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The relationship between blood 
metabolites of the tryptophan 
pathway and kidney function: 
a bidirectional Mendelian 
randomization analysis
Yurong Cheng1,2, Yong Li1, Paula Benkowitz1, Claudia Lamina3, Anna Köttgen1 & 
Peggy Sekula1*

Blood metabolites of the tryptophan pathway were found to be associated with kidney function 
and disease in observational studies. In order to evaluate causal relationship and direction, we 
designed a study using a bidirectional Mendelian randomization approach. The analyses were based 
on published summary statistics with study sizes ranging from 1,960 to 133,413. After correction 
for multiple testing, results provided no evidence of an effect of metabolites of the tryptophan 
pathway on estimated glomerular filtration rate (eGFR). Conversely, lower eGFR was related to 
higher levels of four metabolites: C-glycosyltryptophan (effect estimate = − 0.16, 95% confidence 
interval [CI] (− 0.22; − 0.1); p = 9.2e−08), kynurenine (effect estimate = − 0.18, 95% CI (− 0.25; − 0.11); 
p = 1.1e−06), 3-indoxyl sulfate (effect estimate = − 0.25, 95% CI (− 0.4; − 0.11); p = 6.3e−04) and indole-
3-lactate (effect estimate = − 0.26, 95% CI (− 0.38; − 0.13); p = 5.4e−05). Our study supports that 
lower eGFR causes higher blood metabolite levels of the tryptophan pathway including kynurenine, 
C-glycosyltryptophan, 3-indoxyl sulfate, and indole-3-lactate. These findings aid the notion that 
metabolites of the tryptophan pathway are a consequence rather than a cause of reduced eGFR. 
Further research is needed to specifically examine relationships with respect to chronic kidney disease 
(CKD) progression among patients with existing CKD.

The kidneys play a major role in maintaining homeostasis in the human body by regulating the excretion of both 
endogenous and exogenous molecules below a certain mass, such as many metabolites. The estimated glomerular 
filtration rate (eGFR) is the most widely used measure of kidney function1. Chronic kidney disease (CKD) is 
defined as a persistent reduction of eGFR or kidney damage and is associated with a higher risk of comorbidi-
ties and mortality2. With an increasing prevalence of currently 10–15% worldwide, it represents a global health 
burden2,3. Therapeutic options are limited and aim to stop CKD progression, thereby attempting to reduce risk 
of end-stage kidney disease (ESKD), early death and comorbidities2.

Blood and urine metabolite levels are altered in the presence of CKD, making evaluations of the metabolome 
of interest in nephrology4–6: while some metabolites may represent filtration markers such as creatinine and thus 
may allow for improving the estimation of GFR, other metabolites may provide complementary insights into 
renal physiology by acting as a readout of active tubular secretion or reabsorption. Furthermore, metabolites 
might be causally related to development and progression of CKD, such as glucose in diabetic nephropathy. 
A central question in nephrology therefore is whether alterations in metabolite levels represent a cause or a 
consequence of CKD.
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Recent advances in mass methodology7–9 allow for comprehensive studies of the metabolome and its relation 
to kidney function4,5. A common theme from the reported literature is the association between blood levels of 
metabolites of the tryptophan pathway (i.e. tryptophan and its down-stream products) and kidney function 
and disease (Supplementary Table 1). Tryptophan is an essential amino acid in humans10,11. While less than 1% 
of tryptophan is actually used for protein biosynthesis, the major proportion serves as a biosynthetic precursor 
of microbial and host metabolites along different pathways, including the serotonin, the kynurenine, and the 
indole pathways (Fig. 1)10–13.

We previously reported that several ratios of serum metabolite levels containing tryptophan that had been 
quantified by a targeted measurement technique in a population-based study were significantly associated with 
eGFR14. In a follow-up project, the serum kynurenine-to-tryptophan ratio was significantly associated with 
annual change in eGFR and incident CKD15. This specific ratio presumably reflects the enzymatic activity of 
indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase, responsible for the conversion of tryptophan to 
kynurenine via N-formylkynurenine. Furthermore, we evaluated nine metabolites of the tryptophan pathway 
based on non-targeted measurements in a similar study, and identified C-glycosyltryptophan (also known as 
C-mannosyltryptophan) to be associated with eGFR and CKD, as well as with prospective endpoints of eGFR 
decline, incident CKD and ESKD16.

Overall, studies evaluating associations between metabolites of the tryptophan pathway and kidney function 
or disease provide a mixture of significant and non-significant associations. Potential reasons relate to variability 
in measurement techniques (e.g. liquid chromatography, mass spectrometry) and coverage of measurements 
(e.g. targeted vs non-targeted, number of metabolites measured) as well as to variability in analysis methods 
(e.g. comparison of levels between groups, analysis of association with eGFR or incident CKD). Moreover, these 
findings originate only from observational studies of different designs, sizes and characteristics. Observational 
associations do not allow for establishing causal relationships between a metabolite and kidney function or 
disease, and can be limited in their ability to distinguish between cause and consequence6,17.

Experimental studies also support a relationship between metabolites of the tryptophan pathway and kidney 
function: For example, an excess in the conversion of tryptophan to N-formylkynurenine was shown to promote 

Figure 1.   Metabolites and sub-pathways of the tryptophan pathway. For Metabolites with a frame necessary 
data were available and evaluated in this MR study to evaluate the impact of metabolites on eGFR (*) and/or 
the impact of eGFR on metabolites (#). Furthermore, frames with grey background mark metabolites that show 
significant results in our analysis.
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renal ischemia–reperfusion injury in mice18. Korstanje et al. showed that the knockdown of kynurenine 3-mono-
oxygenase gene expression in zebrafish and systemic deletion of the gene in mice led to a proteinuric phenotype19. 
C-mannosylation as a specific type of glycosylation was shown to be increased under hyperglycemic conditions, 
prompting a hypothesis of its pathological role in the development of diabetic complications20. Another example, 
serum 2-(α-mannopyranosyl)-l-tryptophan was found to be an accurate measure of renal function in rats21. 
Kobayashi et al. finally demonstrated in an untargeted metabolite screen of rats with and without CKD that 
metabolites of the tryptophan pathway might be used to detect early stages of CKD22. Thus, complementary lines 
of evidence connect metabolites of the tryptophan pathway to kidney function and disease.

Here, we designed a study to address the following question: Are tryptophan, kynurenine or other metabo-
lites of the tryptophan pathway in blood causally related to kidney function, or does reduced kidney function 
influence blood metabolite levels? We used a bidirectional Mendelian randomization (MR) approach allowing 
inference of causality17,23. An extension of this approach conveniently allows for the usage of publicly available 
summary statistics from published genetic association studies24.

Results
More than 40 metabolites qualified as down-stream products of tryptophan in humans (Fig. 1, Supplementary 
Information 1). The search for relevant published studies focused on genome-wide association studies (GWAS) 
of these metabolites. In addition, we searched for GWAS of kidney function. Five published studies including 
four GWAS of metabolites and one large GWAS of eGFR were identified and used as the basis of this MR analysis 
(“Methods”, Supplementary Table 2).

Based on published results of selected GWAS, genetic variants were identified as instruments for the respective 
trait (see “Methods” for details). The number of selected instruments per trait ranged from one instrument to 22 
instruments for metabolites and resulted in 73 instruments for eGFR (Supplementary Table 3). Selected instru-
ments for a given trait are not only independent of each other but with few exceptions also across traits (R2 < 0.2, 
Supplementary Table 3). Whenever possible, the strength of genetic variants was estimated in terms of F statistic 
and ranged between 95 and 631 for eGFR and between 18 and 135 for metabolites (Supplementary Table 3)25,26.

Mendelian randomization analysis reveals four significant effects.  Overall, 18 MR analyses could 
be conducted (Supplementary Table 3): For the direction: metabolite → kidney function, ten different metabo-
lites of the tryptophan pathway and the kidney function measure eGFR were evaluated. Data from more than 
one GWAS were available for kynurenine (N = 2) and indole-3-propionate (N = 3). For the other direction: kid-
ney function → metabolite, MR analysis was carried out for eGFR and eight metabolites from one GWAS.

Reported pairwise correlations of metabolites ranged from − 0.24 for tryptophan and C-glycosyltryptophan 
to 0.72 for kynurenate and xanthurenate, with many of them close to zero (Supplementary Fig. 1).

In the MR analysis with metabolites as exposure and eGFR as the outcome, none of the reported effect esti-
mates reached significance after correction for multiple testing (p > 2.78e−03; Table 1). The effect of xanthure-
nate on eGFR was nominally significant (effect estimate = − 0.0086; p = 2.9e−02). Conversely, eGFR affected the 
levels of four metabolites: C-glycosyltryptophan (effect estimate = − 0.16, 95% confidence interval [CI] (− 0.22; 
− 0.1); p = 9.2e−08), kynurenine (effect estimate = − 0.18, 95% CI (− 0.25; − 0.11); p = 1.1e−06), 3-indoxyl sulfate 
(effect estimate = − 0.25, 95% CI (− 0.4; − 0.11); p = 6.3e−04) and indole-3-lactate (effect estimate = − 0.26, 95% 
CI (− 0.38; − 0.13); p = 5.4e−05; Table 1). The negative estimates for all four metabolites indicate that higher 
levels of metabolites are a consequence of lower eGFR. Further interpretation of effect estimates with regards 
to their magnitude was not possible due to the nature of metabolite measurements (semi-quantitative, unitless) 
and different handling of measurements (transformation) in the underlying studies (Supplementary Table 2).

Sensitivity analyses support a role of low eGFR in elevated blood metabolites of the trypto-
phan pathway.  As outlined in the “Methods” section, additional analyses were performed to evaluate the 
robustness of the results and to ensure the absence of any major violations of the assumptions underlying MR 
(Supplementary Table 4, Supplementary Fig. 2). Overall, the results were consistent. Focussing on significant 
observations:

For C-glycosyltryptophan and kynurenine, all estimates of the effects using additional estimation methods 
were direction-consistent showing little variation (range of effect estimates: − 0.14; − 0.21, Supplementary Table 4, 
Supplementary Fig. 3). Neither the estimate of Egger intercept nor other statistics indicated any violations of the 
MR assumptions. Similarly, there was also no indications for any violations for 3-indoxyl sulfate, although the 
range of effect estimates was wider (− 0.05; − 0.29).

In contrast, the heterogeneity test (p = 4.3E−04) as well as the MR-PRESSO test (p = 3.0E−04) indicated 
some violations of underlying assumptions for indole-3-lactate (Supplementary Table 4). Since MR-PRESSO 
implicated two SNPs (marked in Supplementary Fig. 3-D) as outliers, an additional analysis was conducted after 
exclusion of these two SNPs. The outlier-corrected effect estimate of eGFR on indole-3-lactate, however, differed 
only marginally from the estimate of the main analysis (effect estimates: − 0.24 vs − 0.26, respectively) as well 
as results of other methods (range of effect estimates: − 0.23; − 0.48) and therefore supported the relationship 
despite the indications for a violation of the MR assumption that instruments are only associated with the out-
come through the exposure.

In addition to sensitivity analyses using statistical methods, we assessed the validity of the results from a 
biological perspective. Besides the potential issues caused by the inclusion of pleiotropic SNPs, we also addressed 
the potential issue of the inclusion of weak instruments or instruments with spurious associations by utilizing 
differently defined subsets of SNPs (“Methods”, Supplementary Table 5). The results of these additional sensitivity 
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analyses were quite similar in comparison to the main analysis (Supplementary Table 4), supporting the validity 
of the main results on the relationship of eGFR with these four blood metabolites.

Discussion
Here, we carried out a bidirectional two-sample MR analysis to study whether blood metabolite levels of the tryp-
tophan pathway causally affect the kidney function measure eGFR, or whether kidney function affects levels of 
these metabolites in blood. After correction for multiple testing, the principal finding of this study indicates that 
lower eGFR causes higher levels of the four metabolites kynurenine, C-glycosyltryptophan, 3-indoxyl sulfate and 
indole-3-lactate in blood, whereas the opposite analysis did not support a causal role of these metabolites on eGFR.

Kynurenine is synthesized from tryptophan via N-formylkynurenine10,13,27. Levels of kynurenine are ele-
vated in ESKD patients and a toxic effect has been discussed28,29. Several cross-sectional and case–control stud-
ies reported increased levels of kynurenine in patients with reduced kidney function thereby supporting our 
finding16,30–35.

In contrast to kynurenine, levels of tryptophan are depleted in patients with reduced kidney function33,36–38. 
This might indicate an increased activity of enzymes converting tryptophan to kynurenine via N-formylkynure-
nine18,27,37–44. Indeed, observational studies in humans reported an association between the tryptophan/kynure-
nine ratio and lower eGFR15,31,38. Our results do not indicate a causal relationship between tryptophan and kidney 
function of any direction. As there are no genetic association results for metabolite ratios such as the tryptophan/
kynurenine ratio available, no MR analysis could be conducted with respect to this reported observation.

Exposure: metabolite, unitless

Outcome: eGFR, mL/min/1.73 m2 (Pattaro et al. 201690)

N SNPs

Main analysis resultsa Main sensitivity analysis results

Effect Estimate (SE) 95% CI p

Egger regression MR-PRESSO global 
test pEffect Estimate (SE) Intercept (SE)

Direction: metabolite → kidney function

3-indoxyl sulfate Rhee et al. 201386 1 − 0.0012 (0.0041) (− 0.0092; 0.0068) 7.68E−01 NA NA NA

indoleacetate Shin et al. 201487 2 0.00001 (0.0375) (− 0.0735; 0.0735) 1.00E + 00 NA NA NA

indoleacetylglu-
tamine Long et al. 201789 1 0.0004 (0.0058) (− 0.0110; 0.0117) 9.51E−01 NA NA NA

indole-3-lactate Shin et al. 201487 1 − 0.08 (0.05) (− 0.18; 0.01) 8.11E−02 NA NA NA

indole-3-propionate Rhee et al. 201386 1 − 0.0029 (0.0044) (− 0.0116; 0.0058) 5.13E−01 NA NA NA

indole-3-propionate Shin et al. 201487 2 0.01 (0.02) (− 0.03; 0.06) 5.14E−01 NA NA NA

indole-3-propionate Long et al. 201789 1 − 0.01 (0.01) (− 0.03; 0) 5.73E−02 NA NA NA

kynurenate Long et al. 201789 1 0.01 (0.01) (0; 0.02) 7.74E−02 NA NA NA

kynurenine Rhee et al. 201386 1  <|0.00001| (0.0034)b (− 0.0067; 0.0067) 1.00E + 00 NA NA NA

kynurenine Shin et al. 201487 5 − 0.04 (0.04) (− 0.12; 0.05) 3.69E−01 0.03 (0.16) − 0.0012 (0.0027) 2.94E−02

tryptophan Shin et al. 201487 22 0.04 (0.04) (− 0.03; 0.11) 3.04E−01 − 0.23 (0.22) 0.0015 (0.0012) 8.61E−01

quinolinate Rhee et al. 201386 2 0.0026 (0.0032) (− 0.0038; 0.0089) 4.29E−01 NA NA NA

xanthurenate Rhee et al. 201386 1 − 0.0086 (0.0039) (− 0.0162; − 0.0009) 2.92E−02 NA NA NA

Outcome: metabolite, unitless

Exposure: eGFR, mL/min/1.73 m2 (Pattaro et al. 201690)

N SNPs

Main analysis resultsa Main sensitivity analysis results

Effect Estimate (SE) 95% CI p

Egger regression MR-PRESSO global 
test pEffect Estimate (SE) Intercept (SE)

Direction: kidney function → metabolite

3-indoxyl sulfate Shin et al. 201487 73 − 0.25 (0.07) (− 0.4; − 0.11) 6.26E−04 − 0.05 (0.27) − 0.0016 (0.0021) 2.46E−01

C-glycosyltryptophan Shin et al. 201487 73 − 0.16 (0.03) (− 0.22; − 0.1) 9.22E−08 − 0.14 (0.12) − 0.0002 (0.0009) 1.49E−01

indoleacetate Shin et al. 201487 73 − 0.05 (0.07) (− 0.19; 0.09) 5.03E−01 − 0.19 (0.26) 0.0011 (0.0020) 1.20E−02

indole-3-lactate Shin et al. 201487 73 − 0.26 (0.06) (− 0.38; − 0.13) 5.43E−05 − 0.35 (0.24) 0.0007 (0.0018) 3.00E−04

indole-3-propionate Shin et al. 201487 73 − 0.05 (0.08) (− 0.2; 0.1) 5.26E−01 − 0.18 (0.29) 0.0010 (0.0022) 1.02E−01

kynurenine Shin et al. 201487 73 − 0.18 (0.04) (− 0.25; − 0.11) 1.07E−06 − 0.18 (0.13) 0.0001 (0.0010) 3.17E−01

serotonin Shin et al. 201487 73 − 0.13 (0.08) (− 0.28; 0.02) 7.85E−02 0.03 (0.28) − 0.0013 (0.0021) 2.27E−02

tryptophan Shin et al. 201487 73 0.04 (0.02) (− 0.01; 0.09) 1.08E−01 0.02 (0.09) 0.0002 (0.0006) 3.20E−02

Table 1.   Main results of Mendelian randomization analyses. Note of caution: Because of unitless metabolite 
levels and differences in applied transformations of traits in underlying genome-wide association studies, 
effect estimates and confidence intervals are limited in their interpretation and comparison. SE standard 
error, CI confidence interval. Association results marked in bold passed significance threshold corrected for 
multiple testing: 0.05/(10 + 8) = 2.78E−03 (A: 10 Metabolites B: 8 Metabolites). a The Wald ratio estimator was 
used for effect estimation if one single instrument was available, and the inverse variance weighted estimation 
method if more than one instrument was available. b Due to numerical constraints, no more exact estimate can 
be provided; estimated effect is within the range of − 0.00001 and + 0.0001. NA: Respective analysis was not 
feasible due to small number of instruments (< 3).
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C-glycosyltryptophan (or C-mannosyltryptophan) results from a post-translational modification of trypto-
phan by linking a sugar via a carbon–carbon bond45,46. Certain post-translational modifications such as carba-
mylation have been linked to different chronic conditions including renal failure47. Studies in humans showed 
consistently increased levels of C-glycosyltryptophan in people with decreased eGFR16,48–52. Moreover, studies 
of humans and animal models suggested C-glycosyltryptophan to be a good indicator of renal function with 
more favourable properties compared to serum creatinine16,21,51,53. Thus, our finding that eGFR has an impact on 
blood levels of C-glycosyltryptophan is supported by published results. Although there is no literature to support 
the opposite direction in general, some prospective studies in humans (population-based or diabetic cohorts) 
showed that higher levels of C-glycosyltryptophan are associated with an increased risk for eGFR decline, even 
after adjustment for baseline eGFR16,50,54. In addition, Sekula et al. reported that the significant risk for ESKD 
in CKD patients was attenuated after adjustment for baseline eGFR and lost significance after adjustment for 
baseline measured GFR16. While our study did not indicate a causal relationship of C-glycosyltryptophan on 
eGFR in general, higher levels of C-glycosyltryptophan may still be of relevance in patients with advanced CKD.

The other two metabolites, 3-indoxyl sulfate and indole-3-lactate, belong to the indole pathway and are syn-
thesized by gut bacteria11,55,56. Disturbances of the microbiome have been associated with many chronic diseases 
such as CKD11,57–66, and a bidirectional relationship between host and microbiome has been reported56,60,67,68.

3-Indoxyl sulfate, also known as indican, is a known uremic toxin with highly elevated levels in ESKD 
patients28,29,44,69–71. Its toxic effect on kidney function as well as other organs and pathways is still being 
discussed6,72. Several observational studies on humans with and/or without CKD reported associations between 
higher levels of 3-indoxyl sulfate and lower eGFR16,30,32,33,35,73–76. Increased levels of 3-indoxyl sulfate were also 
observed in rats with autosomal dominant polycystic kidney disease (ADPKD) versus control rats77. All con-
sidered, the consistent results of these studies support our finding on the impact of eGFR on 3-indoxyl sulfate 
but not on its discussed toxic effect on kidney function.

In contrast, there is not much data available for indole-3-lactate. In a previous association study, higher levels 
of indole-3-lactate were found to be cross-sectionally associated with lower eGFR16. In an elderly population, 
indole-3-lactate was found to be associated not only with muscle composition but also with the renal function 
markers serum creatinine and blood urea nitrogen78. Quite recently, a study group reported that increased levels 
of indole-3-lactate were found to be associated with lower eGFR in a cohort of patients with ADPKD79. Alto-
gether, study results support a causal relationship of low eGFR on blood indole-3-lactate levels.

Strengths of this MR study are the availability of multiple metabolites within a specific pathway, the use of vari-
ous publicly available datasets based on rigorously conducted GWAS meta-analyses, the conduct of statistically as 
well as biologically motivated sensitivity analyses, and consistent results pointing into one direction. The analysis 
of summary statistics also has some disadvantages and depends upon the quality and power of included stud-
ies. All studies incorporated in this MR study are observational and vary with respect to several characteristics:

Besides differences in general study characteristics and in analysis strategies (e.g. transformation of traits), 
groups used different laboratory platforms (genetics, metabolomics) with measurements of varying quality 
(e.g. semi-quantitative measurements), limiting their comparability. It also prevented pooling of studies to gain 
additional power. Furthermore, interpretation of effect estimates is thus hampered as well as their comparison 
to reported associations. Here, interpretation of results is restricted to the direction of effects.

Furthermore, the coverage of evaluated metabolites varied over time because of advances in metabolite 
quantification. In combination with only partial reporting and sharing of analysis results, the search for relevant 
GWAS for studies such as ours is limited in itself. In consequence, the MR analyses were restricted to a subset 
of metabolites of the tryptophan pathway. Still, analyses could be conducted for several metabolites and data 
from more than one source was partially available to evaluate relationship for some metabolite-kidney function 
combinations.

The population sizes of selected studies were quite different, with the sample size for eGFR being much 
larger than the currently largest reported studies for the metabolites (Supplementary Table 2), which may raise 
concern about differential statistical power for bidirectional MR. However, the tight link between the genome 
and the metabolome does not require a similar study size as needed for the evaluation of a complex trait such 
as eGFR, as evidenced in large F statistics of the selected metabolite instruments. Since levels of metabolites are 
often influenced by a single gene, the low number of instruments for metabolites is therefore not unexpected. In 
contrast, we used several SNPs as instruments for eGFR reflecting its complex nature.

A limitation inherent to all MR-studies is that effect estimates might be biased in the presence of weak instru-
ments that do not reflect lifelong exposures to altered levels of the factor of interest such as eGFR or a metabo-
lite strongly enough. To ensure inclusion of strong instruments, we addressed this challenge by selecting only 
genome-wide significant genetic variants80. In addition, we evaluated the strength of instruments by estimating 
the F statistics whenever possible. Instruments of eGFR were stronger than those of metabolites because of the 
large sample size of the eGFR GWAS, but metabolite instruments still had large F statistics. Sensitivity analyses 
restricting instruments to SNPs with the very strongest or – in case of eGFR – strong and replicated associations 
supported the main findings based on all identified instruments.

Another concern in MR-studies is the presence of pleiotropy, such that genetic instruments are associated with 
the studied outcome directly or via other paths. Here, we also observed that there were few instances in which the 
same or a closely linked genetic variant was selected as instrument for more than one metabolic trait. For metabo-
lites, this is possible even in the absence of pleiotropy, because, for instance, a genetic variant in an enzyme can 
be associated both with its metabolic substrate and its product. We addressed this potential limitation by using 
a variety of additional, more robust estimation methods81 as well as by using subsets of SNPs thereby reducing 
risk of pleiotropy. However, sensitivity analyses could be conducted only if a sufficient number of instruments for 
the respective exposure was available. Although we cannot completely rule out any pleiotropy, the results of our 
sensitivity analyses supported the main finding that eGFR is related to blood levels of tryptophan metabolites.
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Lastly, our findings are based on summary statistics from population-based cohorts with relatively few indi-
viduals with advanced CKD. While our results do not indicate that metabolite levels of the tryptophan pathway 
are causally related to eGFR, our data are not sufficient to address the question whether these levels are related 
to CKD progression in patients with pre-existing CKD. Moreover, limited data did not allow to address other 
traits of kidney function (e.g. urinary albumin-to-creatinine ratio, UACR).

In summary, our study supports that lower eGFR causes higher blood levels of four metabolites of the trypto-
phan pathway kynurenine, C-glycosyltryptophan, 3-indoxyl sulfate, and indole-3-lactate, whereas higher levels 
of these metabolites did not cause lower eGFR. Based on our MR study, these findings thus aid the notion that 
elevations of metabolites of the tryptophan pathway are a consequence rather than a cause of reduced eGFR. 
Further research is needed to specifically examine these relationships with respect to CKD progression among 
patients with existing CKD.

Methods
A bidirectional MR approach was used to infer both directions, whether metabolite levels in blood causally 
affect kidney function, or whether kidney function levels causally affect metabolite levels in blood using publicly 
available genetic association summary data (two-sample MR)17,23,24. The underlying idea of the MR method is 
to use genetic variants as instruments to assign participants of a study to exposure groups in order to evaluate 
the causal relationship of this exposure with an outcome82. In this MR study, exposures and outcomes of interest 
for the direction: metabolite → kidney function, are blood metabolite levels of the tryptophan pathway and the 
kidney function marker eGFR, respectively (Fig. 2). For the other direction: kidney function → metabolite, the 
assignment is reversed. Since germline genetic variants are randomly assigned during gamete formation and 
represent a non-modifiable, lifelong exposure, the assignment to exposure groups using such variants as instru-
ments conceptually corresponds to the randomization of participants in a clinical trial. For example, persons 
can be exposed to genetically determined higher or lower blood tryptophan levels over the course of their life. In 
order to represent a valid instrument, a genetic variant needs to fulfil three assumptions: (1) it must be associated 
with the exposure, (2) it must not be associated with confounders of the exposure-outcome relationship, and (3) 
it must only be associated with the outcome through the exposure17.

Tryptophan pathway.  Because of the research question addressing not just one metabolite but a whole 
pathway, a biology-centered literature search to identify metabolites of the tryptophan pathway in humans was 
conducted. Briefly, the basic tryptophan metabolism structure was obtained from the KEGG database83, and 
then each reaction was cross-checked in the Reactome database (tryptophan catabolism, URL with https​://doi.
org/10.3180/REACT​_916.2; serotonin and melatonin biosynthesis, URL with StableID: R-HSA-209931; Nicoti-
nate metabolism, URL with StableID: R-HSA-196807)10,84,85. While some typical metabolites related with trypto-
phan lack of direct reactions, we assembled all obtained information into Fig. 1. As a result, over 40 metabolites 
that qualified as downstream products of tryptophan were identified. A summarizing description of the pathway 
can be found in Supplementary Information S1.

Selected studies.  MR analyses were based on publicly available research results that reported on the asso-
ciation between genome-wide genetic variants with either metabolites of interest or eGFR, a measure of kidney 
function.

Since we were interested in several metabolites (Fig. 1), we evaluated genetic screens of many metabolites. 
Based on the results of a systematic literature search in December of 20175, we identified studies that met the 

Figure 2.   Analytical approach of Mendelian Randomization applied in this study.

https://doi.org/10.3180/REACT_916.2
https://doi.org/10.3180/REACT_916.2


7

Vol.:(0123456789)

Scientific Reports |        (2020) 10:12675  | https://doi.org/10.1038/s41598-020-69559-x

www.nature.com/scientificreports/

following pre-defined criteria: (1) evaluation of serum or plasma samples, (2) total population size of > 1,500 
participants, (3) evaluation of at least one metabolite of interest, and (4) publicly available genome-wide associa-
tion summary statistics. After exclusion of studies that were part of a more comprehensive study, four studies 
were selected (Supplementary Table 6)86–89. All four studies reported association results for a varying number of 
metabolites of interest (range: 1–13). Some metabolites were available in more than one study.

Regarding eGFR as a measure of kidney function, we used the most comprehensive results from a GWAS 
meta-analysis of eGFR published by the Chronic Kidney Disease Genetics (CKDGen) consortium in 2016 that 
were available at the time our MR study started90.

Basic characteristics of all five included studies are summarized in Supplementary Table 2. The number of 
single study groups contributing to the selected summary statistics varied greatly (range: 1–48). Some of the 
single study groups contributed to both, GWAS of metabolites and of eGFR. For example, data from the KORA 
F4 study were included into the GWAS of metabolites of Shin et al. (~ 23% of total study population) as well as 
into the GWAS of eGFR where its proportion to the whole study population is quite negligible (< 3%)87,90.

Selection of instruments.  Several steps were required to prepare data for the different analyses (Sup-
plementary Information 2). Briefly, genetic instruments were SNPs with an association p-value < 5 × 10–8 (i.e. 
genome-wide significant) in the GWAS of the respective exposure that were also present in the GWAS of the 
respective outcome. In case several SNPs were available for an exposure, only independent SNPs were con-
sidered (linkage disequilibrium R2 < 0.2). After alignment and harmonization of data from different sources, 
data for ten metabolites (exposures) from three studies were available for the analysis addressing the direction: 
metabolite → kidney function86,87,89. For the other direction: kidney function → metabolite, only the study by 
Shin et al. contributed data of eight metabolites (outcomes)87, because the studies by Rhee et al. and Long et al. 
did not publish full genome-wide association summary statistics (Supplementary Table 2)86,89. Regarding eGFR, 
data for the analysis of both directions were available90.

Statistical analysis.  All analyses were conducted using R: A Language and Environment for Statistical 
Computing (https​://www.R-proje​ct.org) in combination with the R package TwoSampleMR (MR-Base)81.

MR analysis was conducted for all exposures with at least one available instrument (Supplementary Table 3). 
In the main analysis, the effect for each instrument was estimated with the Wald ratio estimator and combined 
with the inverse variance weighted (IVW) meta-analysis method when several instruments were available80. 
To correct for multiple testing, statistical significance was defined using a Bonferroni correction that acknowl-
edges the conduct of 18 MR analyses (metabolite → kidney function: 10; kidney function → metabolite: 8): 0.05/
(10 + 8) = 2.78E−03. While in the main analysis, all selected instruments were used, the analyses were repeated 
in a sensitivity analysis with instruments that were selected based on a more stringent pruning (LD R2 < 0.001).

For all MR analyses utilizing more than three instruments, sensitivity analyses were conducted in order to 
evaluate the robustness of results and to assess different potential violations of the assumptions underlying MR, 
using additional estimation methods as provided by the TwoSampleMR-package such as median-based estima-
tion and Egger regression81. In addition, the MR-PRESSO method was applied to detect outliers and to provide 
an outlier-corrected effect estimate91. An overview of all estimation methods is provided in Supplementary 
Information 3.

Furthermore, we annotated all selected genetic instruments for their associations with other complex traits 
and diseases using the comprehensive SNiPA database as well as GeneATLAS92,93. This annotation allowed for 
the evaluation of potential pleiotropy from a non-statistical perspective. Based on the obtained annotations, we 
defined two subsets of SNPs to minimize the risk of bias due to pleiotropy (Supplementary Table 5, Selection 
1 [less stringent] and 2 [more stringent]). In addition, we used subsets of SNPs with very strong associations 
with the respective trait (p < 10–20 and p < 10–10) to evaluate potential bias due to the inclusion of weaker instru-
ments (Supplementary Table 5, Selection 3). For eGFR as exposure, we specifically used another subset of eGFR 
instruments that was restricted to replicated SNPs to minimize the chance of including SNPs with false-positive 
associations (Supplementary Table 5, Selection 4). Respective MR analyses were conducted using the Wald ratio 
estimator (1 instrument) or the IVW estimator (> 1 instrument).

Finally, we excluded single variants selected for several traits or in LD (R2 > 0.2) with other variants selected 
for other traits in a separate sensitivity analysis whenever possible.
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