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A century of precipitation trends 
in forest lands of the Lower 
Mississippi River Alluvial Valley
Ying Ouyang1*, Jiaen Zhang2, Gary Feng3, Yongshan Wan4 & Theodor D. Leininger5

Variations in long-term precipitation trends due to climate forcings have been observed in many 
parts of the world, exacerbating hydrological uncertainties to predicting droughts, floods, water 
resource availability, and ecosystem services. The Lower Mississippi River Alluvial Valley (LMRAV) is 
an important economic region of the midsouth USA, which is prone to natural disasters from extreme 
climate events and is known historically for cyclic flooding events and, within the last 20 years, for 
groundwater level declines. However, our knowledge of long-term precipitation trends in this region 
is fragmented. Using 100-year historic daily precipitation data from six stations of forest lands along 
with multivariate statistical analysis, we found that there were significant increasing trends (p ≤ 0.05) 
in annual precipitation near the south coastal area of the LMRAV and only marginally increasing trends 
in the northern area. Spatial variation in seasonality was observed at the decadal scale with increasing 
trends in fall near the coastal area and in spring around the north area. In addition to becoming wetter, 
the coastal area also experienced higher precipitation intensity with shorter return period over the 
past 100 years. These findings are useful to water resource managers for adapting to changing climate 
conditions in the LMRAV.

Variations in long-term precipitation trends due to climate forcings have been observed in many parts of USA 
and around the  world1–7. Such variations could modify hydrological processes and add uncertainties to predicting 
droughts, floods, water resources availability, and ecosystem services. It has been reported that the portion of the 
USA, with the most intensive single-day precipitation events, has increased about one half of 1% per decade from 
1910 to  20158. At a regional scale, the Mediterranean and northeastern European regions have been identified as 
primary climate change hot  spots2. These changes in regional climate have resulted in increased rainfall in the 
Northern Hemisphere mid-latitudes, less rainfall in the Northern Hemisphere subtropics and tropics, and more 
precipitation the Southern Hemisphere subtropics and deep tropics in recent  decades9. For some given basins, 
flooding events are directly related to precipitation intensity and duration, which, in turn, depend on synoptic 
changes, land use alterations, and other microclimatic  conditions10,11. The temporal precipitation variability with 
intensified extremes has significant impacts on human health, agricultural production, commercial activity, and 
ecological  services5. Predictions by the Intergovernmental Panel on Climate Change (IPCC) indicate that precipi-
tation events are very likely to change in intensity, frequency and location throughout the twenty-first  century3.

An important factor compounding long-term climate-driven trend of annual precipitation is the naturally 
occurring “teleconnection pattern” between sea surface temperature anomalies and decadal variability of precipi-
tation. For example, the Atlantic Multidecadal Oscillation (AMO) has been linked to the decadal precipitation 
 fluctuation12. McCarty et al.12 investigated sea level changes in the east coast of the US associated with decadal 
ocean circulation. These authors cited that the decadal ocean circulation responds to the cooling and warming 
cycles of AMO. However, the impact of the AMO cycles on precipitation in the Lower Mississippi River Alluvial 
Valley (LMRAV) is basically unknown.

The LMRAV, an intensive agricultural and forest production region and an important economic region in 
midsouth USA, is located in the floodplain of the Mississippi River (MR) starting at Illinois and continuing 
through Missouri, Kentucky, Arkansas, Tennessee, Mississippi, and  Louisiana13 (Fig. 1). Land use change and 
climate variability in the LMRAV, including clearcuttings of bottomland hardwood forests, conversions of forests 
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to agricultural lands and loss of connected floodplain, are largely responsible for river flooding, wetland loss, 
and water quality degradation in the MR and the adjacent Gulf of  Mexico14–17. More specifically, the LMRAV is 
prone to natural disasters from extreme climatic events and is well known for the occurrence of cyclic flooding 
since  192818. Additionally, the extreme climatic events have degraded surface water quality through flooding, 
which brings high levels of turbidity, organic matter, and  contaminants19–22. Climatic extremes associated with 
substantial economic loss have prompted extensive efforts by federal and state agencies to understand, predict, 
and manage stream flow, water quality, and river flooding in the  LMRAV11.

Flow, distribution, and quality of water in forest watersheds are regulated by  forests25. Among the many 
ecological functions provided by forests, they also process water used for agriculture, industry, and human 
 consumption23. Changes in long-term trends of precipitation due to climate change would modify hydrologic 
processes and increase the uncertainty of these processes occurring in forest watersheds. Therefore, an assessment 
of these trends is essential to water resource management, water supply planning, environmental protection, and 
ecological services in forest watersheds. In recent years, several studies have investigated the impacts of climate 
change on hydrologic processes in the forest watersheds, including stream discharge, overland flow, surface 
evaporation, and water  yield24–30. Ouyang et al.16 studied the impacts of projected rainfall and air temperature 
variations upon water discharge, water yield, and evaporative loss in the Lower Yazoo River Watershed, which 
is a sub-basin in the LMRAV. They found that a 6.4% decrease in rainfall amount results in 11.8% and 10.3% 

Figure 1.  Location map of the Lower Mississippi River Alluvial Valley (LMRAV) showing the six weather 
stations in forest lands used in this study, which is created using ArcGIS Version 10.5.1.
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decreases in water yield and evaporative loss, respectively. Dyer and  Mercer4 assessed spatial variability of rainfall 
in the LMRAV using rotated principal component analysis with radar-derived rainfall data from 1996 to 2011. 
These authors found that although there is substantial variability among seasons, the precipitation depths in the 
region are generally lower with more variations than the eastern areas of the LMRAV. They further argued that a 
warm season rainfall volume is generally lower and less predictable in the LMRAV as compared to a cool season. 
Currently, few studies have assessed the long-term trends of precipitation in forest watersheds of the LMRAV.

Improving flood forecasting, water resource management, and water quality protection for the LMRAV 
depends on understanding the linkages between precipitation trends and hydrological processes. Since an indi-
vidual precipitation event cannot be simply and directly attributed to climate change impacts, long-term trends 
of precipitation such as duration, frequency and intensity, need to be analyzed at several localities in a region to 
identify any climate change impacts. The goal of this study was to assess trends in the past 100 years, approxi-
mately from 1900 to 2018, of precipitation data in six headwater forest watersheds of the LMRAV using mul-
tivariate statistical analysis. Our specific objectives were to: (1) identify the relationship between precipitation 
intensity and its recurrence interval, (2) estimate the annual and decadal seasonal trends of precipitation, and 
(3) assess the impact of AMO on precipitation in the LMRAV. The forest watersheds selected for this study are 
upstream of areas with intensive agricultural crop production in the LMRAV. It is important to understand how 
changing precipitation in forested areas of the world effects crop production downstream. The six headwater for-
est watersheds were selected because there exists a continuous record of precipitation data for 100 or more years. 
Forested headwater areas were chosen because of the relative lack of disturbance to these lands over the period 
of interest, which provides a better opportunity for analyzing how climate change affects precipitation trends.

Results
General assessment and recurrence period of precipitation. Comparison of daily precipitations 
shows that five out of six stations (except for the USC0013580 station in Grand Chain Dam 53, Illinois) had 
very similar descriptive statistics (Table 1). Among these five stations, the ranges were from 3.12 to 3.98 mm 
for mean precipitation, from 9.20 to 11.99 mm for standard deviation, from 5.23 to 5.63 for skewness, and from 
40.18 to 48.54 for kurtosis. In contrast, the mean precipitation (0.13 mm) and standard deviation (0.19 mm) of 
the Illinois station (USC00113580) were about one order of magnitude lower but the skew (12.48) and kurtosis 
(238.94) were much higher than those of other five stations.

Precipitation intensity and its recurrence interval under different durations are important indicators to 
extreme precipitation events. The average recurrence intervals (or periods) of precipitation intensity for the 
six stations are given in Fig. 2. For the average recurrence interval of 2 years at a 24-h duration, the precipita-
tion intensities were 0.51, 0.52, 0.40, 0.39, 0.30, and 0.31 mm/h, respectively, for USC00160098, USC00226177, 
USC00035691, USC00220488, USC00238700 and USC00113580, and the probability for these intensities to be 
equaled or exceeded was ≥ 50% (Fig. 2). For the average recurrence interval of 10 years at a 24-h duration, the pre-
cipitation intensities were 1.8, 1.1, 0.81, 0.98, 0.75, and 0.78 mm/h, respectively, for USC00160098, USC00226177, 
USC00035691, USC00220488, USC00238700, and USC00113580, and the probability for these intensities to be 
equaled or exceeded was ≥ 10% (Fig. 2).

Annual trends. Annual variations in total amounts of precipitation over the past 100 or more years for the 
six weather stations associated with Mann Kendall’s tau (τ), p value, Sen’s slope (SS), and z score are given in 
Fig. 3 and Table 2. In Mann Kendall time series statistic, the value τ ranges from − 1 to 1 and is a measure of 
relationships between variable and time, where 0 is no relationship and 1 (or − 1) is a perfect relationship (with 
positive τ for increasing trend and negative τ for decreasing trend). The p value is a statistical measure of a trend, 
and if p ≤ 0.05 there is a monotonic  trend31. The value of SS is used to estimate the magnitude of change in Mann 
Kendall’s trends, while the value of z-score tells how many standard deviations from the  mean31,32. 

Table 1.  Location, land use, and descriptive statistics of daily precipitation for the six selected NOAA weather 
stations in forest lands of the LMRAV.

Parameter USC00238700 USC00113580 USC00035691 USC00220488 USC00160098 USC00226177

Location Wappapello Dam, 
Missouri

Grand Chain Dam 53, 
Illinois

Williams Junction, 
Arkansas Batesville, Mississippi Alexandria, Louisiana Natchez, Mississippi

Land use Forest decidous Forest decidous Forest evegreen Forest decidous Forest evergreen Forest decidous

Period of record 1918–2018 (101 years) 1901–2018 (118 years) 1900–2018 (119 years) 1900–2016 (117 years) 1900–2018 (119 years) 1901–2017 (117 years)

Mean (mm) 3.94 0.13 3.37 3.66 3.98 3.12

Standard error (mm) 0.06 0.00 0.05 0.05 0.06 0.05

Standard deviation 
(mm) 11.99 0.91 9.96 10.80 12.20 9.20

Sample variance 143.82 0.82 99.29 116.55 148.81 84.62

Kurtosis 48.54 238.94 52.58 40.18 48.72 40.36

Skewness 5.61 12.48 5.63 5.12 5.63 5.23

Maximum (mm) 266.70 38.35 224.00 224.79 254.00 161.00
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Figure 2.  Relationship of precipitation intensity and average recurrence interval at 24- and 72-h durations 
for the six weather stations used in this study. The probability of precipitation intensity occurred at a given 
recurrence interval is also shown.
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Figure 3 shows that there were significant (p ≤ 0.05) increasing trends in annual precipitation for three (i.e., 
USC00226177 in Mississippi; USC00160098 in Louisiana; and USC00035691 in Arkansas) out of six weather 
stations. The first two stations are located in south LMRAV, which are close to the Gulf of Mexico and the last 
station is situated in the west center of the LMRAV (Fig. 1). The increasing trends were in the following order: 
USC00160098 (SS = 1.627) > USC00226177 (SS = 1.625) > USC00035691 (SS = 1.364) based on Sen’s slope. These 
trends had about two-unit deviations above the means as indicated by their z scores. In contrast, no significant 
trends were observed for the two stations (i.e., USC00113580 in Illinois and USC00238700 in Missouri) located 
in north (inland) LMRAV and the one station (i.e., USC00220488 in Mississippi) located in east center of the 
LMRAV (Figs. 1, 3) although they all had the increasing trends (i.e., the positive τ values).

Figure 3.  Annual precipitation for the six weather stations with Mann Kendall test results. The smoothing line 
is drawn using the Local Weighted Scatterplot Smoothing (LOWESS) function. Note that the y-axis scales are 
different for each sub-plot.
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Decadal wet days. Annual mean wet days in decadal scale over the past 100 or more years for the six 
weather stations are shown in Fig. 4. In this study, a day that has any precipitation was considered as a wet 
day, and the mean wet days in every decade were obtained using the HYDSTATR (rainfall statistical summary 
report) function from the HYDSTRA model (Kisters Inc.). Analogous to the case of the total amount of precipi-
tation, there were significant (p ≤ 0.05) increasing trends in annual mean wet days at decadal scale for two (i.e., 
USC00226177 in Mississippi and USC00160098 in Louisiana) out of six weather stations (Fig. 4). The annual 
mean wet days were 79 and 75.5 d/y from 1901 to 1910 but were 86 and 96 d/y from 2001–2010, respectively, for 
USC00160098 and USC00226177, actualizing 8 and 27% increase after 100 years. Based on the Sen’s slopes, the 
rate of the increasing trend of USC00226177 (SS = 1.717) was greater than that of USC00160098 (SS = 0.686). No 
significant trends in annual mean wet days were observed for the other four stations located in the center and 
north of the LMRAV (Fig. 4) although stations in the center had the decreasing trends while the stations in the 
north had the increasing trends.

Decadal seasonality. Changes in total amounts of decadal spring and fall seasonal precipitations over the 
past 100 or more years for the six stations are shown in Figs. 5 and 6. There were very significant (p < 0.048) 
increasing trends with a profound rate (SS > 60) in total amounts of decadal spring precipitation for Stations 
USC00113580 and USC00238700, which are located in north LMRAV (Fig. 5). However, there were no signifi-
cant trends in total amounts of decadal spring precipitation for the other four stations located at the center and 
south of the LMRAV (Fig. 5).

An opposite was true for the total amounts of decadal fall seasonal precipitations over the past 100 or more 
years. That is, there were significant (p < 0.013) and profound (SS > 120) increasing trends in total amounts of 
decadal fall seasonal precipitation for USC00226177 and USC00160098, which are close to the south coastal 
area of the LMRAV (Fig. 6). Additionally, there was one station (i.e., USC00220488) in the east center of the 
LMRAV with a strong (SS = 112) and significant (p < 0.03) increasing trend in total amount of decadal fall sea-
sonal precipitation.

Table 2 reveals that there were two stations (USC00238700 and USC00035691) with the significant (p ≤ 0.016) 
and strong (SS > 79) increasing trends in total amounts of decadal winter precipitations over the past 100 years. 
The rate of the increasing trend of the USC00238700 (SS = 79.243 and located at the north LMRAV) was about 

Table 2.  Mann Kendall statistics of the annual and decadal seasonal precipitations as well as the annual wet 
days for the NOAA weather stations used in this study.

Parameter

USC00238700 in 
Wappapello Dam, 
Missouri

USC00113580 in 
Grand Chain Dam 53, 
Illinois

USC00035691 in 
Williams Junction, 
Arkansas

USC00220488 in 
Batesville, Mississippi

USC00160098 in 
Alexandria, Louisiana

USC00226177 in 
Natchez, Mississippi

Annual precipitation

Kendall’s τ 0.108 0.107 0.125 0.013 0.129 0.144

Sen’s slope 1.428 0.992 1.364 0.154 1.627 1.625

p value 0.115 0.087 0.047 0.841 0.040 0.022

z score − 0.118 1.712 1.989 0.201 2.057 2.297

Decadal seasonal precipitation

Kendall’s τ (Spring) 0.556 0.556 − 0.152 − 0.091 − 0.236 0.055

Sen’s slope (Spring) 62.075 66.403 − 19.750 − 8.250 − 61.686 19.685

p value (spring) 0.048 0.013 0.537 0.756 0.350 0.876

z score (Spring) 1.981 2.491 − 0.617 − 0.311 − 0.934 0.156

Kendall’s τ (Summer) − 0.278 − 0.200 0.000 − 0.121 0.091 − 0.127

Sen’s slope (Summer) − 37.667 − 11.853 − 2.823 − 27.070 10.160 − 38.735

p value (Summer) 0.348 0.436 1.000 0.631 0.756 0.640

z score (Summer) − 0.938 − 0.779 0.000 − 0.480 0.311 2.647

Kendall’s τ (Fall) 0.333 0.200 0.212 0.527 0.600 0.636

Sen’s slope (Fall) 54.017 42.545 58.833 112.333 128.693 148.449

p value (Fall) 0.252 0.436 0.373 0.029 0.013 0.008

z score (Fall) 1.147 0.779 0.891 2.180 2.491 2.647

Kendall’s τ (Winter) 0.667 0.127 0.587 − 0.236 0.127 0.127

Sen’s slope (Winter) 79.243 15.240 190.000 − 2.083 25.400 30.480

p value (Winter) 0.016 0.640 0.015 0.350 0.640 0.640

z score (Winter) 2.398 0.467 2.421 − 0.934 0.467 0.467

Annual wet day

Kendall’s τ 0.333 0.260 − 0.215 − 0.236 0.443 0.636

Sen’s slope 5.310 5.292 − 0.450 − 2.083 0.686 1.717

p value 0.592 0.271 0.370 0.350 0.050 0.005

z score 1.100 1.100 − 0.896 − 0.934 1.925 2.812
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one half of that of USC00035691 (SS = 190 and located at the west central LMRAV). Additionally, there was a 
decreasing trend in total amounts of decadal summer precipitation from four out of the six stations (Table 2) 
although this trend was not statistically significant.

Linking precipitation trend to AMO. Comparisons of the annual precipitation trends from the three 
weather stations for each individual AMO cycle are shown in Fig. 7. The AMO is an index of the climate cycle 
that affects the sea surface temperature of the North Atlantic Ocean based on different modes on multi-decadal 

Figure 4.  Annual mean wet days in decadal scale for the six weather stations with Mann. Kendall test results. 
The smoothing line is drawn using the Local Weighted Scatterplot Smoothing (LOWESS) function. Note that 
the y-axis scales are different for each sub-plot.
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Figure 5.  Amount of decadal precipitation in spring season for the six weather stations with Mann Kendall test 
results. The smoothing line is drawn using the Local Weighted Scatterplot Smoothing (LOWESS) function. Note 
that the y-axis scales may be different for each sub-plot.
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Figure 6.  Amount of decadal precipitation in fall season for the six weather stations with Mann Kendall test 
results. The smoothing line is drawn using the Local Weighted Scatterplot Smoothing (LOWESS) function. Note 
that the y-axis scales may be different for each sub-plot.
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timescales. The negative AMO index is for a cooling cycle and the positive one is for a warming  cycle12. The four 
AMO cycles used in this study were 1902 to 1925 (cooling cycle), 1926 to 1962 (warming cycle), 1963 to 1996 

Figure 7.  Annual precipitation trends for weather stations at Illinois (b), Arkansas (c), and Mississippi (d) in 
response to four Atlantic Multi-decadal Oscillation (AMO) cycles (a) from 1902 to 2017.
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(cooling cycle), and 1997 to 2017 (warming cycle) (Fig. 7a). The three weather stations shown in the figure were 
USC00113580, USC00035691 and USC00226177, which are, respectively, located in the north, center, and south 
of the LMRAV (Fig. 1). There was no significant (p ≤ 0.05) precipitation trends for the three weather stations 
among the four individual AMO cycles (Fig. 7b, d). Our further analysis revealed that for the other three study 
sites, there was only one site (USC00238700 in Wappapello Dam, Missouri) at Cycle 3 from 1963 to 1996 with a 
significant increasing trend (p = 0.036, τ = 0.256, z = 2.094, and SS = 7.500 as shown in Table 3).

Mann Kendall’s statistics of the annual precipitation trend analysis for the two consecutive AMO cycles (i.e., 
Cycles 1–2, Cycles 2–3, and Cycles 3–4), two warming AMO cycles, and two cooling AMO cycles are given in 
Table 3. The precipitation data of the two warming cycles (or the two cooling cycles) were obtained by simply 

Table 3.  Mann Kendall statistics of the annual precipitations for individual, two-consecutive, two cooling, and 
two warming AMO cycles for the six NOAA weather stations.

Parameter

USC00238700 in 
Wappapello Dam, 
Missouri

USC00113580 in 
Grand Chain Dam 53, 
Illinois

USC00035691 in 
Williams Junction, 
Arkansas

USC00220488 in 
Batesville, Mississippi

USC00160098 in 
Alexandria, Louisiana

USC00226177 in 
Natchez, Mississippi

Individual cycle

Kendall’s τ (Cycle 1) − 0.071 − 0.098 − 0.168 0.107 0.192 0.022

Sen’s slope (Cycle 1) − 8.000 − 2.646 − 7.500 5.227 8.745 1.149

p value (Cycle 1) 0.902 0.519 0.264 0.469 0.197 0.901

z-score (Cycle 1) − 0.124 − 0.645 − 1.118 0.724 1.290 0.124

Kendall’s τ (Cycle 2) − 0.012 − 0.078 0.123 0.092 − 0.146 − 0.077

Sen’s slope (Cycle 2) − 0.292 − 2.699 2.354 3.122 − 6.259 − 2.388

p value (Cycle 2) 0.927 0.505 0.295 0.432 0.209 0.513

z-score (Cycle 2) − 0.092 − 0.667 1.047 0.785 − 1.256 − 0.654

Kendall’s τ (Cycle 3) 0.256 0.066 0.072 − 0.038 0.225 0.102

Sen’s slope (Cycle 3) 7.500 2.794 2.308 − 1.429 8.843 4.354

p value (Cycle 3) 0.036 0.594 0.563 0.767 0.064 0.406

z-score (Cycle 3) 2.094 0.534 0.579 − 0.297 1.854 0.830

Kendall’s τ (Cycle 4) − 0.138 − 0.138 0.119 − 0.236 0.124 0.048

Sen’s slope (Cycle 4) − 5.482 − 0.138 8.917 − 18.333 6.097 2.128

p value (Cycle 4) 0.398 0.398 0.468 0.172 0.450 0.786

z-score (Cycle 4) − 0.846 − 0.846 0.725 − 1.367 0.755 0.272

Two consecutive cycles

Kendall’s τ (Cycles 1–2) 0.019 0.110 0.078 0.118 − 0.004 − 0.036

Sen’s slope (Cycles 1–2) 0.436 2.333 1.667 2.333 − 0.045 − 0.698

p value (Cycles 1–2) 0.860 0.256 0.383 0.179 0.970 0.690

z-score (Cycles 1–2) 0.176 1.137 0.872 1.343 − 0.037 − 0.398

Kendall’s τ (Cycles 2–3) 0.130 − 0.007 0.124 0.061 0.134 0.146

Sen’s slope (Cycles 2–3) 2.647 − 0.231 1.667 1.429 2.842 2.629

p value (Cycles 2–3) 0.111 0.937 0.131 0.456 0.099 0.072

z-score (Cycles 2–3) 1.594 − 0.079 1.509 0.745 1.648 1.797

Kendall’s τ (Cycles 3–4) 0.189 0.078 0.029 − 0.038 0.083 0.036

Sen’s slope (Cycles 3–4) 4.384 1.746 0.645 − 1.429 0.376 1.139

p value (Cycles 3–4) 0.043 0.404 0.760 0.767 2.275 0.700

z-score (Cycles 3–4) 2.019 0.835 0.305 − 0.297 0.886 0.385

Two warming cycles

Kendall’s τ (Warming 
cycles) 0.131 − 0.098 0.094 0.116 0.038 0.104

Sen’s slope (Warming 
cycles) 3.261 − 2.646 1.667 2.632 0.794 2.302

p value (Warming 
cycles) 0.149 0.519 0.304 0.198 0.677 0.254

z-score (Warming 
cycles) 1.443 − 0.645 1.027 1.289 0.416 1.141

Two cooling cycles

Kendall’s τ (Cooling 
cycles) 0.255 − 0.098 0.116 0.116 0.247 0.159

Sen’s slope (Cooling 
cycles) 5.692 − 2.646 2.857 0.198 6.201 3.387

p value (Cooling cycles) 0.019 0.519 0.202 0.198 0.006 0.080

z-score (Cooling cycles) 2.344 − 0.645 1.275 1.289 2.724 1.751
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added the time series annual precipitation data of the two cycles together. Table 3 shows that there was only one 
station (USC00238700) that had a significant (p = 0.043) increasing trend in the two consecutive Cycles 3–4 from 
1963–2017, whereas there were two stations that had the very significant increasing precipitation trends (p = 0.019 
for USC00238700 and p = 0.006 USC00160098) for the two cooling cycles combined (Table 3).

Plots of the AMO index against the precipitation anomaly over the century-long period (approximately 1900 
to 2018) used in this study for all of the six stations are shown in Fig. 8. The annual precipitation anomaly was the 
deviation of each annual precipitation from its annual average precipitation over the century-long period. Fig-
ure 8 reveals that no correlations existed between the AMO index and the precipitation anomaly for all stations.

Discussion
Results showed that a distinct spatial pattern of annual precipitation trends among the six stations in the forest 
lands from the south to north of the LMRAV over the past 100 or more years. More specifically, the forest lands 
close to the coastal area of the LMRAV had a significant increasing annual precipitation trend. This increasing 
trend became partially significant, i.e., significant in west central but not in east central LMRAV. Finally, the 
increasing trend was not significant in the north inland of the LMRAV. Recently, Abiy et al.33 investigated the 
rainfall trend and variability from 1906 to 2016 in the coastal area of Southeast Florida. These authors cited that 
the total wet season as well as the mean annual and total annual rainfalls have the increasing trends, supporting 
our findings. The coastal area of Southeast Florida and our coastal study sites are both within the Gulf of Mexico. 

Figure 8.  Correlations of the AMO index and the annual precipitation anomaly for all of the six study sites over 
the century-long period approximately from 1900 to 2017. The annual precipitation anomaly is the deviation of 
each annual precipitation from its annual average precipitation over the century-long period.
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Although our attempts to search literature reports on the similar studies at the center and north of Southeast US 
were not successful, we found a similar study from  Asia34. Hamada et al.34 estimated the differences of rainfall 
characteristics between coastal and interior areas in central western Sumatra, Indonesia. These authors found that 
annual rainfall is generally abundant in the coastal region and sparser in the inland region, which is consistent 
with our findings. Although the exact reasons for this phenomenon remain to be investigated, a possible expla-
nation would be that ocean is the largest contributor to atmospheric moisture and precipitation. Coastal areas 
receive more precipitation because there is much more evaporation from the oceans, which occurred due to the 
increase in air temperature as climate change. An increase in tropical cyclone intensity has also been observed, 
leading to an upward trend in North Atlantic hurricane activity since the  1970s35. As a result, the coastal areas 
had more rains than the inland areas within the LMRAV.

Analogous to the case of the annual precipitation trend, the number of the annual mean wet days in decadal 
scale had a similar temporal variability across space: a significant increasing trend near the coastal area of the 
LMRAV. It is apparent that the forest lands in the coastal area have become wetter as time elapsed over the past 
100 plus years due to the same reasons as stated in the previous paragraph.

The significant increasing trends in decadal spring precipitation at the north inland of the LMRAV, in decadal 
fall precipitation near the coastal area of the LMRAV, and in decadal winter precipitation at the west-center and 
north-west area of the LMRAV over the past 100 years demonstrated the tempo-spatial seasonality of precipita-
tion in the forest lands. Feng et al.36 reported the mean rainfall trend in the mesoscale convective system increases 
during spring in central USA. This finding is consistent with our result as the north inland of the LMRAV is 
located in central USA. However, the exact reasons for the increasing trends in different seasons at different 
locations remain to be investigated.

In spite of no statistically significant decreasing trends of precipitation in decadal summer season, four out 
of the six stations had negative τ and SS values, indicating a decreasing trend in decadal summer precipitation. 
Dyer and  Mercer4 reported that rainfall amount is generally lower in warm season than in cool season at the 
LMRAV. Other researchers also predicted that the LMRAV will likely experience a general decrease in warm 
season precipitation over the coming  decades3,37,38. A large portion of agricultural lands in the LMRAV relies on 
irrigation with groundwater resources for enhancing crop yields. Therefore, knowledge of the seasonal variations 
of precipitation in the LMRAV is crucial to water resources management and irrigation strategy development. 
Our findings of a wetter fall season in the coastal area and a potentially drier summer in the LMRAV over the 
past 100 years provide useful information to farmers and water resource managers for adapting climate change 
impacts.

High precipitation intensities were larger with shorter returning period and more frequent probability in 
the coastal area than in the inland of the LMRAV. This occurred because the sea surface temperature increased 
as climate change. The warmer temperature generated more water vapors from the ocean into the local atmos-
phere and increased the precipitation  rate35. Therefore, the coastal area was more vulnerable to climate change 
in terms of precipitation.

Mixed impacts of the AMO cycles on annual precipitation trends were observed in the LMRAV. While most 
of such impacts were statistically not significant, there was one study site (USC00238700 in Wappapello Dam, 
Missouri) at the individual Cycle 3 (a cooling cycle from 1963 to 1996) with a very significant increasing annual 
precipitation trend. Oglesby et al.39 estimated the role of the AMO on medieval drought in North America. These 
authors argued that the AMO regulates the large-scale circulation to transport more precipitation during the cool-
ing cycle and less precipitation during the warming cycle over the central and western U.S. They also cautioned 
that other factors such as El Niño-Southern Oscillation, Pacific Decadal Oscillation, local surface-atmosphere 
interactions, and soil moisture are also important in modulating precipitation. Our USC00238700 study site is 
located near the central U.S and therefore had an increasing precipitation trend during the cooling cycle. The 
other study sites that did not have significant precipitation trends for the individual cycles could occur due to the 
combined effects of AMO and other factors. Further study is therefore warranted to tackle on this issue in the 
LMRAV. Over the century-long period, the changes in AMO had no significant impacts on precipitation trends in 
the LMRAV since no correlations existed between the AMO index and the precipitation anomaly for all stations.

What is worth mentioning was the very significant increasing precipitation trends for the two stations 
(USC00160098 in Alexandria, LA and USC00226177 in Natchez, MS) near the coastal area of Gulf of Mexico 
when the two cooling cycles (from 1902 to 1925 and from 1963 to 1996) were combined. Results indicated that 
climate change affected the annual precipitation trends in the coastal area of the LMRAV during the cooling 
AMO cycles. This finding was consistent with those reported that the AMO transports more precipitations dur-
ing the cooling  cycle39.

Methods
Six National Oceanic and Atmospheric Administration (NOAA) weather stations, namely the USC00238700 in 
Missouri, USC00113580 in Illinois, USC00035691 in Arkansas, USC00220488 in Mississippi, USC00160098 in 
Louisiana, and USC00226177 in Mississippi, were selected in this study (Fig. 1). They are located near the head-
water areas of forest lands in the LMRAV. These weather stations were selected because they have continuous 100 
or more years’ records of precipitation data. The daily precipitation data from the six stations were downloaded 
from the NOAAA website (https:// www. ncdc. noaa. gov/ cdo- web/ datas ets# GHCND). All of the stations except 
for USC00035691 have more than 100 years precipitation data from the NOAA website. For the USC00035691 
station, the US-EPA BASINS Meterological Database was used to fill the data gaps from 1900 to 1964. Table 1 lists 
the station names, land uses, locations, and periods of precipitation records for the six selected weather stations.

The seasonal, annual, decadal, and AMO cyclic trends of precipitation for the six weather stations were 
assessed using Mann-Kendall trend analysis in R Statistics Platform (https:// www.r- proje ct. org), whereas the 

https://www.ncdc.noaa.gov/cdo-web/datasets#GHCND
https://www.r-project.org
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precipitation intensities with returning periods at given durations and time separations as well as the annual 
mean wet day frequency for every decade were analyzed using the commercially available HYDSTRA model 
(Kisters Inc.). The spring is from March to May, summer from June to August, fall from September to November, 
and winter from December to February.

The HYDSTRA Model (Version 12, Kisters Inc.) is a commercial software used to analyze time series data 
for climate, hydrology, and water quality. In this study, the HYSTATR function from the HYDSTRA Model was 
employed to analyze a variety of statistical parameters such as mean annual and maximum daily precipitation 
and mean wet day frequency that are related to a selected period of record of a precipitation site. The HYIFD 
function from the HYDSTRA model was utilized to scan precipitation data, extract a series of events for up to 
ten separate durations. An event is a precipitation intensity over a given duration and separation. The duration 
defines how long the precipitation intensity lasts, whereas the separation specifies a period of time that must 
elapse between the end of one event and the beginning of the next in order for them to be considered independ-
ent. A Log-Pearson type III analysis from the HYIFD function was then performed on these events to generate a 
set of average recurrent interval (e.g., time interval in years). The Log-Pearson Type III distribution is a statistical 
technique for fitting frequency distribution of time series data and is calculated using the general  equation40 
(https:// strea mflow. engr. orego nstate. edu/ analy sis/ flood freq/# log):

where x is the precipitation of some specified probability, log x is the average of the log x precipitation values, k 
is a frequency factor, and σ is the standard deviation of the log x values. In this study, the analysis was performed 
at annual scale with 24- and 72-h durations at a separation period of 24 h.

The Atlantic Multi-decadal Oscillation (AMO) cycles were used to relate the precipitation patterns in this 
study. AMO is an index of the climate cycle that affects the sea surface temperature of the North Atlantic Ocean 
based on different modes on multi-decadal timescales. The AMO index values were downloaded from https:// 
www. esrl. noaa. gov/ psd/ data/ times eries/ AMO/.

The Mann-Kendall trend analysis is a nonparametric trend test. The test does not require normally distrib-
uted data and is well suited for analyzing environmental, climate, and hydrological  data40. The null hypothesis 
 (Ho) is that there is no trend, while the alternative hypothesis  (Ha) is that there is a trend. The test first ranks all 
observations by date (or time) order. Then the difference between each successive value is calculated, and the 
sum of the signs of those differences is evaluated as the Kendall sum statistic. The Mann-Kendall test statistic 
is calculated  as40–42:

with

The mean of S is zero and the variance is

where m is the number of the tied groups in the data set and  tj is the number of data points in the jth tied group. 
The Kendall’s S statistic is approximately normal distributed if the following Z-transformation is valid:

The statistic S is closely related to Kendall’s τ as:

with

The Mann Kendall trend analysis is implemented with Kendall’s package in R-Statistics31.
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