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Effects of combining exercise 
with long‑chain polyunsaturated 
fatty acid supplementation 
on cognitive function in the elderly: 
a randomised controlled trial
Hisanori Tokuda1*, Mika Ito2, Toshiaki Sueyasu1, Hideyuki Sasaki1, Satoshi Morita1, 
Yoshihisa Kaneda1, Tomohiro Rogi1, Sumio Kondo3, Motoki Kouzaki4, Takashi Tsukiura5 & 
Hiroshi Shibata1

Multifactorial lifestyle intervention is known to be more effective for ameliorating cognitive 
decline than single factor intervention; however, the effects of combining exercise with long‑
chain polyunsaturated fatty acids (LCPUFA) on the elderlies’ cognitive function remain unclear. We 
conducted a randomised, single‑masked placebo‑controlled trial in non‑demented elderly Japanese 
individuals. Participants were randomly allocated to the exercise with LCPUFA, placebo, or no exercise 
with placebo (control) groups. Participants in the exercise groups performed 150 min of exercise per 
week, comprised resistance and aerobic training, for 24 weeks with supplements of either LCPUFA 
(docosahexaenoic acid, 300 mg/day; eicosapentaenoic acid, 100 mg/day; arachidonic acid, 120 mg/
day) or placebo. Cognitive functions were evaluated by neuropsychological tests prior to and following 
the intervention. The per‑protocol set analysis (n = 76) revealed no significant differences between 
the exercise and the control groups in changes of neuropsychological tests. Subgroup analysis for 
participants with low skeletal muscle mass index (SMI) corresponding to sarcopenia cut‑off value 
showed changes in selective attention, while working memory in the exercise with LCPUFA group was 
better than in the control group. These findings suggest that exercise with LCPUFA supplementation 
potentially improves attention and working memory in the elderly with low SMI.

Dementia is a severe social problem and taking measures to prevent it is important. Age-related cognitive 
decline is a substantial predicament regarding elderly people. It is widely recognized that exercise is one of the 
most reliable protective factors against cognitive decline. The World Health Organization (WHO) recommends 
that elderly people should exercise to reduce cognitive decline’s  risk1. Moreover, several epidemiological studies 
showed exercise’s positive effects on the elderlies’ cognitive  functions2,3. WHO recommends 150 min/week and 
more moderate exercise for reducing the risk of cognitive  decline1.

Apart from that, appropriate nutrients through healthy diets are also important in maintaining cognitive 
functions. The correlation between age-related cognitive decline and long-chain polyunsaturated fatty acids 
(LCPUFA), mainly included in fish, egg, and meat has been studied. LCPUFA, such as docosahexaenoic acid 
(DHA) and arachidonic acid (ARA), are major components in brain phospholipids. Although LCPUFA decreased 
with age in  brain4–6, supplementation with these fatty acids could recover its  levels6. Therefore, such supple-
mentation is expected to ameliorate the age-related cognitive decline associated with depleted LCPUFA levels. 
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Moreover, several clinical trials reported DHA’s, eicosapentaenoic acid’s (EPA), and ARA’s supplementation on 
cognitive function efficacy improvement in the  elderly7–9.

Recently, multifactorial lifestyle intervention is thought to be more effective than single factor intervention on 
improvement of cognitive function. The Finnish Geriatric Intervention Study to Prevent Cognitive Impairment 
and Disability (FINGER) study showed that the 2-year multi-domain intervention (moderate-intensity exercise, 
nutritional intervention, cognitive training, and vascular monitoring) reduced the risk of cognitive decline by 
31% in non-demented  elderly10. Referred to this study, the possibility was arisen that combining exercise with 
LCPUFA would be more beneficial to prevent cognitive decline than exercise alone. Regarding multifactorial 
intervention studies that included exercise and LCPUFA, the Multidomain Alzheimer Preventive Trial (MAPT) 
study showed that a 3-year multifactorial intervention by exercise, DHA/EPA supplementation, and cognitive 
training did not significantly affect cognitive  decline11. Then, the subgroup analysis in MAPT study revealed the 
multifactorial intervention’s tendency on improving attention in prefrail elderlies with memory  complaints12. 
This finding potentially posits that the multifactorial lifestyle intervention including exercise and nutrition could 
provide additional beneficial effects on the elderly who are frail or sarcopenia prone. This could be partially 
supported by previous studies that frailty or sarcopenia was an important risk factor for age-related cognitive 
 decline13,14. Therefore, we hypothesised that the combination of exercise and LCPUFA intake would be more 
effective than exercise alone on improving cognitive function in non-demented elderly, and the efficacy could 
be larger in those with frailty or sarcopenia tendency.

This study attempted to evaluate the effects of combining exercise with LCPUFA on cognitive function in 
non-demented elderly participants. We conducted a 24-week randomised control pilot trial to investigate the 
effects of moderate-intensity exercise (150 min/week) with LCPUFA (DHA 300 mg, EPA 100 mg and ARA 
120 mg/day) supplementation combination on cognitive function in the non-demented elderly Japanese with 
cognitive decline complaint. Further subgroup analysis by low skeletal muscle mass index (SMI) corresponding 
to sarcopenia cut-off value were also performed to evaluate whether the combined intervention in this study 
had an added effect in elderly participants with sarcopenia tendency.

Results
Participants flow and baseline characteristic. The participant flow diagram is shown in Fig. 1. We 
screened a total of 551 participants; 90 of which were enrolled and randomly allocated to the groups (n = 30 in 
each group). Four participants (exercise with placebo, n = 1; exercise with LCPUFA, n = 3) were found to meet 
exclusion criteria for the entry or withdrew consent prior to the interventions. Eighty-six participants (no exer-
cise with placebo, n = 30; exercise with placebo, n = 29; exercise with LCPUFA, n = 27) began the interventions 
and were involved in safety assessment (the full analysis set population). Nine participants discontinued the 

Figure 1.  The CONSORT flowchart of this study.



3

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:12906  | https://doi.org/10.1038/s41598-020-69560-4

www.nature.com/scientificreports/

intervention for the following reasons: eventual discovery of entry exclusion criteria (n = 6), withdrawn consent 
(n = 2), and other reason (n = 1). Seventy-seven participants completed the 24-week intervention period, and 
76 per-protocol set (PPS) population (no exercise with placebo, n = 28; exercise with placebo, n = 27; exercise 
with LCPUFA, n = 21) was used for efficacy assessment. One participant was excluded from the analysis due 
to a discovery to meet exclusion criteria for the entry. Here, only the PPS population results are shown because 
participants who completed the intervention (n = 77) were almost the same as the PPS population (n = 76). Mean 
compliances for the resistance and aerobic training program were 95.3 ± 1.0% and 92.8 ± 1.8% in the exercise 
with placebo, and 93.3 ± 1.3% and 94.9 ± 1.8% in the exercise with LCPUFA group, respectively. No significant 
differences in these compliances between the groups (resistance training, p = 0.199; aerobic training, p = 0.416) 
occurred. The experimental period’s mean capsule intake was 98.8 ± 0.4% in the no exercise with placebo, 
99.4 ± 0.2% in the exercise with placebo, and 99.1 ± 0.2% in the exercise with LCPUFA group. No significant dif-
ference in the capsule intake among the groups was observed (p = 0.357). Baseline characteristics are shown in 
Table 1. Age, sex, body mass index (BMI), education, cognitive function; the Japanese version of the Montreal 
Cognitive Assessment (MoCA-J) and Wechsler Memory Scale Revised logical memory (WMS-R LM II) scores, 
LCPUFA (DHA, EPA, and ARA) composition in plasma phospholipids, SMI, and physical activity (METs and 
steps) were matched among the groups.

Muscle mass and physical activity in PPS analysis. Muscle mass and daily steps are shown in Table 2. 
There were no significant differences in these aspects at baseline among the groups. Although muscle mass in 
the no exercise with placebo group was decreased by 0.5 kg, both groups performed muscle-maintenance exer-
cises; however, changes in muscle mass were non-significant. Steps in the exercise with placebo group and with 
LCPUFA were increased significantly by 1,264 (p < 0.001 vs. baseline) and 780 steps/day (p = 0.041 vs. baseline), 
respectively. Changes in steps were significantly larger in the exercise with placebo or with LCPUFA comparing 
to the no exercise with placebo group (p < 0.001 and p = 0.039, respectively).

Fatty acid compositions in plasma and dietary assessment in PPS analysis. Fatty acid com-
positions in plasma phospholipids are shown in Table 2. The DHA, EPA, and ARA content at baseline was not 
different among the groups. DHA and ARA compositions in the exercise with LCPUFA group at 24 weeks were 
increased significantly by 1.3% (p < 0.001 vs. baseline) and 0.9% (p = 0.001 vs. baseline), respectively. The DHA 
and ARA content in the no exercise and the exercise with placebo group remained unchanged during a period 
of intervention. Changes in the DHA and ARA content differed significantly between groups (p < 0.001 and 
p = 0.004 vs. no exercise with placebo, respectively). In terms of the EPA content, no significant differences were 
observed among the groups or between before and after the intervention. Fatty acid intakes from daily diets are 
shown in Supplementary Table S2. No significant differences were found in DHA, EPA, and ARA intake between 
groups or before and after supplementation. Moreover, intake changes of these fatty acids did not differ between 
groups. Regarding α-linolenic acid and linoleic acid, which are precursors of DHA/EPA and ARA, no significant 
differences were found among the groups or between before and after the intervention, while these changes did 
not differ between groups.

Table 1.  Baseline characteristics of the participants. Mean ± SE. There was no significant difference among 
the groups in baseline data (aANOVA, bchi-square test). Ex, exercise; BMI, body mass index; MoCA-J, 
Montreal Cognitive Assessment Japanese version; WMS-R LM II, Wechsler memory scale-revised logical 
memory II; LCPUFA, long-chain polyunsaturated fatty acid; PL, phospholipids; ARA, arachidonic acid; EPA, 
eicosapentaenoic acid; DHA, docosahexaenoic acid; SMI, skeletal muscle mass index.

no Ex + placebo Ex + placebo Ex + LCPUFA

p(n = 28) (n = 27) (n = 21)

Age (year)a 67.4 ± 1.0 67.8 ± 0.8 67.1 ± 1.1 0.895

Sex (M/F)b 10/18 9/18 10/11 0.633

BMI (kg/m2)a 22.4 ± 0.5 22.7 ± 0.6 22.7 ± 0.6 0.906

Education (year)a 13.3 ± 0.4 13.7 ± 0.4 13.2 ± 0.6 0.777

MoCA-Ja 22.2 ± 0.6 23.5 ± 0.5 23.5 ± 0.7 0.207

WMS-R LM  IIa 13.1 ± 0.8 13.4 ± 1.1 13.4 ± 1.1 0.972

LCPUFA in plasma PL

  ARA (%)a 10.0 ± 0.3 9.5 ± 0.3 9.7 ± 0.4 0.488

  EPA (%)a 2.1 ± 0.2 2.2 ± 0.2 2.1 ± 0.3 0.938

  DHA (%)a 7.6 ± 0.3 7.6 ± 0.3 7.1 ± 0.3 0.447

SMI (kg/m2)a 6.4 ± 0.2 6.2 ± 0.2 6.5 ± 0.2 0.701

Physical activity (METs/day)a 0.9 ± 0.0 0.9 ± 0.0 0.9 ± 0.0 0.800

Step (/day)a 6,716 ± 621 5,935 ± 419 7,807 ± 794 0.115
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Cognitive functions in PPS analysis. Table 3 shows the neuropsychological tests scores for attention, 
working memory, executive function, and episodic memory in the groups. There were significant differences in 
Stroop Colour-Word (CW) step 1 (p = 0.044) and step 3 (p = 0.014) at baseline among the groups. No significant 
differences were observed in other tests at baseline among the groups. In the exercise with placebo group, the 
scores of Stroop CW step 1, 2, Trail Making Test (TMT) -B, Digit Span, WMS-R LM I and II were significantly 
improved after the intervention for 24 weeks (vs. baseline). The significant improvement of WMS-R LM II score 
was observed in the exercise with LCPUFA group after the same period of intervention (vs. baseline). Changes in 
the scores of neuropsychological tests adjusted by individual baseline scores (Δ adjusted) did not differ between 
the exercise with placebo and the no exercise with placebo group; however, several scores in attention (Stroop 
CW step 1, + 3.3; TMT-A, − 3.7 s; TMT-B, − 7.1 s) were larger in the exercise with placebo than the no exercise 
with placebo group (Stroop CW step 1, + 1.0; TMT-A, − 1.0 s; TMT-B, − 0.3 s) and those effect sizes were small. 
Regarding the exercise with LCPUFA group, there were no significant differences in changes (Δ adjusted) of 
neuropsychological tests comparing the no exercise with the placebo group; however, a similar trend of the effect 
in the exercise with placebo group was observed. Scores in attention (Stroop CW step 1, + 3.7; TMT-B, − 5.1 s) 
and working memory (Digit span, + 1.3) were larger than the no exercise with placebo group (Digit span, + 0.7), 
and those effect sizes were small.

Subgroup analysis by low SMI. The subgroup analysis by low SMI corresponding to the sarcopenia cut-
off value was conducted and twenty-eight participants (no exercise with placebo, n = 8; exercise with placebo, 

Table 2.  Muscle mass, physical activity and fatty acid composition in plasma phospholipid in the groups 
during the intervention. Mean ± SE. no Ex + placebo (n = 28), Ex + placebo (n = 27) and Ex + LCPUFA (n = 21) 
groups. There was no significant difference among the groups for each fatty acid, muscle mass and step at 
baseline (one-way ANOVA). #p < 0.05 and ##p < 0.01 vs. the no EX + placebo group (Dunnett’s). *p < 0.05 
and **p < 0.01 versus baseline (paired t-test). Ex, exercise; LCPUFA, long-chain polyunsaturated fatty acids; 
FA, fatty acid; PL, phospholipid; PA, palmitic acid; SA, stearic acid; OA, oleic acid; LA, linoleic acid; ARA, 
arachidonic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; EPA/ARA, ratio of EPA and ARA.

Group Baseline 24 weeks Δ

Muscle mass (kg)

no Ex + placebo 37.8 ± 1.5 37.4 ± 1.5 − 0.5 ± 0.3

Ex + placebo 36.2 ± 1.4 36.3 ± 1.4 0.2 ± 0.2

Ex + LCPUFA 38.3 ± 1.7 38.3 ± 1.7 0.0 ± 0.1

Step (/day)

no Ex + placebo 6,716 ± 621 6,393 ± 563 − 322 ± 301

Ex + placebo 5,935 ± 419 7,198 ± 383** 1,264 ± 311##

Ex + LCPUFA 7,807 ± 794 8,587 ± 642* 780 ± 358#

FA composition in plasma PL

  PA (%)

no Ex + placebo 27.1 ± 0.2 26.7 ± 0.2* − 0.4 ± 0.2

Ex + placebo 26.9 ± 0.2 26.5 ± 0.2* − 0.4 ± 0.2

Ex + LCPUFA 27.0 ± 0.2 26.8 ± 0.3 − 0.3 ± 0.2

  SA (%)

no Ex + placebo 14.4 ± 0.2 14.6 ± 0.2 0.2 ± 0.2

Ex + placebo 14.7 ± 0.1 14.6 ± 0.2 − 0.1 ± 0.1

Ex + LCPUFA 14.1 ± 0.3 14.4 ± 0.3 0.4 ± 0.2

  OA (%)

no Ex + placebo 9.2 ± 0.2 9.1 ± 0.2 − 0.1 ± 0.2

Ex + placebo 9.4 ± 0.2 9.0 ± 0.2* − 0.5 ± 0.2

Ex + LCPUFA 9.6 ± 0.2 8.9 ± 0.1** − 0.7 ± 0.2

  LA (%)

no Ex + placebo 19.9 ± 0.4 19.1 ± 0.5 − 0.7 ± 0.4

Ex + placebo 19.9 ± 0.6 19.7 ± 0.5 − 0.1 ± 0.5

Ex + LCPUFA 20.7 ± 0.6 18.9 ± 0.5** − 1.8 ± 0.3

  ARA (%)

no Ex + placebo 10.0 ± 0.3 9.8 ± 0.3 − 0.2 ± 0.2

Ex + placebo 9.5 ± 0.3 9.7 ± 0.4 0.3 ± 0.3

Ex + LCPUFA 9.7 ± 0.4 10.6 ± 0.3** 0.9 ± 0.2##

  EPA (%)

no Ex + placebo 2.1 ± 0.2 2.7 ± 0.4 0.6 ± 0.4

Ex + placebo 2.2 ± 0.2 2.7 ± 0.3 0.5 ± 0.3

Ex + LCPUFA 2.1 ± 0.3 2.4 ± 0.2 0.3 ± 0.3

  DHA (%)

no Ex + placebo 7.6 ± 0.3 7.4 ± 0.3 − 0.1 ± 0.2

Ex + placebo 7.6 ± 0.3 7.6 ± 0.4 0.0 ± 0.2

Ex + LCPUFA 7.1 ± 0.3 8.3 ± 0.2** 1.3 ± 0.2##

  EPA/ARA 

no Ex + placebo 0.22 ± 0.02 0.28 ± 0.05 0.07 ± 0.04

Ex + placebo 0.25 ± 0.03 0.30 ± 0.04 0.05 ± 0.04

Ex + LCPUFA 0.23 ± 0.04 0.23 ± 0.02 0.01 ± 0.03
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Table 3.  Neuropsychological tests in the groups during the intervention. Mean ± SE. no Ex + placebo (n = 28), 
Ex + placebo (n = 27) and Ex + LCPUFA (n = 21) groups. There were significant differences in Stroop CW step 1 
(p = 0.044) and step 3 (p = 0.014) at baseline among the groups. (one-way ANOVA). *p < 0.05 and **p < 0.01 vs. 
baseline (paired t-test). There was no significant difference in change (Δ) and change adjusted by baseline (Δ 
adjusted) between the either Ex groups and the no Ex + placebo (Dunnett’s). Ex, exercise; LCPUFA, long-chain 
polyunsaturated fatty acids; Stroop CW, Stroop Colour-Word; TMT, Trail making test; KWCST CA, Wisconsin 
card sorting test of Keio version category achieved; WMS-R LM I/II, Wechsler memory scale revised logical 
memory I/II; ROCFT, Rey–Osterrieth complex figure test. Effect size is expressed as r.

Group Baseline 24 weeks Change (Δ) r Δ adjusted r

Attention

  Selective

    Stroop CW step 1

no Ex + placebo 52.9 ± 1.7 53.1 ± 1.9 0.2 ± 1.1 – 1.0 ± 1.5 –

Ex + placebo 51.3 ± 1.7 54.3 ± 1.7** 3.1 ± 0.9 0.25 3.3 ± 1.5 0.24

Ex + LCPUFA 45.8 ± 2.7 50.8 ± 2.7 5.0 ± 2.7 0.25 3.7 ± 1.7 0.13

    Stroop CW step 3

no Ex + placebo 35.4 ± 1.2 36.0 ± 1.2 0.6 ± 0.5 – 1.1 ± 1.0 –

Ex + placebo 35.1 ± 1.4 35.7 ± 1.4 0.6 ± 0.7 0.01 0.9 ± 1.0 0.01

Ex + LCPUFA 29.8 ± 1.7 33.2 ± 1.9 3.4 ± 2.1 0.21 2.3 ± 1.2 0.07

  Selective/divided

    TMT-A

no Ex + placebo 32.3 ± 2.3 32.6 ± 2.1 0.2 ± 2.1 – − -1.0 ± 1.9 –

Ex + placebo 32.2 ± 1.6 29.9 ± 1.6 − 2.4 ± 1.2 0.15 − 3.7 ± 2.0 0.17

Ex + LCPUFA 38.8 ± 4.6 32.2 ± 2.9 − 6.6 ± 5.1 0.20 − 3.2 ± 2.3 0.08

  Divided

    TMT-B

no Ex + placebo 74.9 ± 4.7 75.1 ± 4.8 0.2 ± 4.4 - − 0.3 ± 4.1 –

Ex + placebo 74.3 ± 5.1 67.9 ± 3.6* − 6.4 ± 2.6 0.17 − 7.1 ± 4.2 0.21

Ex + LCPUFA 80.5 ± 5.5 73.9 ± 8.2 − 6.6 ± 6.9 0.13 − 5.1 ± 4.8 0.10

Working memory

  Digit span

no Ex + placebo 12.7 ± 0.7 13.3 ± 0.8 0.6 ± 0.5 - 0.7 ± 0.5 –

Ex + placebo 11.1 ± 0.6 12.0 ± 0.7* 0.9 ± 0.4 0.07 0.7 ± 0.5 0.05

Ex + LCPUFA 11.9 ± 1.0 13.2 ± 1.0 1.3 ± 0.8 0.12 1.3 ± 0.6 0.10

Executive function

  Inhibitory control

    Stroop CW step 2

no Ex + placebo 43.6 ± 1.8 45.3 ± 1.9 1.7 ± 1.2 – 2.2 ± 1.5 –

Ex + placebo 44.0 ± 1.6 47.7 ± 1.7** 3.6 ± 1.3 0.15 4.3 ± 1.5 0.17

Ex + LCPUFA 38.4 ± 2.8 43.0 ± 2.4 4.6 ± 2.8 0.15 3.1 ± 1.7 0.04

    Stroop CW step 4

no Ex + placebo 27.5 ± 2.1 29.5 ± 2.0 2.0 ± 1.4 – 2.1 ± 1.4 –

Ex + placebo 28.3 ± 2.2 30.4 ± 2.0 2.1 ± 1.4 0.01 2.4 ± 1.4 0.02

Ex + LCPUFA 25.8 ± 2.4 28.7 ± 2.0 2.9 ± 2.2 0.05 2.4 ± 1.6 0.01

  Cognitive flexibility

    KWCST CA

no Ex + placebo 3.4 ± 0.4 3.2 ± 0.4 − 0.2 ± 0.3 – − 0.1 ± 0.3 –

Ex + placebo 3.0 ± 0.4 3.2 ± 0.4 0.3 ± 0.4 0.12 0.2 ± 0.3 0.09

Ex + LCPUFA 3.3 ± 0.5 3.5 ± 0.4 0.1 ± 0.4 0.10 0.2 ± 0.4 0.11

  Language flexibility

    Verbal fluency

no Ex + placebo 70.6 ± 2.3 72.5 ± 2.7 1.9 ± 1.8 – 1.6 ± 2.0 –

Ex + placebo 70.9 ± 3.3 73.3 ± 3.2 2.4 ± 2.2 0.02 2.1 ± 2.0 0.03

Ex + LCPUFA 76.0 ± 4.3 79.5 ± 4.4 3.6 ± 2.5 0.08 4.3 ± 2.3 0.12

Episodic memory

  Verbal immediate

    WMS-R LM I

no Ex + placebo 19.1 ± 1.0 21.1 ± 1.1* 2.0 ± 0.9 – 2.0 ± 1.0 –

Ex + placebo 19.0 ± 1.0 21.0 ± 0.8* 2.1 ± 0.9 0.01 2.0 ± 1.1 0.00

Ex + LCPUFA 19.0 ± 1.3 22.6 ± 2.0 3.6 ± 1.8 0.12 3.6 ± 1.2 0.13

  Verbal delayed

    WMS-R LM II

no Ex + placebo 13.1 ± 0.8 17.3 ± 1.0** 4.2 ± 0.8 – 4.1 ± 1.0 –

Ex + placebo 13.4 ± 1.1 16.3 ± 1.0** 3.0 ± 0.9 0.14 3.0 ± 1.1 0.14

Ex + LCPUFA 13.4 ± 1.1 18.0 ± 2.1* 4.6 ± 1.7 0.03 4.6 ± 1.2 0.04

  Visual delayed

    ROCFT recall

no Ex + placebo 14.8 ± 0.9 17.4 ± 1.1* 2.6 ± 1.2 – 2.4 ± 1.0 –

Ex + placebo 14.0 ± 1.5 15.1 ± 1.2 1.2 ± 1.1 0.12 0.7 ± 1.0 0.18

Ex + LCPUFA 17.6 ± 1.4 17.0 ± 1.5 − 0.6 ± 1.0 0.28 0.3 ± 1.1 0.21
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n = 12; exercise with LCPUFA, n = 8) were analysed. The baseline characteristics are shown in Supplementary 
Table S3, and there were no significant differences in any factor among the groups. The effects of the interven-
tions on muscle mass, steps, and LCPUFA content in plasma phospholipids in the subgroup analysis were similar 
to those in the PPS analysis (Supplementary Table S4). Scores of neuropsychological tests for cognitive domains 
before and after the intervention were shown in Supplementary Table S5. No significant differences in scores at 
baseline were observed among the groups. Figure 2 shows changes (Δ adjusted) in scores of neuropsychological 
tests. There were no significant differences in changes of neuropsychological tests between the exercise with pla-
cebo and the no exercise with placebo group; although, changes of several scores in attention (Stroop CW step 1, 
TMT-A and B) in the exercise with placebo group were larger than those in the no exercise with placebo group 
as those effect sizes were small or middle. Changes (Δ adjusted) of selective attention (Stroop CW step 1) and 
working memory (Digit Span) were + 4.3 (p = 0.049) and + 2.2 (p = 0.013) in the exercise with LCPUFA group and 
were significantly larger than those (− 2.0 and − 1.1) in the no exercise with placebo group as those effect sizes 
were large (r = 0.52 and 0.59). No significant differences in changes of other neuropsychological tests between 
both groups were observed. Changes of attentional scores (Stroop CW step 3, TMT-A and B) in the exercise with 
LCPUFA group were larger than those in the no exercise with placebo group, and those effect sizes were small.

Safety. The safety assessment was performed with the full analysis set population (n = 86). No side effects due 
to the LCPUFA-containing supplements were observed. There were no severe adverse events and no significant 
difference (p = 0.480) in the incidence of adverse events between the no exercise with placebo (50.0%), the exer-
cise with placebo (65.5%), and the exercise with LCPUFA groups (59.3%).

Figure 2.  Changes in neuropsychological tests adjusted by baseline scores in the groups during the intervention 
in the subgroup with low SMI. Mean ± SE. White column, no Ex with placebo (n = 8); blue column, Ex 
with placebo (n = 12); red column, the Ex with LCPUFA (n = 8). #p < 0.05 vs. the no Ex with placebo group 
(Dunnett’s). Stroop CW, Stroop Colour-Word; TMT, Trail making test; KWCST CA, Wisconsin card sorting test 
of Keio version category achieved; VF, Verbal fluency; WMS-R LM I/II, Wechsler memory scale revised logical 
memory I/II; ROCFT, Rey–Osterrieth complex figure test; SMI, skeletal muscle mass index.
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Discussion
In this study, we conducted a randomised, single-masked, placebo-controlled pilot trial for 24 weeks to evalu-
ate effects of moderate-intensity exercise (150 min/week) with LCPUFA (DHA 300 mg, EPA 100 mg and ARA 
120 mg/day) supplementation on cognitive functions in non-demented elderly people with cognitive decline 
complaints. In PPS analysis (n = 76), neither the exercise nor the exercise with LCPUFA supplementation reached 
significant effects on cognitive functions. However, significant improvements of exercise with LCPUFA supple-
mentation on selective attention and working memory were observed in participants with low SMI in subgroup 
analysis (n = 28). This is a first report suggesting that exercise with nutritional supplementation comprised 
LCPUFA could potentially improve attention and working memory in the elderly with tendency to sarcopenia.

In PPS analysis, we confirmed that the participants in this study had slightly age-related cognitive decline 
because scores in neuropsychological tests, such as Stroop CW step1 (50.3), Digit Span (11.9) WMS-R LM II 
(13.3) and Wisconsin Card Sorting Test of Keio version (KWCST) (3.2) at baseline were lower comparing to 
previous reports (52.215, 12.816, 15.316 and 4.217 in typical age-matched elderly people. Then, there were no marked 
differences in daily steps reflecting physical activity between this study (men 7,700 and women 6,200 steps) and 
the typical elderly individuals (men 6,700 and women 5,800 steps)18. In terms of LCPUFA, DHA (7.4%), EPA 
(2.1%) and ARA (9.7%) compositions in plasma PL and dietary DHA (570 mg/day), EPA (340 mg/day) and 
ARA (180 mg/day) intakes were in a range of previous studies in the elderly  Japanese9,19–23. This suggests that 
the participants in this study were on-target and general population in the elderly Japanese.

A number of RCT reported that exercise for 1–12 months improved cognitive functions such as executive 
function and attention as evaluated by Stroop  CW24–27. Conversely, we found no significant effect of exercise 
regarding 150 min/week moderate-intensity resistance and aerobic training program on cognitive functions 
under this study condition; although, we observed the attention-improving tendency as measured by Stroop CW, 
TMT. Van de Rest also reported that the exercise for the 24 weeks similar program to the present study showed 
no significant effects on Stroop  CW28. One of the reasons our exercise program did not reach to the significant 
effect could be insufficient of specimens and also of intensity or duration. The exercise program of 150 min/day 
with moderate intensity was considered as the minimum requirement of WHO recommendation to reduce the 
risk of cognitive decline in the  elderly1. Therefore, higher intensity or longer time exercise could have more clear 
effects on cognitive functions, such as attention, in the non-demented elderly with cognitive decline complaints.

The primary purpose of this pilot study was to evaluate whether combination of exercise with LCPUFA 
supplementation was more effective comparing to only exercise on cognitive functions in the elderly. In the 
PPS analysis, we did not find clear effects on any cognitive domains; although, changes in some scores, such as 
attention and working memory as evaluated by Stroop CW step 1 and Digit Span in the exercise with LCPUFA 
groups had a slight increasing tendency in contrast to the exercise group. Further studies are necessary to clarify 
the effect of combining exercise and LCPUFA supplementation on cognitive decline in an RCT with larger sample 
size. Then, the SMI subgroup analysis reflecting muscle mass was performed as frailty or sarcopenia has recently 
been highlighted as a remarkable risk factor for age-related cognitive  decline13,14,29. The frail or sarcopenic elderly 
are considered to be a vulnerable population to cognitive decline because of decreased protective factors, such 
as neurotrophic factor and growth hormone, and increased risk factors, such as inflammation, insulin resist-
ance, and oxidative  stress13,14,29. It is well understood that frailty or sarcopenia are correlated with age-related 
muscle decrease and also reported that age-related muscle loss tended to be accelerated in over 60 years  old30. 
In the subgroup analysis with SMI below cut-off value of sarcopenia, the combination of exercise with LCPUFA 
supplementation improved selective attention and working memory; although, only exercise did not reach to 
significant effects. This finding was supported by a similar trend that was also found in the additional subgroup 
analysis by SMI below the median in this study (data not shown). In addition, the data from our previous study 
also corresponded to our findings. The subgroup analysis in MAPT study revealed a multifactorial intervention 
including exercise, DHA/EPA supplementation and cognitive training tended to improve attention in elderly 
with prefrail condition; although, no significant effect was  observed12. In terms of cognitive domains affected 
by exercise with LCPUFA, attention and working memory could be reasonable. It was showed that the exercise 
might have attention-improving potential rather than other cognitive domain under this study condition. It was 
also reported that LCPUFA supplementation with similar dose in the present study had a beneficial effect on the 
P300  latency9 reflecting attention and working  memory31,32. Here, the differences in changes between the exercise 
with LCPUFA and the control group in the scores were 6.3 (Stroop CW step1) and 3.3 (Digit Span) and were 
considered as physiologically meaningful due to these scores being decreased with age by approximately 0.8/
year and 0.1/year in typical elderly Japanese,  respectively15,16. Taken together, these data suggest that moderate-
intensity exercise with LCPUFA supplementation in a range of general daily intake could have improved potential 
than only exercise to improve attention and working memory in the elderly with low SMI.

In terms of LCPUFA’s contribution to the efficacy of the combination with the exercise, our results suggest 
that the efficacy might be caused by DHA and ARA mainly. It was reported that DHA and ARA play important 
roles on brain function, such as synaptic plasticity, neurogenesis, and membrane  fluidity6,33–36, but these LCPUFA 
decreased with age in the  brain4–6. Our results show that the combination of the exercise and the LCPUFA sup-
plementation in this study increased blood DHA and ARA composition; although, exercise alone had little effect 
on LCPUFA. Those LCPUFA increases might also be observed in the brain as blood DHA and ARA composi-
tions were correlated to those in the  brain6. These data suggest that the effect of combining the exercise with the 
LCPUFA supplementation could arise from administering continuous exercise stimulation to the brain with the 
amelioration of DHA and ARA decrease.

Here, our data did not explain the specific mechanism for the efficacy of combining the exercise with the 
LCPUFA supplementation on the cognitive functions in the elderly with low SMI. However, previous studies can 
allow us to hypothesise that exercise and LCPUFA supplementation work cooperatively in the elderly with low 
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SMI to improve cognitive functions with increased protective factors and decreased cognitive decline-related 
risk factors. The elderly with low SMI are considered to be more prone to frailty or sarcopenia. As mentioned 
above, it was reported that protective neurotrophic factor, growth hormone and risk factors, inflammation, 
insulin resistance, and oxidative stress, for cognitive decline were increased and decreased in the elderly with 
frail or  sarcopenia13,14, respectively. Conversely, improvements of these factors by both  exercise13,37 and LCPUFA 
were  reported38–40. Further studies are necessary to evaluate the effects of the combination exercise and LCPUFA 
supplementation on protective and risk factors for cognitive decline in the elderly with low SMI.

Although various cognitive domains were evaluated in this study, only selective attention and working mem-
ory were significantly improved by the exercise with the LCPUFA supplementation in the elderly with low SMI. 
Presently, ruling out the possibility that other cognitive domains, such as episodic memory were affected by the 
intervention is impossible. For instance, practice effects are often observed in neuropsychological memory tests 
more than in the tests for attention. In fact, significant increases of WMS-R LM between before and after the 
intervention in the control group were observed in the PPS analysis (Table 3). Therefore, the intervention’s effect 
on other cognitive domains should be evaluated by different types of neuropsychological tests.

There were three limitations to this study. First, it was designed as a pilot study, and the major finding in the 
elderly with low SMI was based on the analysis of a scarcely populated subgroup. Second, the isolated effect of the 
LCPUFA supplementation on cognitive function was not investigated in this study since the design was to evalu-
ate the hypothesis that the combination of exercise and LCPUFA intake would be more effective than exercise 
alone on improving cognitive function. Finally, the precise mechanisms remained unclear. Confirmatory studies 
with a larger sample size are needed to clarify the efficacy although this is the first report evaluating the effect on 
cognitive function in the non-demented elderly of the combination of exercise with nutritional supplementation 
comprised LCPUFA. Conversely, this study has some strength. The participants’ intervention compliance was 
high. The mean capsule intake and participation of the exercise program for the experimental period were 100% 
and > 90%, respectively in the PPS analysis population. In addition, the validity of this study’s interventions was 
high. It was considered that exercise and LCPUFA supplementation were performed appropriately based on the 
study design. Muscle mass in both exercise groups tended to increase (0.0–0.2 kg) compared to the no exercise 
group (− 0.5 kg) but the difference was not significant. Then, daily steps were increased by 780–1,260 steps/day 
in both exercise groups. The amount of increase was in a reasonable range according to the expectations (1,200 
steps/day) based on the study protocol. Significant increases in DHA (+ 1.3%) and ARA (+ 0.9%) contents in 
plasma PL were observed in the exercise with LCPUFA group. The amounts of increases in DHA and ARA 
contents are considered within a reasonable range and physiologically meaningful as the increase of DHA and 
ARA contents was shown to be 0.9% and 0.6%, respectively, by similar doses of LCPUFA supplementation that 
had the potential to improve cognitive  function9.

Regarding safety, we observed no side effects of LCPUFA supplementation, while there was no significant dif-
ference in the incidence of adverse events among groups. Thus, the combination of the exercise and the LCPUFA 
supplementation in the present study is considered safe under the conditions described here.

In conclusion, we did not find a clear effect of exercise with LCPUFA supplementation combination on 
cognitive function in the non-demented elderly with cognitive decline complaints under this study condition. 
However, exercise with LCPUFA supplementation could potentially improve attention and working memory in 
the elderly with low SMI. Therefore, a combination of exercise and nutritional approach could be beneficial for 
age-related cognitive decline.

Methods
Study design. We designed a randomised, single-blind, placebo-controlled, parallel group intervention 
attempting to evaluate the effect of combination exercise with LCPUFA supplementation on cognitive function 
in non-demented elderly Japanese with cognitive decline complaints during the time between November 2017 
and December 2018 at a medical facility in Kita-ku, Osaka, Japan. Participants were recruited in Osaka and its 
environs. We screened 551 participants while 90 were randomly allocated to the no exercise with placebo (as a 
control), or the exercise with placebo, or the exercise with LCPUFA groups. Participants were administered the 
intervention (exercise and/or supplementation) for 24 weeks between April and December 2018. Both MoCA-J41 
and WMS-R LM  II16 were used for screening as described below. Blood and urine were sampled following over-
night fasting for safety assessment and fatty acid analysis during the screening period, baseline, and 24 weeks 
following the intervention. Neuropsychological tests were performed, and muscle mass, physical activity and 
dietary fatty acid intake were measured at baseline and 24 weeks following the intervention. A study diary and 
pedometer were distributed and collected during intervention period. This study was registered in the Univer-
sity Hospital Medical Information Network (UMIN) Clinical Trial Registry (UMIN000030065) on 21 Novem-
ber 2017. The Aisei Hospital Ueno Clinic Research Ethics Committee approved the study protocol (#171109-
1), which conformed to the principles set forth in the Declaration of Helsinki. Written informed consent was 
obtained from all participants. This study was reported based on The Consolidated Standards of Reporting Trials 
(CONSORT) statement (https ://www.conso rt-state ment.org/).

Participants. Japanese participants constituted aged 60–79 years not exercising regularly and complaining 
about their own age-related cognitive (such as memory) decline with lower memory scores (WMS-R LM II < 20) 
than the reference in Japanese middle-aged  adults16. Exclusion criteria were: weak vision; colour blindness; 
hearing loss; a history of neurological disorder or serious disorders and clinically significant systemic diseases; 
postmenopausal syndrome or hormone therapy; problems receiving exercise interventions; gelatine or olive 
oil allergy; an irregular lifestyle; heavy drinker; heavy smoker; a history of measurement of neuropsychologi-
cal testing a year prior to the entry; consumption of drugs or supplements that affect efficacy evaluation, such 

https://www.consort-statement.org/


9

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:12906  | https://doi.org/10.1038/s41598-020-69560-4

www.nature.com/scientificreports/

as lipid metabolism or muscle metabolism or brain function; and dementia or suspicion of dementia (MoCA-J 
score < 17). This criterion for MoCA-J corresponds to the Mini-Mental State Examination (MMSE) score < 24 
which is the most widely used screening for  dementia42, and was set according to the conversion table between 
MoCA and  MMSE43.

Interventions. Exercise. This study’s purpose was to evaluate the hypothesis that the combination of exer-
cise with LCPUFA supplementation was more effective than only exercise regarding the improvement of cogni-
tive function. Therefore, the exercise condition was set referring to the WHO’s minimum requirement to reduce 
the risk of cognitive decline in the  elderly1. The guideline prescribes that at least 150 min per week of moderate-
intensity exercise (3–6 METs)44 was needed for the elderly, and muscle-strengthening training involving major 
muscle groups should be performed 2 or more days a week. Then, participants in the exercise groups performed 
150 min of exercise per week comprised 30 min resistance training for 2 weekly days, and 30 min aerobic ex-
ercise for 3 days of the week, for a period of 24 weeks. Each exercise’s intensity was set referring to the table of 
METs for physical  activities45. Participants in the no exercise with placebo group did not receive any exercise 
programs during the intervention period.

Resistance training. The resistance training program (48 workouts total) was conducted at the local gym 
in Kita-ku Osaka every 2–3 days. Safety and appropriateness training made one-to-one basis participant super-
vision necessary by the well-trained instructors throughout the program. It constituted 30 min of resistance 
training, with 10 min warm up and 10 min cool down. Resistance training mainly focused on the major muscle 
group comprising six free weight trainings (squat, bench press, rowing, side raise, calf raise and sit up). Although 
the participants’ instruction was to carry out five sets with approximately 10 repetition maximum (RM) per set 
in squat, and three sets with same intensity in other five training regimes, they could learn appropriate forms of 
all trainings and gradually increased intensities during the first four weeks of the 24-week period. The attendance 
and number of sets completed were recorded in the logs for each participant of every class by the trainers. Com-
pliance, expressed as the percentage of the total programs attended and completed appropriately, was calculated 
from these logs.

Aerobic training. The walking program aerobic training (72 total) was performed during all days, except 
for the day of resistance training. The program was conducted within the area of residence of each participant. 
Participants were instructed to increase their strides and swing their arms with the intensity of 12–13 rate of 
perceived exertion (RPE) during this program. The program constituted 30 min of walking with a few min of 
warm up and cool down. The attendance and steps for the program were recorded in the pedometers for each 
participant. Compliance, as the percentage of the total programs attended and completed appropriately, was 
calculated from pedometer logs. Walking programs were monitored by logs of pedometers and participant’s self-
records. The instructors checked those logs and records and gave feedbacks to participants when they joined the 
resistance training program.

Experimental supplement. Experimental supplements included purified olive oil and LCPUFA-contain-
ing oil, as per the previous  study9. Fatty acid compositions of these supplements are shown in Supplementary 
Table S1. The exercise with LCPUFA group consumed 1,080 mg/day of LCPUFA-containing oil in 6 soft gelatine 
capsules, in which 300 mg of DHA, 100 mg of EPA, and 120 mg of ARA were included as free fatty acid equiva-
lents. The dose of LCPUFA was designed to be in a range of that from normal daily diets in elderly  Japanese23,46. 
The same amount of purified olive oil was administered in the no-exercise group with placebo and in the exercise 
with placebo group. Capsules of LCPUFA and placebo were same size and colour. Compliance of the capsule 
intake in each participant was checked by the study diary.

Outcome assessments. The primary outcome in the present study was the change in the score of Stroop 
CW test. Secondary outcomes were the changes in other neuropsychological tests. To confirm the validity of the 
intervention, we assessed muscle mass, physical activity, LCPUFA content in blood phospholipids, and dietary 
LCPUFA intake. Safety was assessed based on the incidence of side effects and adverse events among groups 
throughout a period of 24-week intervention.

Cognitive functions assessment. To evaluate the effects of the interventions on cognitive functions, we 
assessed a wide range of cognitive functions classified into four major domains (attention, working memory, 
executive functions, and episodic memory) using neuropsychological tests. Regarding attention, selective atten-
tions were measured by Stroop CW test step 1,  315 and TMT-A47, while divided attention was measured by 
TMT-A,  B47. In Stroop CW step 1 and 3, we evaluated the number of correct items in 60 s. In TMT-A and B, we 
evaluated the time(s) needed to finish the task. Working memory was measured by Digit  Span16. The score in 
Digit Span comprises the sum of the forward and backward scores, and ranges from 0 to 24. Regarding executive 
functions, inhibitory control, cognitive flexibility and language flexibility were measured by Stroop CW step 2, 
 415,  KWCST48 and Verbal  Fluency49. In Stroop CW step 2 and 4, we evaluated the number of correct items in 
60 s. The KWCST was administered using a computerized version (WCST-KFS)50, and evaluated the score of 
category achieved (CA), ranging from 0 to 6. In Verbal Fluency, the score comprises the sum of the letter (shi, 
i and re) and the category (animals, fruits and vehicles) scores. The participants were instructed to produce as 
many words as possible from each task in 60 s. Regarding episodic memory, we measured verbal immediate/
delayed memory and visual delayed memory by WMS-R LM I/II16 and Rey-Osterrieth Complex Figure Test 
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(ROCFT)  recall51 , respectively. Scores in WMS-R LM and ROCFT recall range from 0 to 50 and from 0 to 36. 
WMS-R LM II was performed 30 min following WMS-R LM I completion. ROCFT recall was conducted 3 min 
after coping the complex figure. Lower scores in TMT-A, B and higher scores in other neuropsychological tests 
represent better cognitive functions.

Muscle mass and physical activity measurements. We analysed the whole-body muscle mass (kg) 
by multi-frequency bioelectric impedance analysis (InBody720, Biospace, Seoul, Korea). Regarding subgroup 
analysis by low SMI corresponding to sarcopenia cut-off value, SMI (kg/m2) was calculated by appendicular 
skeletal muscle divided square of height. Asian Working Group for Sarcopenia (AWGS) reported that the values 
of < 7.0 and < 5.7 kg/m2 in men and women were used as cut off levels of the screening for sarcopenia in Asian 
 adults52. Physical activities (steps and METs) were measured by pedometers (Active style Pro HJA-750C; Omron 
Healthcare, Kyoto, Japan) for 24 weeks. The daily average physical activities were evaluated by averages of seven-
day activities prior to the intervention’s commencement and completion.

Fatty acid analysis. Blood samples were centrifuged at 2,200 × g for 5 min at 4 °C, and separated to plasma. 
Samples were stored at − 80 °C prior to fatty acid analysis. Lipids in plasma were extracted and purified by the 
method of Bligh and  Dyer53. Then, phospholipid fraction was separated by thin-layer chromatography with 
hexane:ether = 7:3 and incubated with an additional internal standard (pentadecanoic acid) in methanolic HCl 
at 50 °C for 3 h for transmethylation of fatty acid residues. Fatty acid methyl esters were extracted with n-hexane 
and analysed by gas–liquid chromatography (Agilent 7890B, Agilent Technologies, Santa Clara, CA, USA) as 
described  previously9. The composition of each fatty acid was expressed as a percentage of the total peak area of 
the identified fatty acids.

Dietary assessment and study diary. We performed dietary assessment according to a previous  study9. 
We estimated dietary intake including LCPUFA (DHA, EPA and ARA) and their precursor (α-linolenic and 
linoleic acid) using an ad hoc computer algorithm for the BDHQ based on the Standard Tables of Food Com-
position in Japan 2010. Participants were instructed to keep a record in the study diary throughout the study.

Sample size. We found that selective attention/executive function evaluated by the Stroop CW test tends 
to be more affected by exercise in the non-demented elderly based on more than twenty previous RCTs. We 
selected the trial of which primary outcome was set to Stroop CW test in the elderly  Japanese24 as a representa-
tive RCT with exercise including resistance and aerobic training. Additionally, it was reported that the same dose 
of LCPUFA (DHA, EPA and ARA) of the present study had the efficacy on the P300 latency which correlated 
to the score of Stroop CW test in the elderly  Japanese9. Regarding exercise intensity and intervention period, 
the required sample size (90 participants) was calculated based on above two studies with a 30% dropout rate. 
Sixty-three participants (21 participants in each group) in the per-protocol analysis would have 80% power at 
a 5% level of significance to detect differences in Stroop CW test changes between the no exercise with placebo 
and the exercise with LCPUFA groups.

Randomisation and allocation. Enrolled participants were randomly assigned in a 1:1:1 ratio based on 
dynamic allocation to achieve balance among the groups regarding age, sex, WMS-R LM II, ARA and DHA 
composition in plasma phospholipids by using a spread sheet program with RAND function of Microsoft Excel 
2013. The randomisation procedure was performed by a person who was not involved in this study. Following, 
the randomisation codes for these participants and the codes for masked supplements were each held in sealed 
opaque envelopes by 2 different individuals who were uninvolved in this study. Information about these assign-
ments was masked to researchers until all data were collected and analysed.

Blinding. Although this study design was single blinded RCT, participants were blinded to the supplementa-
tion (the placebo or the LCPUFA) in the exercise groups. Researchers involved in the assessment of outcome 
measures were blinded to the randomisation assignment.

Statistics. The main efficacy assessment was performed with the PPS analysis as defined by the statistical 
analysis plan. Further subgroup analysis by low muscle mass was conducted also according to the statistical 
analysis plan. The sarcopenia cut-off value of SMI was used for this subgroup analysis as described in the muscle 
mass measurement. Safety assessment was performed with the full analysis set. Baseline data among the groups 
were compared by one-way analysis of variance (ANOVA) for quantitative variables and by chi-square test for 
qualitative variables. A change from baseline to 24 weeks after the intervention in each group was compared by 
paired t-test. Comparisons of changes between either exercise groups and the no exercise with placebo group 
were performed by Dunnett’s test. In addition, Dunnett’s tests that adjusted by baseline cognitive scores as a 
covariate were also performed, as we found that scores for cognitive function strongly affected on neuropsycho-
logical score changes by our preliminary study. Effect sizes were also calculated based on point-biserial correla-
tion coefficient and expressed as r (r ≥ 0.10 is regard as a small, ≥ 0.30 is a middle and ≥ 0.50 is a large effect). The 
incidence of side effects and adverse events among groups was compared by chi-square test. Statistical analysis 
was performed using SPSS statistics 23 and higher (IBM-Armonk, New York, USA) and SAS version 9.4 (SAS 
Institute, Inc., Cary, NC, USA). Data are shown as mean ± standard error (SE). All tests were two-sided, and an 
alpha-level of 0.05 was considered statistically significant.
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Data availability
All data that support the findings of this study are included in this published article (and its Supplementary 
Information files).
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