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Genome‑scale reconstruction 
of Paenarthrobacter aurescens TC1 
metabolic model towards the study 
of atrazine bioremediation
Shany ofaim1,2,4, Raphy Zarecki1,3,4, Seema Porob3, Daniella Gat3, Tamar Lahav1, 
Yechezkel Kashi2, Radi Aly1, Hanan Eizenberg1, Zeev Ronen3,5 & Shiri freilich1,5*

Atrazine is an herbicide and a pollutant of great environmental concern that is naturally biodegraded 
by microbial communities. Paenarthrobacter aurescens TC1 is one of the most studied degraders of 
this herbicide. Here, we developed a genome scale metabolic model for P. aurescens TC1, iRZ1179, to 
study the atrazine degradation process at organism level. Constraint based flux balance analysis and 
time dependent simulations were used to explore the organism’s phenotypic landscape. Simulations 
aimed at designing media optimized for supporting growth and enhancing degradation, by passing 
the need in strain design via genetic modifications. Growth and degradation simulations were carried 
with more than 100 compounds consumed by P. aurescens TC1. In vitro validation confirmed the 
predicted classification of different compounds as efficient, moderate or poor stimulators of growth. 
Simulations successfully captured previous reports on the use of glucose and phosphate as bio-
stimulators of atrazine degradation, supported by in vitro validation. Model predictions can go beyond 
supplementing the medium with a single compound and can predict the growth outcomes for higher 
complexity combinations. Hence, the analysis demonstrates that the exhaustive power of the genome 
scale metabolic reconstruction allows capturing complexities that are beyond common biochemical 
expertise and knowledge and further support the importance of computational platforms for the 
educated design of complex media. The model presented here can potentially serve as a predictive 
tool towards achieving optimal biodegradation efficiencies and for the development of ecologically 
friendly solutions for pollutant degradation.

Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) is an herbicide employed to control broadleaf 
and grass mainly in crops such as rice, wheat, maize, and sorghum. It is also a well-known pollutant of great 
environmental concern. Atrazine has been shown to have negative effects such as DNA damage, gene expres-
sion shifts, cancer and endocrine  disruption1,2. Its residues are found in soil samples decades after it was last 
applied and were shown to chronically leach into local  aquifers3. As such, efforts are being made to limit and 
monitor its  use4. While atrazine was banned in the European Union and Switzerland since 2003, the United 
States Environmental Protection Agency still allows its wide use under  monitoring5,6. Areas contaminated with 
atrazine and other hazardous herbicides are rapidly increasing worldwide introducing a need in remediation 
approaches. Bioremediation—an environmental bioprocess in which naturally occurring organisms are used 
for breaking down hazardous substances into less toxic or non-toxic substances—is increasingly acknowledged 
as a cost-effective feasible alternative for environmental  cleaning7–9. Critical environmental bioprocesses are 
naturally carried out by bacteria and are related to removal of pollutants from water, soil or  air10. Thus, bacterial 
bioremediation is widely applied for the degradation of various organic  pollutants11–14 including  herbicides14–18. 
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Bioremediation may occur naturally or through the stimulating addition of fertilizers, electron acceptors, etc. 
These amendments encourage the growth of the degrading microbes within the medium or environment in a 
process termed  biostimulation8,19. Microbial metabolism has been described as most influential on atrazine deg-
radation, promoting the development of biodegradation  strategies20. One of the well-known atrazine degraders 
is the gram-positive Paenarthrobacter aurescens  TC121–25 (previously known as Arthrobacter aurescens TC1), 
reported to biodegrade atrazine more efficiently than most other known degraders including Pseudomonas sp. 
 ADP26. The full hydrolytic pathway for atrazine degradation in P. aurescens TC1 was described and  reported27. 
While P. ADP can only use the hydrolytic products of the ring cleavage as a source of nitrogen but not as a 
source of carbon; TC1 can use the side groups of atrazine as source of carbon, nitrogen and energy consuming 
up to 3,000 mg of atrazine per  liter24. As such, P. aurescens TC1 is an ideal candidate for the study of atrazine 
bioremediation using a genome scale metabolic model reconstruction.

Modern tools of genomics, transcriptomics, metabolomics, proteomics, signaling systems and synthetic biol-
ogy have opened new avenues for biotechnological advances and are increasingly applied for promoting better 
understanding of complex biological systems. In recent years, constraint based metabolic modelling approaches 
have become widely used as an in silico tool for organism-level phenotyping and the subsequent develop-
ment of metabolic engineering  strategies28,29. Generally, such approaches follow four key steps: (1) data acquisi-
tion—mainly genome sequencing information, basic cell-physiological and biochemical knowledge and some 
experimental data on cell growth; (2) model reconstruction—translating data into structured mathematical 
representation; (3) constraint-based optimization simulations—the prediction of growth rate, substrate uptake 
rates, and byproduct rates under different growth conditions or following knockout mutations, in the absence of 
kinetic  information30–36; and (4) experimental validation. The potential of such models for the investigation of 
optimal processing is now acknowledged and  practiced10,37–40. Examples for applicative use include the optimal 
production or utilization of industrial compounds such as  xylose41,  biofuels42,  vitamins43 and drug  development44. 
In bioremediation, genome scale metabolic modeling approaches were applied for the design of Geobacter sul-
furreducens strain capable of increased electron transfer and a higher Fe(III) respiratory that was beneficial for 
environmental bioremediation of uranium-contaminated  groundwater45. Application of genome scale metabolic 
modeling for strain design is often based on the Optknock  algorithm46 and its derivatives which search for the 
optimal gene knockouts for a desired metabolic production. However, unlike industrial use of engineered strain 
for enhanced production in monoculture, introduction of exogenous species into natural habitat is far from trivial 
and hampers the application of modeling approaches towards bioremediation solutions. An alternative strategy 
is the use of modeling for the design of optimal conditions that will enhance processes (degradation or synthe-
sis) carried by the endogenous  community47. For example, interactions between Geobacter and Rhodoferax—a 
competitor Fe(III)-reducers in anoxic subsurface environments—were captured and described using metabolic 
modelling and allowed identification of optimal degradation  conditions48. Models can also predict the benefits 
of cooperative and commensal interactions to degradation efficiency. Xu et al. have demonstrated the use of 
metabolic models for predicting interactions between P. aurescens TC1 and endogenous soil  species49. Exchange 
metabolites secreted by non-degraders species contribute for enhancing P. aurescens TC1 growth and expediting 
degradation  efficiency49,50. Here, we directly focused on modeling-based identification of media supplements that 
can enhance atrazine degradation. We hypothesize that the introduction of specific nutrients into the bacteria’s 
immediate environment can resemble metabolic exchanges between P. aurescens TC1 and non-degrader species 
in soil and can lead to an increase in the total biomass and a subsequent increase in the degradation activity. We 
describe the process of reconstruction of a genome-scale metabolic model of P. aurescens TC1 and its evalua-
tion as a predictive tool for the fast and low-cost screening of potential nutritional supplements that can serve 
as bio-stimulators of degradation.

Results
Paenarthrobacter aurescens TC1 genome scale metabolic network reconstruction. The 
genome of P. aurescens TC1 is composed of a circular chromosome of 4.6 Mb coding for 4,222 open reading 
frames (ORFs) as well as two plasmids, 0.3  Mb each, coding for additional ~ 600  ORFs51. The genome and 
plasmids were annotated and used to create a draft model reconstruction using the Model SEED  pipeline52. The 
draft reconstruction included an automatic gap-filling step, using default (optimal) media  options52. This initial 
reconstruction contained a list of gene-protein-reaction associations that were classified as exchange, transport, 
and cytosolic as well as a list of all relevant metabolites and a biomass reaction. Based on taxonomy, the biomass 
reaction was defined to describe a gram-positive  bacteria52. The composition of the biomass reaction summa-
rizes the fractional contribution of generalized microbial biomass precursors (e.g., amino acids and lipids) to 
the synthesis of a new cell and is similar to the previously published genome scale reconstruction of Bacillus 
subtilis53. Unspecified non-metabolic consuming processes in the cell were defined as ATP maintenance and set 
similarly to Oh et al.53.

Following automatic construction, several key steps of model  refinement54 were carried out. The model’s 
metabolic functions were compared to genome annotations of P. aurescens TC1 from four established and com-
prehensive public resources and databases  (RAST55,  KEGG56,  JGI57 and  UniProt58) and missing reactions were 
added to the draft network. All reactions were screened to verify that they are stoichiometrically balanced. 
Errors in reaction elemental balance and directionalities were determined according to the KEGG scheme. 
Model Reactions involved in atrazine degradation pathway and its further conversion into the cellular build-
ing blocks were added manually (Fig. 1) based on the detailed reports of the relevant pathways in the specific 
 strain24,59. P. aurescens TC1 degrades atrazine by hydrolytic dechlorination. The process is catalyzed by triazine 
hydrolase (TrzN) followed by two hydrolytic deamination reactions catalyzed by hydroxyatrazine hydrolase 
(AtzB) and N-isopropylammelide isopropylamino hydrolase (AtzC). These enzymes convert atrazine to cyanuric 
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acid and release the alkylamines ethylamine and isopropylamine. Cyanuric acid accumulates stoichiometrically, 
whereas the alkylamines are further catabolized into cellular building  blocks27. Ethylamine and isopropylamine 
are converted into acetaldehyde and l-alanine (Fig. 1),  respectively59, and can serve as sole sources of carbon 
and nitrogen required for  growth24.

Initial simulations were carried for debugging and removing futile or erroneously energy generating loops. 
To this end, all external fluxes were blocked (upper and lower bounds set to zero). Next, a minimal medium was 
used, verifying that growth requires the supply of both carbon and nitrogen sources. After establishing no growth 
under infeasible conditions, we tested growth (biomass production) under experimentally verified conditions as 
described in Strong et al.24. Fine tuning of growth simulations to correctly represent the bacteria’s biology was 
done by manual curation. This included manual gap filling (addition of spontaneous and literature supported 
reactions) and curation of reaction directionality.

The reconstructed metabolic network presented here covers 25% of the ORFs present in the genome and 
includes 1,179 genes, 2,541 reactions, out of which 134 are exchange, and 2,848 metabolites. The coverage of the 
genome is similar to those of previously published reconstructed metabolic networks of gram-positive bacteria 
such as C. difficile or B. subtilis (20%)53,60 and the overall number of reactions is similar to the number of reactions 
covered by gold standard, updated models of species with similar genome sizes such as iML151561. A detailed 
description of the network including the reactions, metabolites, genes, and compartments that comprise the 
network is provided in Supplemental Dataset 1. The model is also available as Systems Biology Markup Language 
(SBML)  file62 in Supplemental Dataset 2. The SBML file can be used with tools such as MATLAB or other SBML 
compliant software. The minimal media used for simulations are available in Supplemental Dataset 3.

iRZ1179 validation. As previously reported, P. aurescens TC1 degrades atrazine and metabolizes its inter-
mediates, isopropylamine and ethylamine that can both be used as sole carbon and nitrogen sources. In silico 
growth simulations in minimal mineral media supplemented by atrazine or one of its degradation intermedi-
ates as a sole carbon and nitrogen source confirm that the model captures these reported physiological capaci-
ties. Experimental growth measurements verify model simulations and show that atrazine and its degradation 
products isopropylamine and ethylamine can be used as sole carbon and nitrogen sources for P. aurescens TC1 
(Fig. 2A). Supplementing the medium with additional carbon (glucose) and nitrogen (ammonium) sources indi-
cate that glucose enhanced growth both in silico and in vitro, while the addition of ammonium had not shown 
an effect on growth (Fig. 2A). This is in accordance with previous work stating that P. aurescens TC1 growth is 
not inhibited by nitrogen sources such as  ammonium26, unlike the inhibition of atrazine degradation in P. ADP 
in nitrogen rich  environments63.

Finally, growth simulations under a gradient of nitrogen vs. carbon sources further illustrate that atrazine 
serves as a good nitrogen source and as a poor carbon source (Fig. 2B). The growth promoting potential of com-
binations of atrazine with ammonium  (NH4

+) and glucose as nitrogen and/or carbon sources respectively was 
tested. The effect of nutrient ratio on growth rate was predicted by optimizing the production of biomass across 

Figure 1.  Atrazine metabolism as implemented in the cytoplasm compartment of P. aurescens TC1 genome 
scale metabolic model reconstruction (iRZ1179). Reaction (enzyme) names are written in orange.
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uptake gradients while constraining the fluxes through exchange reactions for carbon and nitrogen sources. As 
expected, increasing glucose uptake increased the growth rate (Fig. 2B) and the maximal achievable growth rate 
was much higher with glucose as a carbon source in comparison to atrazine as a sole carbon source. Increasing 
ammonium uptake showed no effect, suggesting that atrazine is as equally good nitrogen source as ammonium. 
This may be endorsed by ammonium as a byproduct of the atrazine degradation process (Fig. 1).

Media modifications effect on P. aurescens TC1 growth. In addition to glucose, several carbon 
sources including citrate, acetate and sucrose were previously reported to enhance growth of several strains 
of Arthrobacter species in atrazine containing  media64. To identify additional media modifications that can 
potentially increase atrazine degradation, we simulated growth in 123 different media combinations, each sup-
plementing the atrazine containing minimal mineral media with a single exchange metabolite (Supplemental 
Dataset 4). Several sugars, amino acids and dipeptides were predicted to induce enhanced growth. This is in 
accordance with the previous characterization of P. aurescens TC1 as a metabolically versatile  species27,51.

Out of a variety of potential nutritional sources, Paenarthrobacter species have been shown to utilize differ-
ent amino acids in different  capacities65,66. The flux through the biomass objective function when supplement-
ing media with different amino acids ranges between 1.4 amd 13 h−1 (Supplemental Dataset 4). The predicted 
growth rates when adding l-isoleucine, l-histidine and l-methionine are 11.3, 7.4 and 1.4 h−1, respectively, hence 
representing supplements that are predicted to support growth in high, medium, and low efficiencies. Dynamic 
simulations of growth while supplementing media with amino acids with or without atrazine was carried for 
three amino acids whose predicted efficiency in supporting growth ranges from low—l-methionine (biomass 
flux of 1.4 h−1, Supplemental Dataset 4), to moderate—l-histidine (7.4 h−1) and high (11.3 h−1). Simulation 
indicated a media dependent effect of these amino acids (Fig. 3). l-Isoleucine has the strongest predicted effect 
on growth in atrazine containing medium whereas l-histidine has a stronger relative effect in the same medium 

Figure 2.  Growth performances of P. aurescens TC1 in dependence on the availability of different carbon and 
nitrogen sources. (A) Predicted and observed P. aurescens TC1 growth in mineral minimal media supplemented 
with Atrazine or its degradation intermediates. ATZ atrazine, NH4, GLU glucose, ETH ethylamine, ISO 
isopropylamine, CTRL control. Measurements are normalized by dividing in maximal value. Values represent 
biomass rate  (h−1, predicted) and OD measurement (observed). (B) Surface plot rendering P. aurescens TC1 
growth (biomass) in dependence on atrazine, glucose and NH4 availability. Color scale is indicative of biomass 
(Z-axis).
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without atrazine; l-methionine has the weakest effect in all media (Fig. 3). P. aurescens TC1 growth in vitro, in 
media corresponding to the media used for the in silico simulations were generally in agreement with model’s 
predictions, supporting the superiority of l-isoleucine over l-histidine in atrazine supplemented media but not 
in an atrazine deficient medium (Fig. 3). Supplementing media with l-methionine showed a weaker effect on 
growth in comparison to the other two amino acids tested, with growth in similar level to no amino-acid control, 
agreeing with its weak effect in simulations. This is also in agreement with a recent work by  Deutch66 showing 
that whereas l-isoleucine and l-histidine serve as potential nitrogen and/or carbon source of P. aurescens TC1, 
L-methionine does not serve as a growth supporter. Like atrazine, amino acids can potentially serve as both a 
carbon and a nitrogen source. Considering C:N ratio as an indicator of growth support potential, l-isoleucine 
and l-histidine have a ratio of 6:1 and 6:3, respectively, whereas l-methionine, having no growth promoting 
effect has a ratio of 5:1 (Supplemental Dataset 4). Other amino acids with 5:1 or 5:3 C:N ratio like l-proline and 
l-serine, respectively, are also predicted to be efficient supporters of growth (biomass flux of ~ 10 h−1, similar 
to l-isoleucine; Supplemental Dataset 4). Thus, the growth effect of atrazine cannot be predicted merely based 
on C:N ratio.

Media modifications affect atrazine degradation. Following the validation of model predictions for 
growth capacities, we directly evaluated atrazine degradation in different media conditions. To this end, we 
applied Flux variability analysis (FVA), allowing the identification of the ranges of flux variability that are possi-
ble within a given  media67. Once the biomass flux was maximized, we estimated the rate of atrazine degradation 
according to the relevant flux of interest considering several selected medium modifications. The simulation of 
atrazine degradation over time was in a medium that contains atrazine as a sole carbon and nitrogen source vs. 
modified media sets (see “Methods”). Atrazine degradation was estimated according to the amount of atrazine 
left in the media following each time cycle. Simulations showed that supplementing the media with glucose not 
only enhanced growth (Fig. 2) but also induced an enhancement of atrazine consumption. Predictions were 
confirmed by experimental validation (Fig. 4).

Finally, the addition of phosphate, a main element in fertilizers, to soils has been reported to have a significant 
effect on the degradation of herbicides. For instance, its addition was shown to effect soil bacteria’s degradation 
activity including a reported effect on Arthrobacter sp. HB-5, a close relative of P. aurescens  TC168. Phosphate 

Figure 3.  Predicted (A,B) and observed (C,D) growth performances of P. aurescens TC1 growth in mineral 
minimal media with glucose complemented by different amino acids, with (A,C) and without (B,D) atrazine. 
ATZ atrazine, HIS l-histdine, ILE l-isoluecine, MET l-methionine. Observed values represents mean in 
triplicates; bars represent SD.
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has been previously shown to accelerate atrazine  degradation8. To test the effect of phosphate, we used the model 
to simulate growth and atrazine degradation in high or limited phosphate conditions. In accordance with these 
reports, simulations showed similar trends, which were confirmed by experimental results. These indicate an 
effect of phosphate concentrations on P. aurescens TC1 growth (Supplemental Dataset 5) and atrazine degrada-
tion (Fig. 4).

Discussion
Here, we reconstructed a genome scale metabolic model, iRZ1179, of P. aurescens TC1, a well-studied atrazine 
degrader, in order to use the in-silico simulations for predicting optimal media to support its growth and atra-
zine degradation activity. Model reconstruction was based on automatic pipelines, followed by manual curation 
processes and adaptation to physiological requirements (feasible growth media). The in-silico simulations were 
carried on an array of minimal media using atrazine and its interim degradation products as alternative sole 
carbon and nitrogen sources supplemented by potential enhancers. Simulations predicting and prioritizing 
specific metabolites as enhancers of growth and degradation were confirmed by in vitro experimental validation. 
Several limitations of the analysis should be acknowledged. Though the model refinement process included key 
steps required for construction of high-quality model, further adaptations are required for the current version 
of iRZ1179 to meet the requirements of gold standard  models54. Mainly, the biomass composition and energy 
maintenance requirements are approximations that rely on automatic protocols and genomic  information52,53. 
Collection of currently lacking experimental data can be incorporated in future versions of the model to define 
an accurate biomass objective function using, for example, the BOFdat computational  platform69. Another 
example for potential improvement is modification of maintenance demands and mass transfer regulation based 
on a recent detailed account of atrazine degradation in P. aurescens at very low  concentrations59. Second, data 
used to construct the model are not consistent at their level of confidence and annotations were gathered from 
numerous databases. A detailed process of manual inspection of each reaction and determination of its substrate/
co-factor  specificity54, was not yet carried. Finally, accuracy of predictions is likely to be significantly improved 
by the addition of other layers of information including metabolomics, transcriptomics and reaction  kinetics70. 
Continuation of the manual curation process, also based on added transcription information, is likely to improve 
the performances of future versions. Yet, despite limitations, the resulting predictions can successfully capture 
the relative effect of different media complements on growth and atrazine degradation, as seen in the in vitro 
experiments performed, hence supporting the use of iRZ1179 as a predictive tool.

Several key findings emerge from this study. First, simulations successfully capture previous reports on the 
use of carbon and other sources (glucose and phosphate) as bio-stimulators of atrazine degradation, supported 
by in vitro validation. Second, the confirmation of iRZ1179 as a predictive tool enables fast and low (no)-cost 
screening and ranking of a wide range of potential nutritional supplements that can serve as stimulators. Here, 
growth and degradation simulations were carried with more than 100 compounds consumed by P. aurescens TC1. 
In vitro validation confirmed the predicted classification of different amino acids as efficient, moderate or poor 

Figure 4.  Predicted (A,B) and observed (C,D) atrazine degradation in modified media. High and low 
phosphate concentrations: 50 and 15 mmol/gdw h for predicted values and 0.081 and 0.0081 g/l for observed 
values, respectively. Initial atrazine amount: 30 mmol (predicted) and 30 mg/l (observed). ATZ atrazine, GLU 
glucose. Observed values represents mean in triplicates; bars represent SD.
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stimulators of degradation activity. Simulation outcomes cannot be pre-determined based solely on the C:N ratio 
of media supplements but rather consider the complementary stoichiometric effect of multiple chemical reaction 
cascades, or pathways, that construct the genome scale metabolic network. Thus, these describe the complexity 
of cellular processes and balance between different metabolic pathways contributing to growth. Simulations per 
se provide multiple optimal solutions for the internal fluxes involved in primary metabolism and hence are not 
sufficient for deciphering the mechanism of how environmental (media dependent) conditions affect atrazine 
degradation. However, integration of simulation data with `omics data (e.g., metabolomics, proteomics, and 
transcriptomics) can reduce the solution space and shed light on the fine-tuning of cellular activity considering 
the need to balance between myriads of constrains. Beyond the current study, the model can serve the contextu-
alization of results from a growing number of high throughput experiments describing the relative abundance of 
discrete elements (e.g., genes, enzymes) into a higher level understanding of cellular activity. For example, future 
integration of proteomic data as produced in a recent study exploring adaptation of P. aurescens TC1 to growth 
in atrazine-fed  bioreactors59, can serve for both model refinement and as a predictive tool.

Finally, model predictions can go beyond supplementing the medium with a single compound. Here, we 
demonstrated that the efficiency of the combination of different amino acids as growth enhancers depends on 
other medium components (here –atrazine). Hence, the analysis demonstrates that the exhaustive power of 
the genome scale metabolic reconstruction allows capturing complexities that are beyond common biochemi-
cal expertise and knowledge and further support the importance of computational platforms for the educated 
design of complex media.

The in vitro validation provides a proof of concept for the use of iRZ1179 as a predictive tool and can be con-
sidered as a first step towards designing bio-stimulation strategies that can be further tested in vitro and in the 
field. Soil communities are complex in terms of composition and microbial consortia dynamics, hence imposing 
greater complexity. Despite the complexity of soil communities, supplementing soil with carbon sources is long 
known to induce a change in microbial community structure and function. In a recent study we demonstrated 
the usefulness of modeling approaches for deciphering metabolic complexities within indigenous soil community 
treated with  atrazine49. The integration of species-specific models together with community-based modelling 
approaches is likely to contribute to our understanding of the biodegradation processes of atrazine in natural 
environments and promote the development of bioaugmentation and biostimulation strategies. More generally, 
soil contaminations caused by pesticides and herbicides are considered among the top ten environmental hazards, 
with no current solutions that support green and cost-effective soil detoxification  processes71. Exploiting the 
exhaustive power of the computational modeling platforms allows for a relatively fast search for bioremediation 
solutions that optimize the degradation activity of the existing natural communities, by allowing screening of 
hundreds of thousands of possible solutions and scoring them. Simulations can be designed to screen for metabo-
lites, microbial species and combinations of both. Finally, in order to develop realistic solutions, a potential 
bio-stimulator should not only be efficient but also cost effective, ruling out expensive degradation enhancing 
compounds such as dipeptides. The ultimate proof of concept for the advent of computational approaches should 
be the design of cost-effective bioremediation strategies that outperform solutions that can be found by standard 
‘trial and error’ practices.

Methods
Reconstruction and curation of the P. aurescens TC1 metabolic model. An initial draft model of 
P. aurescens TC1 was reconstructed using automatic pipeline, as described in Henry et al.52. Briefly, the complete 
genome sequence of P. aurescens TC1 was retrieved from NCBI (GenBank accession IDs. NC_008711 including 
NC_008711.1 NC_008712.1, and NC_008713.1—chromosome and two plasmids, respectively), uploaded into 
 RAST55, spliced into genes and annotated. RAST annotations were put through the Model SEED  pipeline52 and 
an initial metabolic network reconstruction was obtained. Model refinement included addition of reactions 
identified in the specific strain in literature and additional databases, validation of reactions’ elemental balance 
and directionality, removal of futile loops and gap filling. Simulation conditions were modified to reflect experi-
mentally validated minimal media alternatives that support growth of P. aurescens  TC124. All simulations were 
carried out in a Minimal Mineral Media (MMM:  K+,  Mn2+,  CO2,  Zn2+,  SO4

−,  Cu2+,  Ca2+,  HPO4
2−,  Mg2+

,  Fe2+, 
 Cl−), supplemented by alternative carbon and nitrogen sources including atrazine, ethylamine, isopropylamine, 
ammonium, glucose and selected amino acids. The model is available in SBML format and as excel sheet (Sup-
plemental Datasets 1 and 2, respectively). To improve model comparability, cross-references to the BiGG data-
bases were added containing intuitive namespaces for reactions and  metabolites72 (Supplemental Dataset 1). The 
minimal media used for simulations are available in Supplemental Dataset 3.

Flux balance analyses simulations and dynamic, time dependent simulations. Flux distribu-
tions in the metabolic model were determined using Flux Balance Analysis (FBA)54,73,74. Briefly, a metabolic 
model includes a network that is described as a stoichiometric matrix Sm×n, where m represents the number of 
metabolites and n the number of reactions in the model. In the assumed pseudo-steady-state, internal metabo-
lites concentrations and fluxes are assumed to be constant. The model can be represented as: S × v = 0, where 
vector v signifies the fluxes through the internal reactions. As the number of reactions (n) typically exceeds 
the number of metabolites (m), the system is under-determined. In order to get a feasible solution space, linear 
programming (LP), subject to mass balance preservation and flux constraints, was used by introducing an opti-
mization problem. Here, model growth was maximized by maximizing its biomass reaction, which was used as 
objective function. Specific fluxes for metabolites consumption and secretion were determined following fixa-
tion of the respective biomass reaction to its maximal value and then using Flux Variability Analysis (FVA)67, a 
linear programming method to find the minimal amount of metabolites needed to produce a preset amount of 
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biomass. Dynamic modeling was used for the prediction of the profile of consuming metabolites typical to the 
biomass increase of P. aurescens TC1 and atrazine degradation across time. To this end, we simulated the behav-
ior of our metabolic model across time. This was done as described  in49 and illustrated in Supplemental Dataset 
5, based on concepts defined  in75. Briefly, the model works under the following assumptions: (1) a finite start 
amount of media components is available; (2) a maximal amount of uptake a single cell can acquire from the 
media in a given time point is defined (the lower bound of the exchange reaction value); (3) new substrate con-
centrations in time t, are determined by the predicted substrate concentration for the previous step augmented 
with any additional substrates provided or consumed in the current iteration. The maximum uptake was set to a 
ratio of up to 1 unit of each metabolite available in the media; (4) after each time tick, the biomass amount was 
updated according to the flux amount of the biomass reaction in the model at this time tick. As biomass pro-
duction rate serves as a proxy for the size of the population in the simulated environment and substrate uptake/
secretion is mainly affected by to population size, the model was used to evaluate the actual substrate uptake/
secretion and growth rate given the supplied media across time. Simulations were carried until reaching a state 
where time cycles did not lead to an increase in biomass. Initial concentration values for all metabolites were set 
to a fixed amount of 50 units (represented as the initial lower bounds, LB, of the exchange reactions). Simulation 
parameters and defaults are available in Supplemental Dataset 3. Starting with one bacterial cell, the flux bal-
ance model was used to predict the uptake of phosphate, sulfate, carbon and nitrogen sources (i.e. atrazine and 
glucose) by P. aurescens TC1 across time.

All model simulations were done on an Intel i7 quad-core server with 32 GB of memory, running Linux. The 
development programming language of our simulators was JAVA, and our linear programming software was 
IBM CPLEX. Surface plots were created using the MATLAB 2019a (MathWorks, Inc., Natick, Massachusetts, 
United States). Pathway maps were created using Escher  maps76.

In vitro bacterial growth conditions and chemical analysis. Paenarthrobacter aurescens TC1 (ATC-
CBAA-1386) was grown on R medium (based on ATCC 2,662 R) plates with glucose (0.2%) and atrazine 
(30  mg/l, Agan Adama-Ashdod, Israel) as sole nitrogen. Stock cultures were maintained in 15% glycerol at 
− 80 °C. Cultures were resuscitated on R medium agar plates (1.5% Difco bacto) and were used as starter colonies 
for liquid medium growth experiments. The growth of P. aurescens TC1 was tested in R media supplemented 
with different combinations of carbon and nitrogen sources, including Glucose (0.2%), Atrazine (30 mg/l, Agan 
Adama-Ashdod, Israel), ammonium chloride (37 mg/l), Ethylamine and Isopropylamine (31.1 and 40.8 mg/l, 
Sigma-Aldrich-Rehovot, Israel) and the amino acids Histidine, Isoleucine and Methionine (36, 92 and 103 mg/l 
respectively). Concentrations of amino acids, ethylamine and Isopropylamine were calculated to provide the 
same nitrogen content as the atrazine. In addition to the carbon and nitrogen sources, growth in media supple-
mented by atrazine and atrazine together with glucose was tested under two phosphate concentrations  (K2HPO4 
in 0.45 and 0.045 g/l). Each substrate was added to sterile R medium and bacteria were grown in triplicate 250 ml 
flasks incubated at 30 °C with shaking in the dark. One flask contained only R medium and was used as control. 
A 200 µl sample was taken from each flask every 8 h for measurement of OD in microplate reader (520 nm, 
Infinite 200 PRO Tecan, Männedorf Switzerland) and 1 ml was taken to study atrazine degradation rate using 
HPLC. The HPLC analysis was performed with Agilent HPLC (Waldbronn Germany) equipped with a DAD 
detector. Samples were separated on Kinetex C18 column (Phenomenex Torrance, CA) and the mobile phase 
consisted of 70% methanol flowing at 1 ml/min. Detection and quantitation of atrazine was done at 240 nm with 
detection limit of 0.1 mg/l. Total duration of each growth experiment was between 152 and 168 h.
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