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Geographic variation 
in cardiometabolic risk 
factor prevalence explained 
by area‑level disadvantage 
in the illawarra‑Shoalhaven region 
of the nSW, Australia
Renin toms1,2*, Darren J. Mayne 1,2,3,4, Xiaoqi feng2,5,6 & Andrew Bonney1,2

Cardiometabolic risk factors (CMRFs) demonstrate significant geographic variation in their 
distribution. The study aims to quantify the general contextual effect of the areas on CMRFs; and 
the geographic variation explained by area‑level socioeconomic disadvantage. A cross sectional 
design and multilevel logistic regression methods were adopted. Data included objectively measured 
routine pathology test data between years 2012 and 2017 on: fasting blood sugar level; glycated 
haemoglobin; total cholesterol; high density lipoprotein; urinary albumin creatinine ratio; estimated 
glomerular filtration rate; and body mass index. The 2011 Australian census based Index of Relative 
Socioeconomic Disadvantage (iRSD) were the area‑level study variables, analysed at its smallest 
geographic unit of reporting. A total of 1,132,029 CMRF test results from 256,525 individuals were 
analysed. After adjusting for individual-level covariates, all CMRFs significantly associated with IRSD 
and the probability of higher risk cMRfs increases with greater area‑level disadvantage. though the 
specific contribution of IRSD in the geographic variation of CMRF ranged between 57.8 and 14.71%, 
the general contextual effect of areas were found minimal (ICCs 0.6–3.4%). The results support 
universal interventions proportional to the need and disadvantage level of populations for the 
prevention and control of CMRFs, rather than any area specific interventions as the contextual effects 
were found minimal in the study region.

The prevalence of cardiometabolic risk factors (CMRFs) varies  geographically1,2. Previous research has reported 
higher prevalence of CMRFs in certain localities: typically in areas of higher socioeconomic  disadvantage3–23. 
However, frequently these studies have been based on measures of association or geographical variance rather 
than reporting clustering or the share of the total variance that is at the area-level3–23. Quantifying the clustering 
and the proportion of geographic variation in CMRFs contributed by area-level socioeconomic disadvantage can 
aid in designing appropriate area-level approaches to help prevent CMRFs. Chronic and uncontrolled CMRFs 
predispose individuals to the development of cardiovascular disease (CVD), which continues to be the leading 
cause of health care expenditure and premature mortality  worldwide24.

In Australia, a social gradient is observed in the prevalence of many chronic conditions including various 
CMRFs (e.g.diabetes and chronic kidney disease)25. Generally, Australians enjoy better health than people in 
many other countries in the world. However, within Australia this better health is not equally  distributed26. It is 
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often-reported that socioeconomically disadvantaged individuals in Australia, on average, experience a greater 
disease burden than their less disadvantaged  counterparts25–28. This tendency is also evident at a contextual level 
when studies have investigated association of CMRFs with area-level socioeconomic disadvantage in Australia 
5,7 and globally 4,9,10,12,14,16–18,20,23,29–33.

Consistent with this, men from highly urbanised environments have been reported to have higher incidence of 
coronary heart disease with increasing residential area socioeconomic disadvantage, after adjusting for individual 
 characteristics18. Also, lower area-level disadvantage has been reported as being associated with lower prevalence 
of some behavioural cardiac risk factors such as smoking, physical inactivity and obesity etc. in some  studies9,10,34. 
Most of the reported associations of CMRFs with area-level socioeconomic disadvantage were independent of 
individual-level characteristics such as age and educational attainment. Even though the area-level associations 
of CMRFs were significant in these studies, the results were often dependent on the CMRF analysed, the meas-
ures of area-level socioeconomic disadvantage and the geographic scale at which associations were  examined35.

Multilevel analyses of CMRFs based on the average measures of association or variation alone are insufficient 
to report the geographical variance as similar associations were possible with very different scenarios of area 
 variance36. Multilevel findings extending on the general contextual effects and reporting the proportion of the 
total area-level variance along with the measures of clustering and the average measures of association or varia-
tion are appropriate and informative in reporting area-level influences, but less  common23,36–38. To differentiate 
the relative importance of individual versus area-level interventions for the prevention and control of CMRFs, 
the geographical component of the total individual risk variance has to be identified in a multilevel approach.

Therefore, the aims of this study are to (1) quantify the general contextual or geographic effect of areas 
on CMRFs, over and above their individual-level compositions; and to (2) quantify the geographic variation 
across multiple CMRFs specifically explained by area-level socioeconomic disadvantage, within the Illawarra-
Shoalhaven region of NSW Australia. Quantification of the general contextual effect and the variation specifically 
explained by area-level socioeconomic disadvantage will assist our understanding of the socioeconomic context 
of CMRFs in the study region and provide guidance for health service commissioning more generally nationally.

Methods
A cross-sectional multilevel design was adopted to account for the hierarchical nature of the data and analyses. 
No informed consent were obtained for the individual-level data used in this study, as the study used existing 
data which were already de-identified. The study was approved by the University of Wollongong and Illawarra 
and Shoalhaven Local Health District Health and Medical Human Research Ethics Committee (HREC proto-
col No: 2017/124). All the methods and analyses were performed meeting the relevent ethical guidelines and 
regulations of the committee.

Study area and data. The study was conducted in the Illawarra-Shoalhaven region of the New South Wales 
(NSW) state in Australia. The Illawarra-Shoalhaven region is a coastal plain along the south-east border of NSW; 
situates at the immediate south of the metropolitan boundaries of Sydney; and encompasses multiple regional 
cities, towns and rural areas. This region covers a land area of 5,615  km2, and had an estimated residential 
population of 369,469 at the time of the 2011 Australian Census of Population and Housing conducted by the 
Australian Bureau of Statistics (ABS)39. Statistical Area level 1 (SA1), the smallest geographical unit of the 2011 
census data release, was the area-level unit of analysis in this  study39. SA1s typically have a population size of 200 
to 800 persons (average 400), and the Illawarra-Shoalhaven region covers a total of 980 conterminous  SA1s39.

The CMRF test data in this study were extracted from the Southern IML Research (SIMLR) Study database, 
which is comprised of de-identified and internally linked pathology results from a major network of pathology 
services in the study region. The individual-level data in SIMLR database are geocoded to their corresponding 
SA1 areas, but not to their residential address, for privacy and confidentiality concerns. More details on this data 
source, procurement and access are published  elsewhere7. The CMRF test data were extracted for non-pregnant 
individuals aged 18 years or older presenting for testing between 01 January 2012 and December 2017. Only 
the most recent test result was included if an individual had undergone the same test multiple times in this 
data period. Test data with missing details on the individual and area-level factors analysed in this study were 
excluded from the analyses.

Variables. Outcome variable. Results of the CMRF tests were the individual-level outcome variables. Data 
on the seven CMRF tests analysed in this study included: fasting blood sugar level (FBSL); glycated haemoglobin 
(HbA1c); total cholesterol (TC); high density lipoprotein (HDL); urinary albumin creatinine ratio (ACR); esti-
mated glomerular filtration rate (eGFR); and objectively-measured body mass index (BMI). These CMRF test 
results were dichotomised into higher risk and lower risk values based on the current national and international 
guidelines on risk definitions (Table 1).

Study variable. The 2011 ABS census based Index of Relative Socioeconomic Disadvantage (IRSD) of the SA1s 
was the study variable. IRSD summarises a range of measures of relative socioeconomic disadvantage of people 
and households within SA1s and includes: level of income; education; employment; family structure; disability; 
housing; transportation; and internet  connection45. This study uses IRSD reported as quintiles; the lowest quin-
tile (Q1) indicating the most disadvantaged SA1s and the highest quintile (Q5) the least disadvantaged  SA1s45. 
The IRSD quintiles in the study were derived by ABS from the distribution of IRSD scores for the Illawarra-
Shoalhaven region based on the 2011 census. The study region has a diverse IRSD profile with representation 
across IRSD scores in comparison with Australia as a whole, making the region useful for population-level 
 studies46.
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Covariates. Analyses were adjusted for sex (male and female) and age group (18–29  years, 30–39  years, 
40–49 years, 50–59 years, 60–69 years, 70–79 years, 80+ years) of each individual at the time of the pathology 
collection of the CMRFs tests analysed in his study.

Statistical analyses. Initially, descriptive statistics of all individual and area-level variables were per-
formed. Thereafter, single level and multilevel logistic regression models were fitted for the CMRF test data 
of individuals (Level 1), nested within SA1s (Level 2). For each of the seven CMRFs analysed in this study, a 
hierarchy of four multilevel models at SA1 level were fit that included fixed effects for age, sex and IRSD and 
random effect (intercept) for SA1. Model 0 was a single level model adjusted for age and sex; Model 1 (M1) was 
null model at level 2; Model 2 (M2) adjusted for age and sex at level 2; Model 3 (M3) adjusted for the area-level 
study variable (IRSD) only at level 2; and the final model Model 4 (M4) included both M2 and M3 covariates 
(age, sex and IRSD) at level 2. The estimated regression coefficients of the derived models were exponentiated to 
calculate odds ratios (ORs).The goodness of fit of the models were identified using Likelihood Ratio Tests (LRT) 
at p < 0.05 level of significance. The general equation of the fully adjusted model is:

where yij denote the binary response of CMRF test outcome (as ‘higher risk’ or ‘lower risk’, based on the adopted 
definitions) for individual i in the area (SA1) j; πij denotes the probability that individual i in area (SA1) j has 
a ‘higher risk’ CMRF test outcome given their individual-level ageij and sexij; and their area-level IRSD index. 
The β1, β2, β3 are the regression coefficients which measure the associations between the log-odds of the CMRF 
outcome and each covariate all else equal, and when exponentiated these are translated to  ORs36. uj is the random 
effect for the area (SA1) j and τ2

u is the area level variance, which has to be estimated.

Model comparison. The Akaike Information Criterion (AIC) was used to evaluate model fit. The derived 
multilevel models were compared for: area-level variance ( τ 2) at SA1 (level 2) level; proportional change in vari-
ance (PCV); Intra-cluster Correlation Coefficients (ICC); Median Odds Ratios (MORs); area under the receiver 
operating characteristic (AUC) curve; and the change in AUC.

The τ 2s of the multilevel models were initially identified from each models. PCVs were calculated for models 
M2s to M4s relative to M1s. The ICCs of the fitted models were calculated using the latent variable  approach47. 
This approach assumes that a latent continuous outcome underlies the observed dichotomous outcomes and it is 
this latent outcome for which the ICC is calculated and interpreted. The ICC measured the expected correlation 
in CMRF outcomes between two individuals from the same SA1. The higher the ICC, the more relevant area-level 
context is for understanding individual latent outcome  variation36. The MOR is calculated as an alternative way 
of interpreting the magnitude of area-level variance. The MOR translated the area-level variance which were esti-
mated on the log-odds scale to the commonly used OR scale. The MOR result value is interpreted as the median 
increased odds of identifying the outcome if an individual move to another SA1 with higher risk. Thus, the higher 
the MOR the greater the general area-level effect and it will equal to 1 in the absence of area-level  variance36. The 
general contextual effect of the geographic areas over and above their individual-level composition of the higher 
risk CMRFs, is obtained through the measure of clustering (ICC) in M2s. The geographic variance and ICC in 
the null models (M1s) of higher risk CMRFs may depend on both the contextual and individual-level variables. 
Therefore, M2s of the higher risk CMRFs which adjusted for individual-level attributes is better to provide infor-
mation on the ‘general contextual effect’ of the areas. The unique contribution of the area-level study variable 
(IRSD) to the area-level variance of higher risk CMRFs were assessed through the PCVs between M2s and M4s.

The receiver operating characteristic (ROC) curves are created by plotting the true positive rates (TPR) i.e. 
sensitivity, against the false positive rates (FPR), i.e. 1 specificity for different binary classification thresholds of 
the predicted probabilities in all the  models48. Post-estimation, predicted probabilities (πij) are calculated for 

(1)yij ∼ Binomial
(

1, πij
)

(2)logit
(

πij
)

= β0 + β1Ageij + β2Sexij + β3IRSDij + uj

(3)uj ∼ N
(

0, τ 2u
)

Table 1.  Definitions of higher risk CMRFs test results. CMRFs Cardiometabolic risk factors, FBSL Fasting 
Blood Sugar Level, HbA1c Glycated Haemoglobin, TC Total Cholesterol, HDL High Density Lipoprotein, ACR  
Albumin Creatinine Ratio, eGFR estimated Glomerular Filtration Rate, BMI Body Mass Index.

Higher risk CMRFs Definition

1 High FBSL FBSL ≥ 7.0 mmol/L40

2 High HbA1c HbA1c > 7.5% 40

3 High TC TC ≥ 5.5 mmol/L 41

4 Low HDL HDL < 1 mmol/L 42

5 High ACR ACR ≥ 30 mcg/L to mg/L 43

6 Low eGFR eGFR < 60 mL/min/1.73 m2 43

7 Obesity BMI ≥ 30 kg/m2 44
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each individual and are used to calculate the AUC for the model. The AUCs of the models measure the capac-
ity of the models to correctly classify individuals with or without the outcome of a higher risk CMRFs analysed 
in this study, as a function of their predicted  probabilities36. The AUC values range from 1 and 0.5, where 1 is 
the perfect predictive discrimination and 0.5 have no predictive  power49. The AUCs also indicate the general 
contextual effects and can be compared it to the ICC and the MOR  values36. The added value of knowing an 
individual’s area of residence besides individual-level information (age and sex) can be obtained through the 
AUC change in Model 2 in reference to Model 0, where a higher AUC change would indicate higher relevance 
of areas in relation to CMRFs.

Statistical package. All analyses were performed using R version 3.4.4. (R Foundation for Statistical Comput-
ing, Vienna, Austria)50. Multi-level models were fit using the glmer function in the lme4  package51,likelihood 
ratio tests were calculated using the lrtest function in the lmtest  package52,and ROC curves using the roc function 
in the pROC  package53.

Results
A total of 1,132,029 CMRFs test data which belong to 256,525 individuals were extracted for the analyses. Fig-
ure 1 provides a flow chart of the individual tests in CMRF test data. The mean number of tests per person was 
4.4. After removing 1,162 (1.0%) test results data with missing details, a total of 1,130,894 tests were included 
in the analytic data set.

Table 2 provides details of the missing data and test data distribution of each CMRF tests. Most frequently 
missing data were the IRSD indices from SA1s in the study area for which an IRSD index was not available from 
ABS 2011 census either due to low populations or poor data  quality54.

Tables 3 and 4 shows the frequencies and relative frequencies of CMRF tests results. Overall, the higher risk 
frequencies of all CMRFs increased with increasing area-level socioeconomic disadvantage, except for TC which 
demonstrated an inverse trend.

Single and multilevel models for each of the CMRFs analysed in this study are presented in Tables 5, 6, 7, 8, 
9, 10 and 11. After adjusting for the covariates, all seven CMRFs were found to be significantly associated with 
area-level IRSD in the study region. For all but one variable the associations were positive (i.e. increased with 
area-level disadvantage). TC was the exception; being inversely associated with area-level disadvantage, with 
the most disadvantaged quintile (Q1) displaying the lowest odds for higher risk test results. Among the covari-
ates, there was no significant association between gender and higher risk test results of eGFR or BMI. It was 
also noted that the odds of higher risk eGFR tests results accelerated with increasing age group, and the 80+ age 
group demonstrated a very high odds of being identified with a higher risk eGFR tests result in the study region.

Figure 1.  Flow chart of the included/excluded tests in the CMRFs test data.
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The overall comparisons of model random effects are presented in Table 12. Reductions in the AIC values 
were observed among all CMRFs from the null model (M1) to the final model (M4) indicating a better fit for the 
final models. In the unadjusted null models, higher risk test results of eGFR demonstrated the most area-level 
variance (0.189) and TC the least (0.026). Adjusting the CMRFs for age and sex initially increased the τ2 of M2 
for FBSL (PCV =  + 1.88%), HbA1c (PCV =  + 3.02%), HDL (PCV =  + 15.25%) and BMI (PCV =  + 1.48%). The τ2 
was reduced in the final model among all CMRFs compared with the null models.

The Akaike Information Criterion (AIC) was used to evaluate model fit. The derived multilevel models were 
compared for: area-level variance ( τ 2) at SA1 (level 2) level; proportional change in variance (PCV); Intra-cluster 
Correlation Coefficients (ICC); Median Odds Ratios (MORs); Area under the receiver operating characteristic 
(AUC) curve; and the change in AUC.

The ICCs of the unadjusted models ranged between 0.8% in high TC to 5.4% in low eGFR. Inclusion of IRSD 
after adjusting for age and sex had reduced the ICCs of all CMRFs in the final models, which ranged between 
0.4% in low eGFR to 2.0% in obesity test results. The ICCs of the final models were low and suggest very limited 
area-level contextual effects. The AUC changes in model 2 and MORs of the final model support these findings.

Table 2.  Table of excluded test data which had missing details. FBSL Fasting Blood Sugar Level, HbA1c 
Glycated Haemoglobin, TC Total Cholesterol, HDL High Density Lipoprotein, ACR  Albumin Creatinine Ratio, 
eGFR estimated Glomerular Filtration Rate, BMI Body Mass Index, IRSD Index of the Relative Socioeconomic 
Disadvantage, SA1 Statistical Area level 1.

FBSL HbA1c TC HDL ACR eGFR BMI Total

Extracted 193,680 73,885 194,816 182,237 50,790 244,166 192,455 1,132,029

Missing data

Test value 1 0 0 0 0 0 0 1

Age 1 1 1 1 0 2 1 7

Sex 0 0 0 0 0 0 0 0

IRSD 182 78 191 174 53 256 193 1,154

Excluded tests 184 79 192 175 53 258 194 1,162

Included tests

Total n 193,496 73,806 194,624 182,062 50,737 243,908 192,261 1,130,894

 (%)  (17.11)  (6.53)  (17.21)  (16.10)  (4.49)  (21.57  (17.00)  (100.00)

Table 3.  Cross-tabulation of individual CMRFs (FBSL, HbA1c, TC and HDL) with the variables in study. 
FBSL Fasting Blood Sugar Level, HbA1c Glycated Haemoglobin, TC Total Cholesterol, HDL High Density 
Lipoprotein, Most D Most Disadvantaged, Least D Least Disadvantaged *Refer to Table 1 for high risk threshold 
levels of CMRFs.

CMRFs

FBSL HbA1c TC HDL

Total tests
Higher risk* results, 
n (%) Total tests

Higher risk* results, 
n (%) Total tests

Higher risk* results, 
n (%) Total tests

Higher risk* results, 
n (%)

Rates 193,496 16,259 (8.4) 73,806 7,920 (10.73) 194,624 57,506 (29.55) 182,062 21,238 (11.67)

Sex

Male 83,603 9,279 (4.8) 35,757 4,444 (6.02) 90,950 23,503 (12.0) 85,266 15,872 (8.72)

Female 109,893 6,980 (3.6) 38,049 3,476 (4.71) 103,674 34,003 (17.47) 96,796 5,366 (2.95)

Age (years)

18–29 19,747 238 (0.1) 3,480 250 ( 0.34) 14,247 2,127 (1.09) 11,435 1,377 (0.76)

30–39 23,515 459 (0.2) 4,889 293 ( 0.40) 18,960 4,889 (2.51) 16,787 2,301 (1.26)

40–49 29,424 1,265 (0.65) 8,447 760 ( 1.03) 31,395 10,719 (5.51) 29,339 3,585 (1.97)

50–59 37,085 2,948 (1.52) 13,510 1,507 (2.04) 39,663 16,316 (8.38) 37,824 4,283 (2.35)

60–69 37,962 4,670 (2.41) 17,665 2,064 (2.80) 40,471 13,620 (7.00) 39,134 4,227 (2.32)

70–79 29,009 4,396 (2.27) 15,715 1,860 (2.52) 31,186 6,748 (3.47) 30,114 3,419 (1.88)

80+ 16,754 2,283 (1.18) 10,100 1,186 (1.61) 18,702 3,087 (1.59) 17,429 2046 (1.12)

IRSD

Most D Q-1 38,885 4,495 (2.32) 17,024 2,429 (3.29) 39,347 10,631 (5.46) 36,625 5,520 (3.03)

Q-2 41,545 3,757 (1.94) 16,680 1,875 (2.54) 41,937 12,015 (6.17) 39,050 4,901 (2.69)

Q-3 39,828 3,386 (1.75) 15,376 1,585 (2.15) 40,401 12,045 (6.19) 37,794 4,201 (2.31)

Q-4 37,137 2,594 (1.34) 13,101 1,138 (1.54) 36,865 11,163 (5.74) 34,566 3,581 (1.97)

Least D Q-5 36,101 2027 (1.05) 11,625 893 (1.21) 36,074 11,652 (5.99) 34,027 3,035 (1.67)
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Figure 2 provides a comparison of the ROC curves of the fitted models. Model 4 s (age + sex + IRSD adjusted 
models) and models 3 s (IRSD adjusted models) were chosen for the ROC curve plotting for comparative pur-
pose. The predicted outcomes in the CMRFs plots are for the reference individual, i.e., individuals residing in the 
least disadvantaged areas (model 3) + female + age group 18–29 years (Model 4). A model curve closer to the top 
left corner of the subfigures indicate a better predictive accuracy of the model. The single measure summary of 
the ROC curves, AUCs of the final models ranged 0.62–0.88. The highest AUC value was observed for the final 
model of low eGFR. The AUC changes of model 2 s in relation to M0s ranged 0.01–0.08, which reconfirm the 
contextual findings of ICCs that the general contextual effects observed in the models were minimal.

The proportions of the geographic variance in CMRFs contributed by IRSD were estimated through the 
PCV between M2 and M4. Adjusting the models for IRSD and individual-level variables explained a maximum 
92.79% of the variance expressed by the null model of eGFR, reducing the ICC from 5.4 to 0.4%. The changes 
were least among the adjusted models of TC, with a marginal reduction of ICC from 0.8% to 0.5%. Thus, in the 
final models, the proportional reduction in variance was the largest for eGFR (PCV = 92.79%) and the least for 
TC (PCV = 33.27%).

The identified specific contribution of IRSD in the geographic variation of CMRF was the highest among the 
geographic variance of higher risk findings of HDL tests (57.8%), which was closely followed by FBSL (57.14%); 
HbA1c (53.31%); and ACR (51.17%) test results. The contribution of IRSD was comparatively lower among the 
geographic variance of the higher risk findings of eGFR (41.75%); BMI (41.06%); and TC (14.71%) test results, 
though not the least. Even though these specific proportions are large, it should be noted that it actually explained 
a lot of very little (i.e., variance of 0.01–0.07).

Discussion
The study reports on the influence of areas on higher risk CMRF distribution and quantifies the specific pro-
portion of geographic variance explained by IRSD. The work adds to the very few studies which consider mul-
tiple CMRF variables within the same region, or which are based on population derived data over extended 
 years16,17,20,29,31,32,and reports on both single and multilevel  analyses38,55. The results present both the measures 
of association and area-level variance based on multilevel logistic regression  analyses36. The findings of the study 
add to the existing evidence and discussion regarding the relevance of individual versus area-level interventions 
for the prevention and control of CMRFs.

We found consistent evidence for the association between area-level disadvantage and seven CMRFs among 
adult health service using residents of the Illawarra-Shoalhaven region in NSW Australia. In adjusted models, 
the odds of a higher risk finding increased with increase in area-level disadvantage among all CMRFs excepting 
TC, which showed an inverse pattern of association with increase in area-level disadvantage. Thus, in the final 
models we observed that, over and above individual age and sex, living in a disadvantaged neighbourhood pro-
portionally increased the individual-level probability of being identified with a higher risk CMRF. The findings 
highlight the importance of including of area-level variables into health risk analyses.

Table 4.  Cross-tabulation of individual CMRFs (ACR, eGFR, and Obesity) with the variables in study. ACR 
Albumin Creatinine Ratio, eGFR estimated Glomerular Filtration Rate, BMI Body Mass Index, Most D Most 
Disadvantaged, Least D Least Disadvantaged. *Refer to Table 1 for higher risk threshold levels of CMRFs.

CMRFs

ACR eGFR Obesity

Total tests
Higher risk* results, 
n (%) Total tests

Higher risk* results, 
n (%) Total tests

Higher risk* results, 
n (%)

Rates 50,737 2046 (4.03) 243,908 27,205 (11.15) 192,261 64,875 (33.7)

Sex

Male 25,043 1,265 (2.49) 108,140 12,441 (5.1) 86,853 29,585 (15.3)

Female 25,694 781 (1.54) 135,768 14,764 (6.05) 105,408 35,290 (18.3)

Age (years)

18–29 1546 47 (0.09) 32,961 72 (0.03) 23,277 4,582 (2.38)

30–39 2,278 71 (0.14) 29,047 105 (0.04) 22,799 6,535 (3.40)

40–49 4,870 108 (0.21) 35,778 330 (0.14) 30,401 10,595 (5.51)

50–59 9,272 230 (0.45) 42,695 1,112 (0.46) 37,285 13,825 (7.19)

60–69 13,388 412 (0.81) 43,423 3,626 (1.49) 38,370 15,310 (7.96)

70–79 12,337 605 (1.19) 34,406 8,507 (3.49) 30,074 11,324 (5.89)

80+ 7,046 573 (1.13) 25,598 13,453 (5.52) 10,055 2,704 (1.41)

IRSD

Most D Q-1 11,915 638 (1.26) 49,288 7,061 (2.89) 37,476 15,365 (7.99)

Q-2 11,350 485 (0.96) 52,947 6,354 (2.61) 40,172 14,334 (7.46)

Q-3 10,494 391 (0.77) 50,816 5,917 (2.43) 39,133 13,007 (6.77)

Q-4 8,732 308 (0.61) 46,440 4,406 (1.81) 37,370 11,766 (6.12)

Least D Q-5 8,246 224 (0.44) 44,417 3,467 (1.42) 38,110 10,403 (5.41)
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The ICCs of CMRFs in all the models were comparatively small (Table 12) in all the models. In the fully 
adjusted models, the ICCs were further reduced and ranged between 0.4% and 2.0% in low eGFR and BMI 
respectively. As per the interpretation framework proposed by Merlo et al., an ICC value less than 10% is indica-
tive of very little geographic  difference56. The AUC change of the model 2 s in relation to the single level models 
(range 0.01–0.08) reconfirm on these findings. However, this has to be interpreted along with the traditional 
geographic comparisons such as the proportion of the individuals who are affected with higher risk CMRF out-
comes. Therefore, a small geographic difference with uniformly higher, medium, or lower proportion of affected 
individuals indicates homogeneity of the higher risk CMRF findings within their geographic  units56. Such a 
situation would call for balanced universal approaches to prevent and control the higher risk CMRFs, with a 
proportional focus to the need and disadvantage level of affected  populations57,58. However, it is also worth not-
ing that when the exposure to an agent is homogenic in a community, the traditional epidemiological methods 
are not very helpful in identifying their markers of  susceptibility59.

Our results confirm, and are comparable with, associations between area-level disadvantage and CMRFs 
reported in previous  studies3–23, and extends their findings. The results primarily confirm the geographic varia-
tion of CMRFs and associations with area level disadvantage, as reported in previous studies. Further, the study 
provides means to compare this association which were observed consistently with a range of multiple CMRFs 
analysed in this study. The study extends on previous reports by differentiating the individual and area-level 
contributors to the exhibited geographic variance of CMRFs. And most importantly, the general contextual effect 
and the specific contributions of IRSD on the geographic variance of multiple CMRFs were identified, which is 
unique in the literature and highly informative for health care service commissioning.

The TC test results often stood apart from the major findings of this study, demonstrating inverse associations 
with IRSD. However, this was not reflected in the HDL findings, even though both are components of the lipid 
profile in an individual. This raises the possibility of a medication effect on TC in these areas, where the lipid 
lowering drugs have a less consistent effect in raising HDL than in lowering  TC60. Other factors associated with 
the higher risk HDL test results may include uncontrolled  diabetes61,  smoking62, sedentary life  style63,64,  obesity65, 

Table 5.  Single and multilevel logistic regression model summaries for high FBSL (FBSL ≥ 7.0 mmol/L). 
***p < 0.001; †Change in Model 2 in relation to Model 0; Model 0—Single level model adjusted for age + sex; 
Model 1—null model at SA1 level; Model 2—M1 + individual-level: age + sex; Model 3—Model 1 + Area level: 
IRSD quintiles of SA1s; Model 4—Model 1 + Model 2 + Model 3.

Single level model Multilevel models

Model 0 Model 1 Model 2 Model 3 Model 4

Significance (LRT) *** *** *** *** ***

High FBSL OR (95% CI) OR (95% CI) OR (95% CI)OR (95% CI) OR (95% CI) OR (95% CI)

Intercept 0.01 (0.01–0.01) 0.09 (0.09–0.09) 0.01 (0.01–0.01) 0.06 (0.06–0.06) 0.01 (0.01–0.01) 

Sex

Female Reference –

Male 1.62 (1.56–1.67) 1.63 (1.56–1.7) 1.63 (1.58–1.7)

Age

18–29 Reference – 1.64 (1.41–1.9)

30–39 1.60 (1.36–1.87) 1.63 (1.39–1.9) 3.58 (3.12–4.1)

 40–49 3.41 (2.97–3.93) 3.53 (3.07–4.1) 6.81 (5.98–7.8)

50–59 6.48 (5.68–7.42) 6.77 (5.93–7.7) 11.05 (9.71–12.6)

60–69 10.48 (9.21–11.98) 11.07 (9.72–12.6) 13.74 (12.07–15.6)

70–79 13.35 (11.73–15.27) 13.93 (12.22–15.9) 12.02 (10.52–13.7)

80+ 12.01 (10.51–13.78) 12.33 (10.79–14.1)

IRSD

Q-5 Reference –

Q-4 1.27 (1.18–1.36) 1.27 (1.18–1.37)

Q-3 1.58 (1.47–1.69) 1.49 (1.39–1.61)

Q-2 1.68 (1.57–1.80) 1.62 (1.50–1.74)

Most D Q-1 2.20 (2.06–2.36) 2.11 (1.96–2.26)

AIC 103,645 111,022.8 103,066.2 110,552.5 102,689.6

Variance 0.101 0.103 0.034 0.044

PCV – + 1.88% − 66.41% − 56.33%

ICC (%) 3.00 3.00 1.0 1.3

MOR 1.35 1.36 1.19 1.22

AUC 0.70 0.61 0.73 0.60 0.72

AUC change† + 0.03

Proportional variance explained by IRSD: 57.14%
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and poor diet  quality66,67. However the reason for the inverse association demonstrated by TC test results are not 
clearly established within the current study results and requires further research to explore possible individual 
and area-level contributions.

The study has to be considered within its limitations. Primarily, the cross sectional nature of analyses adopted 
in this study do not yield support for any causal relationships. In addition, the non-linear and time varying effects 
of covariates analysed in this study restrict generalisability of their findings though very informative for regional 
health care service commissioning. Secondly, the IRSD quintiles included as the key explanatory variable repre-
sent relative disadvantage in an area and have limitations intrinsic to aggregate measures. Thirdly, it should be 
noted that the data used in this study are extracted from people already utilising the health care service facilities 
in the area. Fourthly , the readers should be mindful that the variance reported in this study are attributable to 
(1) individual level factors (age, sex) analysed at the area-level, (2) area-level contextual influences (IRSD), and 
(3) other individual and area-level characteristics not considered in this study. However, further individual-level 
data extractions or collections are not possible with this study’s dataset as the de-identification process precludes 
the inclusion of any further individual level data. Other individual and area-level factors not considered in 
this study could include: individual-level  SES68, type of neighbourhood food  outlets69–72, poor physical activity 
 resources73,74, residential density and service  availability75. Finally, the assumptions of the standard multilevel 
logistic regression modelling methods adopted in this study would not be able to account for the autocorrelation 
of the area-level residuals (if any) of the models. Expected shortcomings due to this could be an overestimation 
of random effects in our  models76. However, any such effects were observed to be very marginal in our results 
as the random effect estimates are already at their lower limits. While acknowledging this limitation, we believe 
the effects of this are not critical in our results. Hybrid models which provide more precise estimates of ran-
dom effects are becoming increasingly available with advances in computational  technologies77. However, they 

Table 6.  Single and multilevel logistic regression model summaries for high HbA1c (HbA1c > 7.5%). 
***p < 0.001; †Change in Model 2 in relation to Model 0; Model 0—Single level model adjusted for age + sex; 
Model 1—null model at SA1 level; Model 2—Model 1 + individual-level: age + sex; Model 3—Model 1 + Area 
level: IRSD quintiles of SA1s; Model 4—Model 1 + Model 2 + Model 3.

Single level model Multilevel models

Model 0 Model 1 Model 2 Model 3 Model 4

Significance (LRT) *** *** *** *** ***

High HbA1c OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Intercept 0.07 (0.06–0.08) 0.12 (0.12–0.12) 0.07 (0.06–0.07) 0.08 (0.08–0.09) 0.05 (0.04–0.05)

Sex

 Female Reference – –

Male 1.37 (1.31–1.43) 1.38 (1.32–1.45) 1.39 (1.32–1.45)

Age

18–29 Reference – –

30–39 0.81 (0.68–0.96) 0.81 (0.68–0.96) 0.81 (0.68–0.96)

40–49 1.22 (1.06–1.42) 1.24 (1.07–1.44) 1.26 (1.08–1.46)

50–59 1.53 (1.34–1.77) 1.56 (1.36–1.80) 1.57 (1.36–1.81)

60–69 1.61 (1.40–1.85) 1.64 (1.43–1.88) 1.64 (1.43–1.88)

70–79 1.63 (1.42–1.87) 1.64 (1.42–1.88) 1.62 (1.41–1.86)

80 + 1.64 (1.43–1.90) 1.63 (1.41–1.88) 1.60 (1.39–1.85)

IRSD

Q-5 Reference –

Q-4 0.08 (0.08–0.09) 1.15 (1.04–1.28)

Q-3 1.14 (1.03–1.27) 1.39 (1.26–1.54)

Q-2 1.40 (1.27–1.54) 1.55 (1.41–1.71)

Most D Q-1 1.54 (1.40–1.69) 2.02 (1.84–2.22)

AIC 49,897 50,114.5 49,690.2 49,875.3 49,453.3

Variance 0.103 0.106 0.047 0.049

PCV – + 3.02% − 54.82% − 51.91%

ICC (%) 3.0 3.1 1.4 1.5

MOR 1.36 1.36 1.23 1.24

AUC 0.56 0.63 0.64 0.61 0.63

AUC change† + 0.08

Proportional variance explained by IRSD: 53.31%
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would not be directly applicable to our data sets, mainly due to the non-availability of location specific data at 
individual-level in our study data.

Notwithstanding these limitations, the study is unique in that it analysed a range of CMRFs across a widely 
dispersed population and included both rural and urban residents. In addition, the study used six years (year 
2012–2017) of CMRF tests data from the region in the hierarchical multilevel analyses. The findings of the 
study indicate that those residing in the most disadvantaged areas are more likely to be identified with higher 
risk CMRFs than those in lower disadvantage areas. However, the low ICC, AUC change and MOR values of the 
area-level models do not support for contextual approaches. Rather, the findings of the study support a propor-
tionate universalism approach in which health resources are made universally available but proportional to the 
need and disadvantage level of the affected  population57,58.

conclusion
The study demonstrates that in the Illawarra Shoalhaven region of Australia, people residing in socioeconomi-
cally disadvantaged areas have a higher probability of being identified with higher risk CMRFs across a range of 
factors. The low general contextual effects of the areas suggest for universal intervention for the prevention and 
control of CMRFs in this study region, but proportional to the need and disadvantage level. The patterns were 
consistent across the six CMRFs analysed in this study; and comparable with similar studies reported nation-
ally and globally. Based on our findings, we recommend further area-level research to discern the role of other 
contextual factors not analysed in this study especially the area-level access to health care services to determine 
its existing role and  adequacy78, and evidence based universal interventions for the prevention and control of 
CMRFs but proportionate to the priority level of the populations based on area-level disadvantage.

Table 7.  Single and multilevel logistic regression model summaries for high TC (TC ≥ 5.5 mmol/L). 
***p < 0.001; †Change in Model 2 in relation to Model 0; Model 0—Single level model adjusted for age + sex; 
Model 1—null model at SA1 level; Model 2—M1 + individual-level: age + sex; Model 3—Model 1 + Area level: 
IRSD quintiles of SA1s; Model 4—Model 1 + Model 2 + Model 3.

Single level model Multilevel models

Model 0 Model 1 Model 2 Model 3 Model 4

Significance (LRT) *** *** *** *** ***

High TC OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Intercept 0.20 (0.19–0.21) 0.42 (0.42–0.42) 0.20 (0.19–0.21) 0.08 (0.08–0.09) 0.22 (0.21–0.23)

Sex

Female Reference – –

Male 0.69 (0.68–0.71) 0.69 (0.68–0.71) 0.69 (0.68–0.71)

Age

18–29 Reference – –

30–39 2.01 (1.90–2.13) 2.02 (1.91–2.14) 2.01 (1.90–2.13)

40–49 3.01 (2.86–3.17) 3.01 (2.86–3.17) 3.00 (2.85–3.16)

50–59 4.09 (3.89–4.30) 4.08 (3.88–4.29) 4.07 (3.87–4.28)

60–69 2.97 (2.83–3.13) 2.95 (2.80–3.10) 2.95 (2.80–3.10)

70–79 1.61 (1.53–1.70) 1.60 (1.52–1.69) 1.61 (1.52–1.70)

80 + 1.14 (1.07–1.21) 1.13 (1.07–1.20) 1.14 (1.07–1.21)

IRSD

Q-5 Reference –

Q-4 0.91 (0.87–0.95) 0.94 (0.90–0.98)

Q-3 0.88 (0.85–0.92) 0.94 (0.90–0.98)

Q-2 0.84 (0.80–0.87) 0.90 (0.87–0.94)

Most D Q-1 0.77 (0.74–0.81) 0.84 (0.81–0.88)

AIC 227,464 235,931.6 227,254.6 235,795.4 227,199.2

Variance 0.026 0.020 0.018 0.017

PCV - − 21.76% − 27.81% − 33.27%

ICC (%) 0.8 0.6 0.6 0.5

MOR 1.16 1.14 1.14 1.13

AUC 0.63 0.56 0.64 0.56 0.64

AUC change† + 0.01

Proportional variance explained by IRSD: 14.71%
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Table 8.  Single and multilevel logistic regression model summaries for low HDL (HDL < 1 mmol/L). 
***p < 0.001; †Change in Model 2 in relation to Model 0; Model 0—Single level model adjusted for age + sex; 
Model 1—null model at SA1 level; Model 2—M1 + individual-level: age + sex; Model 3—Model 1 + Area level: 
IRSD quintiles of SA1s; Model 4—Model 1 + Model 2 + Model 3.

Single level model Multilevel models

Model 0 Model 1 Model 2 Model 3 Model 4

Significance (LRT) *** *** *** *** ***

Low HDL OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Intercept 0.06 (0.06–0.07) 0.13 (0.13–0.13) 0.06 (0.06–0.07) 0.10 (0.09–0.10) 0.05 (0.04–0.05)

Sex

Female Reference – –

Male 3.92 (3.80–4.05) 3.98 (3.85–4.11) 3.98 (3.85–4.11)

Age

18–29 Reference – –

30–39 1.11 (1.03–1.20) 1.11 (1.03–1.20) 1.12 (1.04–1.21)

40–49 0.97 (0.91–1.04) 0.99 (0.92–1.05) 1.00 (0.93–1.07)

50–59 0.87 (0.81–0.93) 0.88 (0.82–0.94) 0.89 (0.83–0.95)

60–69 0.81 (0.76–0.87) 0.82 (0.77–0.88) 0.82 (0.77–0.88)

70–79 0.85 (0.80–0.91) 0.86 (0.80–0.92) 0.85 (0.79–0.91)

80+ 0.94 (0.87–1.01) 0.93 (0.86–1.00) 0.91 (0.85–0.98)

IRSD

Q-5 Reference –

Q-4 1.18 (1.11–1.26) 1.20 (1.13–1.28)

Q-3 1.29 (1.21–1.37) 1.32 (1.24–1.41)

Q-2 1.48 (1.39–1.57) 1.51 (1.42–1.61)

Most D Q-1 1.81 (1.71–1.92) 1.90 (1.78–2.02)

AIC 123,277 130,649.7 122,700.0 130,294.3 122,328.3

Variance 0.071 0.081 0.030 0.034

PCV – +15.25% −58.05% −51.37%

ICC (%) 2.1 2.4 0.9 1.0

MOR 1.29 1.31 1.18 1.19

AUC 0.67 0.60 0.71 0.59 0.70

AUC change† + 0.04

Proportional variance explained by IRSD: 57.8%
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Table 9.  Single and multilevel logistic regression model summaries for high ACR (ACR ≥ 30 mcg/L to mg/L). 
***p < 0.001; †Change in Model 2 in relation to Model 0; Model 0—Single level model adjusted for age + sex; 
Model 1—null model at SA1 level; Model 2—M1 + individual-level: age + sex; Model 3—Model 1 + Area level: 
IRSD quintiles of SA1s; Model 4—Model 1 + Model 2 + Model 3.

Single level model Multilevel models

Model 0 Model 1 Model 2 Model 3 Model 4

Significance (LRT) *** *** *** *** ***

High ACR OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Intercept 0.02 (0.02–0.03) 0.04 (0.04–0.04) 0.02 (0.02–0.03) 0.03 (0.02–0.03) 0.02 (0.01–0.02)

Sex

Female Reference – – –

Male 1.74 (1.59–1.91) 1.75 (1.59–1.92) 1.76 (1.60–1.93)

Age

18–29 Reference – –

30–39 0.99 (0.69–1.45) 1.00 (0.69–1.45) 0.99 (0.68–1.44)

40–49 0.68 (0.49–0.98) 0.69 (0.49–0.97) 0.70 (0.49–0.98)

50–59 0.76 (0.56–1.06) 0.77 (0.56–1.05) 0.77 (0.56–1.05)

60–69 0.95 (0.70–1.30) 0.95 (0.70–1.30) 0.95 (0.70–1.29)

70–79 1.54 (1.15–2.11) 1.55 (1.14–2.09) 1.52 (1.12–2.05)

80+ 2.73 (2.04–3.74) 2.74 (2.02–3.71) 2.65 (1.96–3.59)

IRSD

Q-5 Reference –

Q-4 1.31 (1.10–1.57) 1.25 (1.04–1.50)

Q-3 1.39 (1.16–1.65) 1.27 (1.06–1.51)

Q-2 1.61 (1.36–1.90) 1.45 (1.23–1.72)

Most D Q-1 2.02 (1.72–2.38) 1.84 (1.56–2.16)

AIC 16,596 17,130.0 16,585.2 17,053.0 16,527.2

Variance 0.092 0.073 0.044 0.036

PCV – − 20.53% − 52.88% − 61.19%

ICC (%) 2.7 2.2 1.3 1.1

MOR 1.34 1.30 1.22 1.20

AUC 0.65 0.70 0.69 0.62 0.67

AUC change† + 0.04

Proportional variance explained by IRSD: 51.17%
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Table 10.  Single and multilevel logistic regression model summaries for low eGFR (eGFR < 60 mL/
min/1.73 m2). ***p < 0.001; †Change in Model 2 in relation to Model 0; Model 0—Single level model adjusted 
for age + sex; Model 1—null model at SA1 level; Model 2—M1 + individual-level: age + sex; Model 3—Model 
1 + Area level: IRSD quintiles of SA1s; Model 4—Model 1 + Model 2 + Model 3.

Single level model Multilevel models

Model 0 Model 1 Model 2 Model 3 Model 4

Significance (LRT) *** *** *** *** ***

Low eGFR OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Intercept 0.00 (0.00–0.00) 0.13 (0.12–0.13) 0.00 (0.00–0.00) 0.08 (0.07–0.08) 0.00 (0.00–0.00)

Sex

Female Reference – –

Male 0.98 (0.95–1.01) 0.98 (0.95–1.01) 0.98 (0.95–1.01)

Age

18–29 Reference – –

30–39 1.66 (1.23–2.25) 1.66 (1.24–2.20) 1.66 (1.24–2.22)

40–49 4.26 (3.32–5.54) 4.26 (3.34–5.42) 4.30 (3.36–5.49)

50–59 12.24 (9.72–15.68) 12.26 (9.78–15.35) 12.32 (9.80–15.47)

60–69 41.72 (33.30–53.19) 41.81 (33.55–52.1) 41.86 (33.49–52.31)

70–79 150.44 (120.24–191.57) 150.66 (121–187.6) 149.53 (120–186.6)

80+ 506.80 (405.05–645.35) 509.18 (409–633.9) 501.47 (401.7–626)

IRSD

Q-5 Reference –

Q-4 1.23 (1.12–1.35) 1.09 (1.03–1.16)

Q-3 1.59 (1.45–1.74) 1.19 (1.13–1.26)

Q-2 1.65 (1.51–1.81) 1.22 (1.15–1.29)

Most D Q-1 1.97 (1.80–2.15) 1.38 (1.31–1.46)

AIC 115,340 167,164.8 115,257.1 166,930.0 115,125.7

Variance 0.189 0.024 0.138 0.014

PCV – − 87.26% − 26.84% − 92.79%

ICC (%) 5.4 0.7 4.0 0.4

MOR 1.51 1.16 1.43 1.12

AUC 0.88 0.64 0.89 0.63 0.88

AUC change† + 0.01

Proportional variance explained by IRSD: 41.75%
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Table 11.  Single and multilevel logistic regression model summaries for obesity (BMI ≥ 30 kg/m2). 
***p < 0.001; †Change in Model 2 in relation to Model 0; Model 0—Single level model adjusted for 
age + sex; Model 1—Single level model adjusted for age + sex; Model 1—null model at SA1 level; Model 2—
M1 + individual-level: age + sex; Model 3—Model 1 + Area level: IRSD quintiles of SA1s; Model 4—Model 
1 + Model 2 + Model 3.

Single level model Multilevel models

Model 0 Model 1 Model 2 Model 3 Model 4

Significance (LRT) *** *** *** *** ***

Obesity OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Intercept 0.25 (0.24–0.25) 0.51 (0.50–0.51) 0.25 (0.24–0.26) 0.37 (0.35–0.39) 0.18 (0.17–0.19)

Sex

Female Reference – –

Male 0.99 (0.97–1.00) 0.99 (0.97–1.01) 0.99 (0.97–1.01)

Age

18–29 Reference – –

30–39 1.64 (1.57–1.71) 1.63 (1.56–1.71) 1.64 (1.57–1.71)

40–49 2.18 (2.10–2.27) 2.20 (2.11–2.29) 2.21 (2.12–2.30)

50–59 2.41 (2.32–2.50) 2.44 (2.34–2.53) 2.44 (2.35–2.54)

60–69 2.71 (2.61–2.82) 2.73 (2.63–2.84) 2.74 (2.63–2.84)

70–79 2.47 (2.37–2.57) 2.44 (2.34–2.54) 2.43 (2.33–2.53)

80+ 1.50 (1.42–1.59) 1.46 (1.38–1.55) 1.45 (1.37–1.53)

IRSD

Q-5 Reference -

Q-4 1.25 (1.17–1.33) 1.26 (1.18–1.34)

Q-3 1.37 (1.29–1.46) 1.38 (1.30–1.47)

Q-2 1.51 (1.42–1.61) 1.54 (1.44–1.64)

Most D Q-1 1.90 (1.79–2.03) 1.94 (1.83–2.07)

AIC 242,064 242,793.2 239,122.6 242,443.7 238,748.4

Variance 0.115 0.117 0.071 0.069

PCV – + 1.48% − 38.76% − 40.30%

ICC (%) 3.4 3.4 2.1 2.0

MOR 1.38 1.39 1.29 1.28

AUC 0.56 0.60 0.63 0.60 0.62

AUC change† + 0.07

Proportional variance explained by IRSD: 41.06%
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Table 12.  Summary model fit values and comparison of the multilevel models. † Change in relation to M0; 
τ2—Variance; AIC—Akaike Information Criterion; AUC—Area under the receiver operating characteristic 
curve; ICC—Intra-cluster Correlation Coefficients; MOR—Median Odds Ratios; PCV—proportional change 
in variance (in relation to Model 1 s).

FBSL HbA1c TC HDL ACR eGFR Obesity

Model 0: Single level model, adjusted for age and sex

AIC 103,645 49,897 227,464 123,277 16,596 115,340 242,064

AUC 0.70 0.56 0.63 0.67 0.65 0.88 0.56

Model 1: Null Model, at level 1

AIC 111,022.8 50,114.5 235,931.6 130,649.7 17,130.0 167,164.8 242,793.2

τ 2 0.101 0.103 0.026 0.071 0.092 0.189 0.115

ICC (%) 3.0 3.0 0.8 2.1 2.7 5.4 3.4

MOR 1.35 1.36 1.16 1.29 1.34 1.51 1.38

AUC 0.61 0.63 0.56 0.60 0.70 0.64 0.60

Model 2: Age and sex adjusted model, at level 1

AIC 103,066.2 49,690.2 227,254.6 122,700.0 16,585.2 115,257.1 239,122.6

τ 2 0.103 0.106 0.020 0.081 0.073 0.024 0.117

ICC (%) 3.0 3.1 0.6 2.4 2.2 0.7 3.4

MOR 1.36 1.36 1.14 1.31 1.30 1.16 1.39

AUC 0.73 0.64 0.64 0.71 0.69 0.89 0.63

AUC change† + 0.03 + 0.08 + 0.01 + 0.04 + 0.04 + 0.01 + 0.07

PCV  + 1.88%  + 3.02% − 21.76%  + 15.25% − 20.53% − 87.26%  + 1.48%

Model 3: IRSD adjusted model, at level 1

AIC 110,552.5 49,875.3 235,795.4 130,294.3 17,053.0 166,930.0 242,443.7

τ 2 0.034 0.047 0.018 0.030 0.044 0.138 0.071

ICC (%) 1.0 1.4 0.6 0.9 1.3 4.0 2.1

MOR 1.19 1.23 1.14 1.18 1.22 1.43 1.29

AUC 0.60 0.61 0.56 0.59 0.62 0.63 0.60

PCV − 66.41% − 54.82% − 27.81% − 58.05% − 52.88% − 26.84% − 38.76%

Model 4: Age, sex and IRSD adjusted final model, at level 1

AIC 102,689.6 49,453.3 227,199.2 122,328.3 16,527.2 115,125.7 238,748.4

τ 2 0.044 0.049 0.017 0.034 0.036 0.014 0.069

ICC (%) 1.3 1.5 0.5 1.0 1.1 0.4 2.0

MOR 1.22 1.24 1.13 1.19 1.20 1.12 1.28

AUC 0.72 0.63 0.64 0.70 0.67 0.88 0.62

PCV − 56.33% − 51.91% − 33.27% − 51.37% − 61.19% − 92.79% − 40.30%
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Data availability
Access to, and use of, Southern IML Research (SIMLR) Study data are subject to a License Agreement—Provision 
of Data (LA) between Southern IML Pathology Pty Ltd (Data Owner) and The University of Wollongong (License 
Holder), and a Data Access Agreement (DAA) between the License Holder and researchers (Data Users). This 
process is facilitated by the Illawarra Health and Medical Research Institute (IHMRI) (Data Custodian) through 
the Southern IML Research Study—Cohort Management Committee (SIMLR—CMC). The Data License does 
not allow for “public access” to data; however, researcher may access to SIMLR Study data subject to approval by 
the SIMLR—CMC and an appropriately constituted Australian Human Research Ethics Committee (HREC) as 
defined in the National Health and Medical Research Council’s National Statement on Ethical Conduct in Human 
Research (2007) (available from https ://www.nhmrc .gov.au/about -us/publi catio ns/natio nal-state ment-ethic al-
condu ct-human -resea rch-2007-updat ed-2018). The Data License requires at least one of the research team be 
affiliated with IHMRI. SIMLR—CMC contact details are: C/o-Associate Professor Kathryn Weston; Southern 
IML Research Study—Cohort Management Committee; Illawarra Health and Medical Research Institute; Build-
ing 32, University of Wollongong, Northfields Avenue, Wollongong NSW 2522, Australia; Phone  +61 2 4221 
4333; Email: info@ihmri.org.au; Web Link: https ://www.ihmri .org.au/resea rch-proje cts/simlr -cohor t-study /.
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