cytoscape.org/
https://string-db.org/
https://geneontology.org/
https://www.rcsb.org/


13

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:12745  | https://doi.org/10.1038/s41598-020-69708-2

www.nature.com/scientificreports/

References
 1. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 

countries. CA: Cancer J. Clin. 68, 394–424. https ://doi.org/10.3322/caac.21492  (2018).
 2. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2016. CA: Cancer J. Clin. 66, 7–30. https ://doi.org/10.3322/caac.21332  

(2016).
 3. Chen, W. et al. Cancer incidence and mortality in China, 2014. Chin. J. Cancer Res. = Chung-kuo yen cheng yen chiu 30, 1–12. https 

://doi.org/10.21147 /j.issn.1000-9604.2018.01.01 (2018).
 4. Coleman, H. G., Xie, S. H. & Lagergren, J. The epidemiology of esophageal adenocarcinoma. Gastroenterology 154, 390–405. https 

://doi.org/10.1053/j.gastr o.2017.07.046 (2018).
 5. Esophageal cancer: epidemiology, pathogenesis and prevention. Nat. Clin. Pract. Gastroenterol. Hepatol. 5, 517–526. doi:10.1038/

ncpgasthep1223 (2008).
 6. Lagergren, J. & Lagergren, P. Oesophageal cancer. BMJ 341, c6280. https ://doi.org/10.1136/bmj.c6280  (2010).
 7. Parekh, H. S., Liu, G. & Wei, M. Q. A new dawn for the use of traditional Chinese medicine in cancer therapy. Mol. Cancer 8, 21. 

https ://doi.org/10.1186/1476-4598-8-21 (2009).
 8. Wang, W. et al. Anti-tumor activities of active ingredients in compound Kushen Injection. Acta Pharmacol. Sin. 36, 676–679. https 

://doi.org/10.1038/aps.2015.24 (2015).
 9. Yang, Y. et al. Compound kushen injection relieves tumor-associated macrophage-mediated immunosuppression through TNFR1 

and sensitizes hepatocellular carcinoma to sorafenib. J. Immunother. Cancer https ://doi.org/10.1136/jitc-2019-00031 7 (2020).
 10. Liu, Y. X. et al. Clinical application features of Fufang Kushen injection in treating malignant esophageal tumor: real world study 

based on hospital information system. Zhongguo Zhong Yao Za Zhi 42, 2877–2882. https ://doi.org/10.19540 /j.cnki.cjcmm .20170 
705.005 (2017).

 11. Zhao, Z. et al. Fufang Kushen injection inhibits sarcoma growth and tumor-induced hyperalgesia via TRPV1 signaling pathways. 
Cancer Lett. 355, 232–241. https ://doi.org/10.1016/j.canle t.2014.08.037 (2014).

 12. Shao, Q. 987 Poster the recent effect of radiotherapy combined with compound Kushen injection for elderly patients with esopha-
geal cancer. Radiother. Oncol. 99, S372–S373 (2011).

 13. Zhang, D. et al. The optimal chinese herbal injections for use with radiotherapy to treat esophageal cancer: a systematic review 
and Bayesian network meta-analysis. Front. Pharmacol. 9, 1470. https ://doi.org/10.3389/fphar .2018.01470  (2018).

 14. Guo, Y. C. et al. Network-based combinatorial CRISPR-Cas9 screens identify synergistic modules in human cells. ACS Synth. Biol. 
8, 482–490. https ://doi.org/10.1021/acssy nbio.8b002 37 (2019).

 15. Zhang, P. et al. Dissecting the single-cell transcriptome network underlying gastric premalignant lesions and early gastric cancer. 
Cell. Rep. 27, 1934–1947 (2019).

 16. Guo, Y. C. et al. Multiscale modeling of inflammation-induced tumorigenesis reveals competing oncogenic and onco-protective 
roles for inflammation. Cancer Res. 77, 6429–6441 (2017).

 17. Jia, X. et al. Tongue coating microbiome as a potential biomarker for gastritis including precancerous cascade. Protein Cell. 10, 
496–509 (2018).

 18. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559.
 19. Li, S. & Zhang, B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin. J. Nat. Med. 

11, 110–120. https ://doi.org/10.1016/s1875 -5364(13)60037 -0 (2013).
 20. Hopkins, A. L. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 4, 682–690. https ://doi.org/10.1038/

nchem bio.118 (2008).
 21. Zheng, J. H. et al. Network pharmacology to unveil the biological basis of health-strengthening herbal medicine in cancer treat-

ment. Cancers 10, 461 (2018).
 22. Ma, Y. et al. Identifcation and determination of the chemical constituents in a herbal preparation, Compound Kushen Injection, 

by Hplc and Lc-Dad-Ms/Ms. J. LIQ Chromatogr. Relat. Technol. 37, 207–220 (2014).
 23. Kim, S. et al. PubChem substance and compound databases. Nucleic Acids Res. 44, D1202-1213. https ://doi.org/10.1093/nar/gkv95 

1 (2016).
 24. Pennathur, A., Gibson, M. K., Jobe, B. A. & Luketich, J. D. Oesophageal carcinoma. Lancet (London, England) 381, 400–412. https 

://doi.org/10.1016/s0140 -6736(12)60643 -6 (2013).
 25. Toh, Y. et al. Alcohol drinking, cigarette smoking, and the development of squamous cell carcinoma of the esophagus: molecular 

mechanisms of carcinogenesis. Int. J. Clin. Oncol. 15, 135–144 (2010).
 26. Arnal, M. J. D., Arenas, ÁF. & Gastroenterology, ÁL. Esophageal cancer: risk factors, screening and endoscopic treatment in 

Western and Eastern countries. World J. Gastroenterol. 21, 15–25 (2015).
 27. Torre, L. A. et al. Global cancer statistics, 2012. CA Cancer J Clin 65 (2015).
 28. Guo, Y. M. et al. Efficacy of compound Kushen injection in relieving cancer-related pain: a systematic review and meta-analysis. 

Evid.-Based Complement. Altern. Med.: eCAM 2015, 840742. https ://doi.org/10.1155/2015/84074 2 (2015).
 29. Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signaling network. Nat. Rev. Mol. Cell. Biol. 2, 127–137 (2001).
 30. Jorissen, R. N. et al. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp. Cell. Res. 284, 0–53 (2003).
 31. Liu, D., Ghiso, J. A. A., Estrada, Y. & Ossowski, L. EGFR is a transducer of the urokinase receptor initiated signal that is required 

for in vivo growth of a human carcinoma. J. Cancer Cell. 1 (2002).
 32. Wang, K. L. et al. Expression of epidermal growth factor receptor in esophageal and esophagogastric junction adenocarcinomas: 

association with poor outcome. Cancer 109, 658–667. https ://doi.org/10.1002/cncr.22445  (2007).
 33. Aichler, M. et al. Epidermal growth factor receptor (EGFR) is an independent adverse prognostic factor in esophageal adenocarci-

noma patients treated with cisplatin-based neoadjuvant chemotherapy. Oncotarget 5, 6620–6632. https ://doi.org/10.18632 /oncot 
arget .2268 (2014).

 34. Jiang, D. et al. The prognostic value of EGFR overexpression and amplification in Esophageal squamous cell Carcinoma. BMC 
Cancer 15, 377. https ://doi.org/10.1186/s1288 5-015-1393-8 (2015).

 35. Marotta, M. et al. Palindromic amplification of the ERBB2 oncogene in primary HER2-positive breast tumors. Sci. Rep. 7, 41921. 
https ://doi.org/10.1038/srep4 1921 (2017).

 36. T, A. et al. Significance of serum c-erbB-2 oncoprotein, insulin-like growth factor-1 and vascular endothelial growth factor levels 
in ovarian cancer. Bratislavske lekarske listy 117 (2016).

 37. Breyer, J. et al. ESR1, ERBB2, and Ki67 mRNA expression predicts stage and grade of non-muscle-invasive bladder carcinoma 
(NMIBC). Virchows Arch. 469, 547–552 (2016).

 38. Hoffmann, M. et al. Diagnostic pathology of early systemic cancer: ERBB2 gene amplification in single disseminated cancer cells 
determines patient survival in operable esophageal cancer. Int. J. Cancer 142, 833–843. https ://doi.org/10.1002/ijc.31108  (2018).

 39. Ilson, D. H. & van Hillegersberg, R. Management of patients with adenocarcinoma or squamous cancer of the esophagus. Gastro-
enterology 154, 437–451 (2018).

 40. Gundla, R. et al. Discovery of novel small-molecule inhibitors of human epidermal growth factor receptor-2: combined ligand 
and target-based approach. J. Med. Chem. 51, 3367–3377. https ://doi.org/10.1021/jm701 3875 (2008).

 41. Hall, M. & Peters, G. Genetic alterations of cyclins, cyclin-dependent Kinases, and Cdk Inhibitors in Human Cancer. Adv. Cancer 
Res. 68 (1996).

https://doi.org/10.3322/caac.21492
https://doi.org/10.3322/caac.21332
https://doi.org/10.21147/j.issn.1000-9604.2018.01.01
https://doi.org/10.21147/j.issn.1000-9604.2018.01.01
https://doi.org/10.1053/j.gastro.2017.07.046
https://doi.org/10.1053/j.gastro.2017.07.046
https://doi.org/10.1136/bmj.c6280
https://doi.org/10.1186/1476-4598-8-21
https://doi.org/10.1038/aps.2015.24
https://doi.org/10.1038/aps.2015.24
https://doi.org/10.1136/jitc-2019-000317
https://doi.org/10.19540/j.cnki.cjcmm.20170705.005
https://doi.org/10.19540/j.cnki.cjcmm.20170705.005
https://doi.org/10.1016/j.canlet.2014.08.037
https://doi.org/10.3389/fphar.2018.01470
https://doi.org/10.1021/acssynbio.8b00237
https://doi.org/10.1016/s1875-5364(13)60037-0
https://doi.org/10.1038/nchembio.118
https://doi.org/10.1038/nchembio.118
https://doi.org/10.1093/nar/gkv951
https://doi.org/10.1093/nar/gkv951
https://doi.org/10.1016/s0140-6736(12)60643-6
https://doi.org/10.1016/s0140-6736(12)60643-6
https://doi.org/10.1155/2015/840742
https://doi.org/10.1002/cncr.22445
https://doi.org/10.18632/oncotarget.2268
https://doi.org/10.18632/oncotarget.2268
https://doi.org/10.1186/s12885-015-1393-8
https://doi.org/10.1038/srep41921
https://doi.org/10.1002/ijc.31108
https://doi.org/10.1021/jm7013875


14

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:12745  | https://doi.org/10.1038/s41598-020-69708-2

www.nature.com/scientificreports/

 42. Yi, F. et al. Novel matrine derivative MD-1 attenuates hepatic fibrosis by inhibiting EGFR activation of hepatic stellate cells. Protein 
& Cell 7 (2016).

 43. Li, X. et al. Matrine suppression of self-renewal was dependent on regulation of LIN28A/Let-7 pathway in breast cancer stem cells. 
J. Cell. Biochem. https ://doi.org/10.1002/jcb.29396  (2019).

 44. Guo, L., Xue, T. Y., Xu, W. & Gao, J. Z. Matrine promotes G0/G1 arrest and down-regulates cyclin D1 expression in human rhab-
domyosarcoma cells. Panminerva Med. 55, 291–296 (2013).

 45. Chen, X. X. et al. Genomic comparison of esophageal squamous cell carcinoma and its precursor lesions by multi-region whole-
exome sequencing. Nat. Commun. 8, 524. https ://doi.org/10.1038/s4146 7-017-00650 -0 (2017).

 46. Sharmila, G. et al. Chemopreventive effect of quercetin, a natural dietary flavonoid on prostate cancer in in vivo model. Clin. Nutr. 
33, 718–726. https ://doi.org/10.1016/j.clnu.2013.08.011 (2014).

 47. Wilson, S. & Chia, S. K. IGF-1R inhibition: right direction, wrong pathway?. Lancet Oncol. 14, 182–183. https ://doi.org/10.1016/
S1470 -2045(13)70019 -6 (2013).

 48. Ye, P., Qu, C.-F. & Hu, X.-L. Impact of IGF-1, IGF-1R, and IGFBP-3 promoter methylation on the risk and prognosis of esophageal 
carcinoma. Tumour Biol. 37, 6893–6904. https ://doi.org/10.1007/s1327 7-015-4489-5 (2016).

 49. Ma, W. et al. Assessment of insulin-like growth factor 1 receptor as an oncogene in esophageal squamous cell carcinoma and its 
potential implication in chemotherapy. Oncol. Rep. 32, 1601–1609. https ://doi.org/10.3892/or.2014.3348 (2014).

 50. Bublil, E. M. & Yarden, Y. The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr. Opin. Cell Biol. 19, 
124–134 (2007).

 51. Tokunaga, E. et al. Activation of PI3K/Akt signaling and hormone resistance in breast cancer. Breast Cancer 13, 137–144 (2006).
 52. Beales, I. L. P. et al. Activation of Akt is increased in the dysplasia-carcinoma sequence in Barrett’s oesophagus and contributes to 

increased proliferation and inhibition of apoptosis: a histopathological and functional study. BMC Cancer 7, 97 (2007).
 53. Ang, K. L., Shi, D. L., Keong, W. W. & Epstein, R. J. Upregulated Akt signaling adjacent to gastric cancers: implications for screening 

and chemoprevention. Cancer Lett. 225, 53–59 (2005).
 54. Pene, F. et al. Role of the phosphatidylinositol 3-kinase/Akt and mTOR/P70S6-kinase pathways in the proliferation and apoptosis 

in multiple myeloma. Oncogene 21, 6587–6597 (2002).
 55. Gul, A., Leyland-Jones, B., Dey, N. & De, P. A combination of the PI3K pathway inhibitor plus cell cycle pathway inhibitor to 

combat endocrine resistance in hormone receptor-positive breast cancer: a genomic algorithm-based treatment approach. Am J. 
Cancer Res. 8, 2359–2376 (2018).

 56. Doyle, S. L. et al. IGF-1 and its receptor in esophageal cancer: association with adenocarcinoma and visceral obesity. Am. J. Gas-
troenterol. 107, 196–204. https ://doi.org/10.1038/ajg.2011.417 (2012).

 57. Zhang, J. et al. An effective drug sensitizing agent increases gefitinib treatment by down regulating PI3K/Akt/mTOR pathway 
and up regulating autophagy in non-small cell lung cancer. Biomed. Pharmacother 118, 109169. https ://doi.org/10.1016/j.bioph 
a.2019.10916 9 (2019).

 58. Wu, L. et al. Synthesis and biological evaluation of matrine derivatives containing benzo-α-pyrone structure as potent anti-lung 
cancer agents. Sci. Rep. 6, 35918. https ://doi.org/10.1038/srep3 5918 (2016).

 59. Zheng, J. et al. Network pharmacology to unveil the biological basis of health-strengthening herbal medicine in cancer treatment. 
Cancers (Basel) https ://doi.org/10.3390/cance rs101 10461  (2018).

 60. Li, H. et al. A network pharmacology approach to determine active compounds and action mechanisms of ge-gen-qin-lian decoc-
tion for treatment of type 2 diabetes. Evid. Based Complement. Alternat. Med. 2014, 495840. https ://doi.org/10.1155/2014/49584 
0 (2014).

 61. Liang, X., Li, H. & Li, S. A novel network pharmacology approach to analyse traditional herbal formulae: the Liu–Wei–Di–Huang 
pill as a case study. Mol. Biosyst. 10, 1014–1022. https ://doi.org/10.1039/c3mb7 0507b  (2014).

 62. Yepes, S. et al. Co-expressed miRNAs in gastric adenocarcinoma. Genomics 108, 93–101. https ://doi.org/10.1016/j.ygeno 
.2016.07.002 (2016).

 63. Jeong, H., Mason, S. P., Barabási, A. L. & Oltvai, Z. N. Lethality and centrality in protein networks. Nature 411, 41–42. https ://doi.
org/10.1038/35075 138 (2001).

 64. Tang, J. et al. Prognostic genes of breast cancer identified by gene co-expression network analysis. Front. Oncol. 8, 374. https ://doi.
org/10.3389/fonc.2018.00374  (2018).

 65. Yip, A. M. & Horvath, S. Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinform. 8, 
22. https ://doi.org/10.1186/1471-2105-8-22 (2007).

 66. Li, A. & Horvath, S. Network neighborhood analysis with the multi-node topological overlap measure. Bioinformatics (Oxford, 
England) 23, 222–231. https ://doi.org/10.1093/bioin forma tics/btl58 1 (2007).

 67. Szklarczyk, D. et al. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 
44, D380-384. https ://doi.org/10.1093/nar/gkv12 77 (2016).

 68. Nickel, J. et al. SuperPred: update on drug classification and target prediction. Nucleic Acids Res. 42, W26-31. https ://doi.
org/10.1093/nar/gku47 7 (2014).

 69. Gfeller, D. et al. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res. 42, W32-
38. https ://doi.org/10.1093/nar/gku29 3 (2014).

 70. Ru, J. et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 6, 13. https ://
doi.org/10.1186/1758-2946-6-13 (2014).

 71. Franz, M. et al. Cytoscape.js: a graph theory library for visualisation and analysis. Bioinformatics (Oxford, England) 32, 309–311. 
https ://doi.org/10.1093/bioin forma tics/btv55 7 (2016).

 72. Szklarczyk, D. et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly acces-
sible. Nucleic Acids Res. 45, D362-d368. https ://doi.org/10.1093/nar/gkw93 7 (2017).

 73. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29. 
https ://doi.org/10.1038/75556  (2000).

 74. Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K. & Tanabe, M. New approach for understanding genome variations in KEGG. 
Nucleic Acids Res. 47, D590-d595. https ://doi.org/10.1093/nar/gky96 2 (2019).

 75. Sun, M. et al. Antitumor activities of kushen: literature review. Evid. Based Complement. Alternat. Med. 2012, 373219. https ://doi.
org/10.1155/2012/37321 9 (2012).

 76. Ferreira, L. G., Dos Santos, R. N., Oliva, G. & Andricopulo, A. D. Molecular docking and structure-based drug design strategies. 
Molecules (Basel, Switzerland) 20, 13384–13421. https ://doi.org/10.3390/molec ules2 00713 384 (2015).

 77. Huang, S. Y. & Zou, X. Advances and challenges in protein-ligand docking. Int. J. Mol. Sci. 11, 3016–3034. https ://doi.org/10.3390/
ijms1 10830 16 (2010).

 78. Rose, P. W. et al. The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 
45, D271-d281. https ://doi.org/10.1093/nar/gkw10 00 (2017).

 79. Forli, S. et al. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 11, 905–919. 
https ://doi.org/10.1038/nprot .2016.051 (2016).

 80. Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient 
optimization, and multithreading. J. Comput. Chem. 31, 455–461. https ://doi.org/10.1002/jcc.21334  (2010).

https://doi.org/10.1002/jcb.29396
https://doi.org/10.1038/s41467-017-00650-0
https://doi.org/10.1016/j.clnu.2013.08.011
https://doi.org/10.1016/S1470-2045(13)70019-6
https://doi.org/10.1016/S1470-2045(13)70019-6
https://doi.org/10.1007/s13277-015-4489-5
https://doi.org/10.3892/or.2014.3348
https://doi.org/10.1038/ajg.2011.417
https://doi.org/10.1016/j.biopha.2019.109169
https://doi.org/10.1016/j.biopha.2019.109169
https://doi.org/10.1038/srep35918
https://doi.org/10.3390/cancers10110461
https://doi.org/10.1155/2014/495840
https://doi.org/10.1155/2014/495840
https://doi.org/10.1039/c3mb70507b
https://doi.org/10.1016/j.ygeno.2016.07.002
https://doi.org/10.1016/j.ygeno.2016.07.002
https://doi.org/10.1038/35075138
https://doi.org/10.1038/35075138
https://doi.org/10.3389/fonc.2018.00374
https://doi.org/10.3389/fonc.2018.00374
https://doi.org/10.1186/1471-2105-8-22
https://doi.org/10.1093/bioinformatics/btl581
https://doi.org/10.1093/nar/gkv1277
https://doi.org/10.1093/nar/gku477
https://doi.org/10.1093/nar/gku477
https://doi.org/10.1093/nar/gku293
https://doi.org/10.1186/1758-2946-6-13
https://doi.org/10.1186/1758-2946-6-13
https://doi.org/10.1093/bioinformatics/btv557
https://doi.org/10.1093/nar/gkw937
https://doi.org/10.1038/75556
https://doi.org/10.1093/nar/gky962
https://doi.org/10.1155/2012/373219
https://doi.org/10.1155/2012/373219
https://doi.org/10.3390/molecules200713384
https://doi.org/10.3390/ijms11083016
https://doi.org/10.3390/ijms11083016
https://doi.org/10.1093/nar/gkw1000
https://doi.org/10.1038/nprot.2016.051
https://doi.org/10.1002/jcc.21334


15

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:12745  | https://doi.org/10.1038/s41598-020-69708-2

www.nature.com/scientificreports/

 81. Laskowski, R. A. et al. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786 
(2011).

 82. Zhang, Z. et al. Integrating clinical and genetic analysis of perineural invasion in head and neck squamous cell carcinoma. Front. 
Oncol. 9, 434. https ://doi.org/10.3389/fonc.2019.00434  (2019).

Acknowledgements
This work was supported by the Young Scientists Training Program of Beijing University of Chinese Medicine 
and the National Nature Science Foundation of China (Grant nos. 81473547 and 81673829).

Author contributions
Z.W. and W.J.R. conceived and designed the study. J.S.S., Z.J.Y., G.S.Y. and L.X.K. collected the data. Z.X.M., 
Z.Y.L. and W.M.M. performed the data analysis, Z.W. and W.J.R. wrote and revised the manuscript. All authors 
were responsible for reviewing the data. All authors read and approved the final manuscript.

competing interests 
The authors declare no competing interests.

Additional information
Supplementary information  is available for this paper at https ://doi.org/10.1038/s4159 8-020-69708 -2.

Correspondence and requests for materials should be addressed to J.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this license, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.3389/fonc.2019.00434
https://doi.org/10.1038/s41598-020-69708-2
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Integrated bioinformatics analysis to decipher molecular mechanism of compound Kushen injection for esophageal cancer by combining WGCNA with network pharmacology
	Anchor 2
	Anchor 3
	Results
	WGCNA module construction. 
	WGCNA hub module screening. 
	Compound-predicted target network. 
	Potential target network for the treatment of ESCA with CKI. 
	GO functional and KEGG pathway enrichment analysis. 
	Molecular docking verification. 
	Survival analysis. 

	Discussion
	Conclusion
	Methods
	Data collection and preprocessing. 
	Weighted gene co-expression network analysis and module preservation. 
	Identification of clinically significant modules. 
	Construction of predictive target network for CKI components. 
	Network construction and analysis of CKI in the treatment of ESCA. 
	Gene ontology (GO) functional and kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. 
	Molecular docking simulation. 
	Survival analysis of hub genes. 
	Ethics approval and consent to participate. 

	References
	Acknowledgements


