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Detection of genomic regions 
associated with tiller number 
in iranian bread wheat 
under different water regimes 
using genome‑wide association 
study
Sayedeh Saba Bilgrami1,2, Hadi Darzi Ramandi3, Vahid Shariati1*, Khadijeh Razavi1*, 
Elahe Tavakol4, Barat Ali Fakheri5, Nafiseh Mahdi Nezhad5 & Mostafa Ghaderian6

Two of the important traits for wheat yield are tiller and fertile tiller number, both of which have been 
thought to increase cereal yield in favorable and unfavorable environments. A total of 6,349 single 
nucleotide polymorphism (SNP) markers from the 15 K wheat Infinium array were employed for 
genome-wide association study (GWAS) of tillering number traits, generating a physical distance of 
14,041.6 Mb based on the IWGSC wheat genome sequence. GWAS analysis using Fixed and random 
model Circulating Probability Unification (FarmCPU) identified a total of 47 significant marker-trait 
associations (MTAs) for total tiller number (TTN) and fertile tiller number (FTN) in Iranian bread wheat 
under different water regimes. After applying a 5% false discovery rate (FDR) threshold, a total of 13 
and 11 MTAs distributed on 10 chromosomes were found to be significantly associated with TTN and 
FTN, respectively. Linked single nucleotide polymorphisms for IWB39005 (2A) and IWB44377 (7A) 
were highly significantly associated (FDR < 0.01) with TTN and FTN traits. Moreover, to validate GWAS 
results, meta-analysis was performed and 30 meta-QTL regions were identified on 11 chromosomes. 
The integration of GWAS and meta-QTLs revealed that tillering trait in wheat is a complex trait which 
is conditioned by the combined effects of minor changes in multiple genes. The information provided 
by this study can enrich the currently available candidate genes and genetic resources pools, offering 
evidence for subsequent analysis of genetic adaptation of wheat to different climatic conditions of Iran 
and other countries.

Bread wheat (Triticum aestivum L., genomes AABBDD, 2n = 6x = 42), is a major cereal crop, supplying 20% of 
the total energy and protein of the world’s  diet1. Its production and productivity, especially in arid and semiarid 
regions such as Iran, are considerably constrained by extreme drought and heat stresses. Breeding for grain yield 
is the final step to produce stress-tolerant crop plants, since grain yield is a complex trait with low heritability, 
which is controlled by multiple genes and is affected by a lot of environmental factors, other traits such as yield 
components can be employed to overcome the limitations. Tillering is a crucial factor for wheat yield because of 
its involvement in grain weight and grain number determination. Moreover, it is a determinant of grain yield, 
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since the tiller number is key in regulating competition between the tillers and the main shoot for assimilating 
 supply2,3. The plant architecture and its tillering system impact many factors, including the light-harvesting and 
yield potential of the plant, the flowering and grain set, and last but not the least, the plant’s reproductive success. 
Therefore, genetic elucidation of tiller numbers at various stages of plant growth has become a major focus of 
wheat breeding research  programs4.

Tiller number is inherited quantitatively in most cases and is affected by soil fertility and environmental 
factors, especially temperature and day length. Although four single genes (tin1, tin2, tin3, ftin) responsible for 
tiller inhibition are mapped on the wheat chromosomes 1A, 2A and  3A5,6, since this fundamentally principal 
trait is polygenic, most of the underlying variation for tillering was found to be controlled by quantitative trait 
loci (QTL)7,8. Recently, QTL mapping and genome-wide association studies (GWAS) have become two key 
approaches to understanding the genetic bases and dissection of complex genes and controlling important fea-
tures such as tillering traits. In spite of the success of QTL mapping in detecting QTL, the genetic variation of the 
population has been so far limited only to the genomes of the parents. Additionally, the genetic markers for the 
identified QTL can not necessarily be transferred to other populations. Such transferability would be desirable, 
given that genome-wide association study is a high-resolution and cost-effective method that depends on high-
density marker and trait associations, employing genetically varied populations like landraces, elite breeding 
lines, and cultivars to elucidate the genetic architecture of agronomic  traits9.

In addition to the benefits of GWAS to QTL mapping, the meta-analysis as a statistical technique was devel-
oped to combine consensus loci from many individual QTL studies for any number of traits into a single dataset 
to identify most likely position and confidence interval (CI) of QTL  regions10. This method has been used to 
determine consensus regions of the genome across multiple QTL studies for their effects and consistency across 
different genetic backgrounds and environments, also to refine and confirm QTL positions on a consensus map 
via mathematical models. Reducing the CI of the MQTLs in comparison with QTLs is another indispensable 
perks of MQTL  analysis11–15. More recently, a number of studies have applied the QTL meta-analysis method to 
different traits in wheat, including root morphological  traits13,16, grain  traits11, fusarium head blight  resistance14,17, 
adaptation to drought and heat  stress18 and leaf rust  resistance19.

In the past, wheat improvement has been based on selections from landraces, followed by crossing between 
landraces, introducing varieties, and finally crossing between elite  varieties20. Iranian bread wheat landraces pos-
sess rich genetic diversity, with a large number of rare alleles or potentially new alleles so that they can display 
high levels of resistance to many different abiotic stresses such as drought. However, most Iranian germplasm 
genotypes have not yet been characterized or utilized in modern plant  breeding21. Hence, the examination of 
genetic variations and the distinction among Iranian wheat landraces and cultivars will be of great value. Not 
only may it identify new sources of resistance to drought and other stressors, but it may increase the biodiversity 
of the materials available for wheat breeding. Moreover, novel alleles will be identified that may be of value for 
Iranian wheat geneticists and breeders.

While some GWAS studies have used SNPs to examine the association of some traits in wheat under water-
limited conditions, to the best of our knowledge, no GWAS study identifying the association of different agro-
nomic traits in Iranian wheat under drought stress has been reported. Therefore, the objective of the present 
study, using 15 K SNP array markers, is to identify the structure of population and genome-wide marker-trait 
associations of Iranian wheat total tiller number (TTN) and fertile tiller number (FTN) under different water 
regimes, and environmets with breeding system design such as drought-tolerance improvement. In this regard, we 
used a multi locus GWAS model named fixed and random model circulating probability unification (FarmCPU) 
method as a new and more efficient recently developed  method22,23. Furthermore, to confirm and strengthen 
the results of MTAs, QTL meta-analysis was conducted to identify wheat genome regions that are consistently 
associated with tiller traits.

Results
Statistical description of phenotypic data.  A combined analysis of variance (ANOVA) was performed 
and descriptive statistics including the min, max and mean of the tiller number traits were estimated (Supple-
mentary Tables S1 and S2). ANOVA revealed significant differences for both genotype (G) and location (L). A 
significant difference was observed between the two irrigation regimes (S) in terms of tiller traits in three loca-
tions or in fact environments (Shahed university field for two years and NIGEB field for one year) and in their 
interaction. The effects of G × S, G × L, and G × S × L were not significant for total tiller number and fertile tiller 
number (Supplementary Table S2). Also, the data for the two irrigation regimes in all three locations, (sum-
marized in Supplementary Fig. S1 and Supplementary Table S1) were separately analyzed to generate BLUEs of 
genotype performance within each environment, for use in the subsequent analysis. Heritability of 48 and 43% 
was estimated for TTN and FTN, respectively, under all conditions (Supplementary Table S2). These traits were 
estimated to have moderate heritability (20% < h2 < 50%).

The means of TTN across 24 wheat landraces plus 70 wheat cultivars in the six environments ranged from 
6.11 in NIGEB drought condition in 2015 to 15.77 in the normal environment in research field at the Shahed 
university in 2014 (Supplementary Table S1). BLUEs across all normal irrigation conditions ranged from 8.45 
for Hirmand cultivar to 15.49 for Ebrahim Abad Arak landrace with a mean value of 11.16. BLUEs across all 
drought conditions ranged from 7.67 for the Mihan cultivar to 14.08 for the Ebrahim Abad Arak landrace, with 
a mean value of 10.54. The BLUEs across all the six environments ranged from 8.26 for the Mihan cultivar to 
14.85 for the Ebrahim Abad Arak landrace, with a mean value of 10.86.

For FTN, means in the six field environments ranged from 4.22 in the NIGEB drought condition to 12.83 in 
the normal condition at the Shahed farm during 2013 to 2014 (Supplementary Table S1). The mean value of the 
best linear unbiased estimations was 8.89 and ranged across all normal irrigation conditions from 6.66 for the 
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Hirmand variety to 12.99 for the Khoram Abad landrace. Moreover, the mean values for the all drought condi-
tions ranged from 6.15 for the Mihan variety to 11.24 for the Ebrahim Abad Arak landrace, with a mean value 
of 8.16. BLUEs across all six environments ranged from 6.74 for the Pishgam cultivar to 11.96 for the Ebrahim 
Abad Arak genotype, with a mean value of 8.53. The correlations between total tiller number and fertile tiller 
number, and between grain yield and phenological charecters (BLUEs values) are shown in Supplementary 
Fig. S2. TTN and FTN had significant positive correlations ranging more than 0.8 in the normal, drought and 
all environments. There were significant and positive correlations between total tiller number and phenological 
traits, including days to heading (0.22*), days to flowering (0.23*), days to maturity (0.26*) in normal and all 
environments and also between TTN and days to maturity (0.21*) in drought condition (Supplementary Fig. S2). 
The FTN character showed insignificant correlations with the phenological characters. Furthermore, between 
FTN and grain yield (0.21*) there was significant correlation in normal condition.

Analysis of SNP markers.  Out of the 13,006 SNPs in the Illumina iSelect 15 K SNP assay, a total of 10,054 
SNPs were polymorphic among the 92 wheat genotypes. Eliminating the markers with minor allele frequencies 
(MAF < 0.1), the dataset was narrowed to 6,349 SNPs mapped to 21 wheat chromosomes; this dataset was later 
used for GWAS analysis. The analysis detected 12,698 alleles (two alleles per SNP locus). About 60% of the SNPs 
(those with MAFs > 0.20), were then chosen as normal allele frequency markers, while 8% of SNPs displayed 
approximately equal allele frequencies (MAFs ~ 0.1). The physical positions of 6,349 SNP were determined based 
on the Chinese Spring reference assembly IWGSC RefSeqv1.0 (https ://urgi.versa illes .inra.fr/). Estimated PIC 
values and overall SNP diversities, for these 6,349 SNP markers ranged from 0.263 to 0.321 with an average of 
0.306, where; the PIC values for about 70% exceeded 0.20. Among the 21 chromosomes, chromosome 2B had 
the maximum number of markers (n = 599), followed by chromosome 5B (n = 491), while chromosome 4D had 
the fewest loci (n = 23), among sub-genomes of A, B, and D. The B sub-genome carried the most loci (n = 2,944), 
followed by A sub-genome (n = 2,351), and the D sub-genome (n = 1,054).

Population structure.  Delta K (ΔK) values were determined using STRU CTU RE to investigate the genetic 
diversity and population structure of the Iranian wheat panel and to classify the subgroups (K). The value of ΔK 
was plotted against the number of presumptive subgroups K, with the highest ΔK observed when K = 2 (Fig. 1a), 
indicating the existence of two subgroups in the genotype panel used in this study. Group I (designated as ‘lan-
drace group’) contains 23 genotypes with 18 landraces and 5 cultivars; Group II (designated as ‘cultivar group’) 
consists of 48 cultivars, (Fig.  1c). Most cultivars that mixed with the landrace group—such as Bam, Azadi, 
Sistan, Shiraz, Homa, Ohadi, Karaj, and Golestan- had been originally chosen from Iranian landraces through 
permanent selection and purification during the breeding process (Supplementary Table S3). To examine the 
population structure of the wheat genotypes, a PCoA was carried out, with the first two principal coordinates 
explaining 19 and 6% of the total variability, respectively (Fig. 1b). The results of the analysis depicted two main 
sub-populations; the landraces genotypes (G2) were clearly separated from wheat cultivars (G1), while some 
cultivars were located in an intermediate group (G3).

Marker-trait association analysis.  In line with Kaler et al.23, The fixed and random model circulating 
probability unification (FarmCPU) provides a robust model for association mapping of complex traits in plants 
which can controls both false positives and false negatives and consistently identify a single significant SNP clos-
est to these known published genes. Both computer simulation and real data analyses demonstrated that Farm-
CPU is the highly efficient method to reduce confounding issues arising due to kinship, population structure, 
multiple testing correction than MLM, stepwise regression, etc. Therefore, FarmCPU approch were used in this 
study to determine the marker-trait associations controlling TTN and FTN under both normal and stress condi-
tions along with all environments using the best linear unbiased estimator (BLUEs) values calculated across the 
three locations of the experiment. Piepho et al.24 previously discovered that MTAs are more stable if BLUEs data 
are used in the absence of environmental effects.

Significant MTAs (− log10 (p-value) ≥ 3.0) were identified for the traits in the three environments examined. 
All chromosomes carried the MTAs, except for chromosomes 3A, 3D, 4A, 4D and 5B. Of all significant SNPs, 
in the three environments examined, 25 and 22 were significantly associated with total tiller number and fertile 
tiller number, respectively, and among these, two SNPs were significantly associated with both traits (Supple-
mentary Table S4). When FDR-correction was applied for multiple testing (p-value = 0.05), 24 MTAs remained 
significant for SNP markers (FDR ≤ 0.05) for both traits in the three environments (Table 1). The Manhattan 
and QQ plots are also, shown in Fig. 2. The efect of SNPs involved in individual MTAs ranged from − 0.36 to 
0.85 for TTN-ALL, − 0.17 to 0.16 for TTN-N, − 0.29 to 0.34 for TTN-S, − 0.69 to 0.67 for FTN-ALL, − 1.22 to 
0.76 for FTN-N (Table1). For TTN and FTN, more than one SNPs were found to be associated under both 
normal and stress conditions as well as all environments, i.e., IWA5084, IWA4483 in FTN-ALL and FTN-N; 
IWB44155 in TTN-ALL, TTN-N and TTN-S; IWB44377, in TTN-ALL, TTN-N and FTN-ALL; IWB39005 in 
FTN-ALL, FTN-N and TTN-N. No significant MTAs for FTN in the drought-stress condition were detected at 
FDR threshold (Supplementary Table S4).

SNPs associated with two phenotypic traits; TTN (Fig. 3) and FTN (Fig. 4) were used to show the allelic 
effects on the BLUEs values. Eight high significant SNPs on chromosome 1A, 2A, and 7A associated with TTN 
and FTN were assessed for their allelic effects on the BLUEs values. Among these SNPs, only IWB44377 on 
chromosome 7A at position 33,364,868 bp was associated with TTN and FTN. Three significant SNPs; IWB9024 
(2A: 747,144,155 bp), IWB55568 (2D: 641,963,416 bp) and IWB44155 (7A: 323,740,318 bp) were only associated 
with TTN, while for FTN four significant SNPs, IWB5084 (1A: 369,697,871 bp), IWB39005 (2A: 36,632,023 bp), 
IWB36728 (2A: 500,529,738 bp) and IWA4483 (7A: 692,340,211 bp).

https://urgi.versailles.inra.fr/
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QTL distribution and over-view index.  The reported QTLs on ten chromosomes (1A, 2A, 2B, 2D, 5D, 
6A, 6B, 6D, 7A, and 7D) for total tiller number and fertile tiller number in wheat were collected from studies 
published since 2002 (Table 2). Information concerning QTLs including population types, flacking markers, the 
log of odds ratio (LOD score) and proportion of phenotypic variance explained by the QTL (R2) was extracted 
from 217 QTLs from the literatures. Among the 217 initial QTLs, 140 (65%) and 77 (35%) QTLs were found for 
TTN and FTN, respectively. The 95% confidence interval (CI) ranged from 2.26 to 56.94 cM, with an average of 
15.90 cM. About 91 (42%) of the collected QTLs had a CI lower than 10 cM, and 158 QTL (73%) had a CI lower 
than 20 cM (Fig. 5a). The proportion of phenotypic variance explained (PVE) by the initial QTLs varied from 2.2 
to 55.4% with an average of 12.15% (Fig. 5b). To identify the genomic regions most commonly associated with 
the number of total tillers and fertile tiller, the probability density computed as a QTL-overview  index25 for each 
0.5 cM-long segment on the consensus map (Fig. 6, Supplementary Table S5). A total of 34 peaks were obtained 
(Fig. 6a), of which the density curve for 27 peaks was much higher than the average value, indicating the pres-
ence of “real QTLs” (Fig. 6b, Fig. 6c). Additionally, 15 peaks exceeded a high-value threshold estimated as five 
times the mean value of the overview index. The number of overview peaks exceeding the average threshold 
ranged from two peak in chromosome 1A and 7D to seven peaks in chromosome 2D (Fig. 6).

QTL meta-analysis.  To verify the significant SNP markers identified by GWAS on chromosomes 1A, 2A, 
2B, 2D, 5D, 6A, 6B, 6D, 7A and 7D, reported QTLs associated with the total tiller and fertile tiller number 

Figure 1.  The structure plot of the 92 Iranian wheat cultivars and landraces identified by K = 2 using 6,349 
SNPs. (a) Plot of the ad hoc statistic ΔK, which is ΔK tends to peak at the K value that corresponds to the 
highest hierarchical level of substructure. The modal value of this distribution is the true K, here two clusters. 
(b) Principal coordinate analysis (PCoA) plot of the first two PCo in 92 wheat genotypes including landrace 
(yellow), cultivar genotype (blue) and intermediate cultivar genotype (red). The first and second PCo 
respectively make up 19 and 6% of the total variation. (c) Population structure inference of the 92 Iranian wheat 
genotypes based on SNP marker, using STRU CTU RE. Vertical bars display individual genotypes. The segment 
color length in each vertical bar depicts the proportion contributed by each of the two populations in the model 
to that individual.
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(Table 2) were collected and projected into a consensus genetic map to integrate overlapping loci as consensus 
QTLs. Using BioMercator 4.2 software, meta-analysis was conducted based on the 217 initial QTLs and a total 
of 30 meta-QTLs were identified (Table 3). Only meta-QTLs comprising more than two QTLs from different 
studies were used for further analysis. Table 3 presents the information about each meta-QTL, including posi-
tion (cM), 95% CI (cM), mean phenotypic variance explained (PVE), flanking markers, number of initial QTLs 
and number of studies reporting on that QTLs. The meta-QTLs identified on each chromosome varied from 
one for chromosome 6B to five on chromosome 2D. The mean of phenotypic variance explained by each meta-
QTL ranged from 3.84% (MQTL7D-1) to 36.0% (MQTL2D-2), and the overall average was 11.20%. The 95% 
genetic CI for the meta-QTLs ranged between 0.12 (MQTL2B-5) and 16.33 (MQTL5D-1) cM, with an average 
of 5.04 cM, representing a reduction of more than 68.3% from those observed in the original QTLs (range = 2.3–
56.9 cM; average = 15.9 cM). The physical intervals of the meta-QTLs varied from 1.47 (MQTL2D-5) to 94.0 
(MQTL5D-1) Mb, and the interval of 11 meta-QTLs were less than 10 Mb (Table 3).

Eleven of the 30 meta-QTLs (Table 3) were detected in two independent studies (MQTL2A-1, MQTL2A-2, 
MQTL2B-5, MQTL2D-2, MQTL2D-5, MQTL5D-1, MQTL6D-1, MQTL6D-2, MQTL6D-3, MQTL6D-4 and 
MQTL7D-1), seven meta-QTLs in three studies (MQTL2A-3, MQTL6A-3, MQTL6A-4, MQTL6B-1, MQTL7A-1, 
MQTL7A-2 and MQTL7A-3), six meta-QTL in 4 studies (MQTL2B-1, MQTL2B-3, MQTL2B-4, MQTL2D-4, 
MQTL6A-1 and MQTL6A-2), two meta-QTL in 5 studies (MQTL2D-3 and MQTL5D-2), two meta-QTL in 
6 studies (MQTL1A-2 and MQTL2B-2), one meta-QTL in 7 studies (MQTL2D-1), and one meta-QTL in 8 
studies (MQTL1A-1). Furthermore, genomic locations of detected MQTLs for tillering number that over-
lap with significant SNP markers from the GWAS results depicted in Fig. 7. five significant MTAs including 
IWA6592 (2A, 715,301,715 bp), IWB9024 (2A, 747,144,155 bp), IWB55568 (2D, 641,963,416 bp), IWB25250 
(6A, 574,486,383 bp) and IWA1406 (6D, 463,447,036 bp) for the tiller number were located in the MQTL2A-3, 
MQTL2A-3, MQTL2D-4, MQTL6A-4 and MQTL6D-4 regions, respectively (Fig. 7).

Discussion
In the present study, we evaluated the effects of two traits, total tiller number and fertile tiller number, in a col-
lection of 92 landraces and cultivars of Iranian wheat. Significant variation in both traits appeared to be com-
plementary between the genotypes and drought-stressed environments. In all tested environments, these traits 
decreased when drought stress occurred during the anthesis period. As Sareen et al.26 put it, the extent of the 
reduction in the tiller and fertile tiller numbers due to drought stress depends both on the magnitude of stress 

Table 1.  Summary of significant SNP markers identified by GWAS mapping associated with tillering 
number traits. The FDR corrected threshold (− log10 (p-value) ≥ 4.5) was used to identify significant SNP–trait 
associations. a: Minor allele frequency. TTN: Total tiller number; FTN: Fertile tiller number; Normal: BLUEs 
value across all normal irrigation conditions; Stress: BLUEs value across all drought stress conditions; All: 
BLUEs value based on 6 environmets under normal and drought stress conditions.

Trait Env SNP Chromosome Position (bp) − log10(p-value) Allele MAFa FDR Effect

FTN Normal IWA5084 1A 369,697,871 5.12 A/G 0.196 0.00961 − 0.565

FTN Normal IWB39005 2A 36,632,023 8.69 A/G 0.136 0.00001 − 1.224

FTN Normal IWB28961 2B 713,676,010 5.21 A/G 0.147 0.00961 0.760

FTN Normal IWB11256 5D 489,775,906 4.60 C/T 0.136 0.02648 − 0.704

FTN Normal IWA4483 7A 692,340,211 5.81 C/T 0.272 0.00328 0.749

FTN Normal IWB19377 7D 58,491,640 7.28 A/G 0.120 0.00017 − 1.041

FTN All IWA5084 1A 369,697,871 4.77 A/G 0.196 0.02129 − 0.388

FTN All IWB36728 2A 500,529,738 5.49 C/T 0.179 0.00515 − 0.618

FTN All IWB39005 2A 36,632,023 6.33 A/G 0.136 0.00130 − 0.693

FTN All IWB44377 7A 33,364,868 6.21 C/T 0.473 0.00130 0.492

FTN All IWA4483 7A 692,340,211 6.74 C/T 0.272 0.00115 0.677

TTN Normal IWB39005 2A 36,632,023 5.11 A/G 0.136 0.01213 − 0.133

TTN Normal IWB25250 6A 574,486,383 4.90 C/T 0.250 0.01574 − 0.115

TTN Normal IWA1406 6D 463,447,036 6.75 A/G 0.190 0.00056 − 0.174

TTN Normal IWB44155 7A 323,740,318 7.36 C/T 0.158 0.00027 0.161

TTN Normal IWB44377 7A 33,364,868 6.57 C/T 0.473 0.00057 0.107

TTN Stress IWB53633 1A 517,488,008 4.58 A/G 0.361 0.05061 0.271

TTN Stress IWB74344 1A 1,208,254 5.81 C/T 0.117 0.00492 0.346

TTN Stress IWA6592 2A 715,301,715 6.46 C/T 0.239 0.00221 0.287

TTN Stress IWB25244 6B 626,453,853 4.50 G/T 0.106 0.05061 − 0.295

TTN All IWB9024 2A 747,144,155 4.51 C/T 0.413 0.05001 − 0.369

TTN All IWB55568 2D 641,963,416 6.22 A/G 0.473 0.00128 0.558

TTN All IWB44155 7A 323,740,318 7.51 C/T 0.158 0.00010 0.857

TTN All IWB44377 7A 33,364,868 7.91 C/T 0.473 0.00008 0.607
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Figure 2.  Circular-Manhattan plots and quantile–quantile plots for SNP significantly associated with tillering 
numbr under normal and drought stress conditions identified by genome-wide association study based on the 
fixed and radom model Circulating Probability Unification (FarmCPU). (a) SNP-GWAS associated with total 
tiller number (TTN) in BLUEs data (outer-most), normal (middle) and drought (inner-most) conditions. (b) 
SNP-GWAS associated with fertile tiller number (FTN) in BLUEs data (outer-most), normal (middle) and 
drought (inner-most) conditions. The dashed red line represents the false-discovery rate (FDR) threshold 
(FDR ≤ 0.05). SNPs marker that met this significant level are highlighted with red dots. QQ plot of genome-wide 
associations for (c) total tiller number under normal, (d) total tiller number under drought stress, (e) total tiller 
number in BLUEs data, (f) fertile tiller number under normal, (g) fertile tiller number under drought stress, 
(h) fertile tiller number in BLUEs data. For QQ plots, X-axis represents expected − log10 (p-value) and Y-axis is 
observed − log10 (p-value) of each SNPs. The physical positions of the SNP markers were determined based on 
the Chinese Spring reference assembly IWGSC RefSeqv1.0 (https ://urgi.versa illes .inra.fr/).

https://urgi.versailles.inra.fr/
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and the growth stage of the plant when stress occurs. However, the genotypes were insignificantly affected by 
stress and locations; the small magnitude of these effects were likely a result of low variations in genetic responses 
to the various stress conditions in the three tested environments (Shahed university research farm for two years 
and NIGEB field for one year), and due to stability of these genotypes in different environments.

A significantly positive correlations was observed between TTN and FTN in the normal and drought and all 
growing environments. Due to the importance of the relationship between tillering traits and other agronomic 
traits, such as grain yield and phenological characters, PCA biplots and linear correlation analysis also was per-
formed (Supplementary Fig. S2). Between total tiller number and days to heading, days to flowering and days 
to maturity, there were significant positive correlations. Earlier reports from Mecha et al.27, Al  Rabi28 depicted 
similar results.  Begum29 and Qaseem et al.30 also reported that marker IWB44377 (which was associated with 
TTN and FTN in our study) had significant association with the days to heading and days to maturity traits, 
respectively. There was only a significant correlation between FTN and grain yield in normal conditions; this 
shows that increase in number of fertile tillers may result in proportionate enhancement in grain yield per plant. 
However, because of the complicated relationships between the majority of the traits (with each other and with 
yield), simple correlation coefficients may not provide a comprehensive information about the relationships 
between different traits, and it is critical to apply multivariate statistical methods, such as factor analysis, in order 
to better understand these relationships. Tillering capacity with moderate heritability is widely agreed to be the 
trait with the greatest effect on the yield potential of  cereal31, even if there was no positive correlation between 
these in the initial  analysis32. In the previous paper, we have reviewed this issue for some of these  genotypes33 
and found that, for instance, the first factor, which was named as yield components, was composed of some of 
the constituents of total tiller number, fertile tiller number, plant height, peduncle lenght, biological yeild and 
harvest index. Similar results were also observed in a study by Arminian et al.32.

GWAS is highly dependent on the presence of linkage disequilibrium in the population, although genetic drift, 
population structure, and natural selection have always been influential as well. Structure and PCoA analysis 
classified the 92 Iranian wheat genotypes into two groups with approximately 20 genotypes belonging to both 
groups. These intermediate genotypes were mostly the cultivars that could be placed in the landrace group 
since they had been selected from Iranian landraces. Based on recent investigations (Zarei Abbasabad et al.34, 
Alipour et al.21), high amount of genetic variability and diversity has been observed among Iranian landraces 
and cultivar wheat collected during different years, and in different geographical regions. These variations can be 
practical gene sources for use in breeding to deal with climate change challenges. The structure analysis in this 
study confirmed the clustering result of Alipour et al.21; our genotypes had similar stratification. They conducted 

Figure 3.  GWAS-derived Manhattan plots showing significant SNPs associated with the total tiller number 
(BLUEs values) on chromosome 2A (a), 2D (b) and 7A (c) using FarmCPU method. The horizontal dashed 
red line indicates FDR significance threshold of P = 0.05. (d) The box plots of the allele effects for the four SNPs 
associated with total tiller number.
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a cluster analysis for 369 Iranian hexaploid wheat genotypes including 99 cultivars and 270 landraces using 
16,506 GBS-SNP markers and reported that accession pedigree was the principal factor affecting the separation 
of Iranian cultivars. Most wheat cultivars originating from Iran or with one Iranian parent evidently vary from 
those originating from CIMMYT, resulting in a varied genetic makeup for Iranian wheat compared to CIMMYT 
wheat. This point could possibly justify the high-yielding cultivars derived from Iranian and CIMMYT wheat 
genotype crosses. For instance, the most widely planted cultivars in Iran, Parsi and Pishgam, have been obtained 
from a cross between CIMMYT and Iranian genotypes.

Similar to previous results reported by Berkman et al.34, Edae et al.36, and Al  Rabbi28 maximum SNPs mapped 
to B-genome, followed by A genome and sequentially D-genome (as the youngest of these genomes in wheat 
formation history). It is presumed that the sequence polymorphism is a result of older genomes undergoing gene 
duplication and accumulating more mutations. While considerable early gene flow might have happened between 
T. aestivum and T. turgidum (AABB), it seems improbable between the T. aestivum and Aegilops tauschii (DD); 
otherwise, there could have been less sequence diversity in the D genome compared to B and A  genomes28,35. 
As the results of present study showed, roughly twice the number of the SNPs mapped to D genome, mapped 
to the A or B genomes. While these results are in line with those of other  studies36,37, they are contrary to some 
previous  results38,39 that have shown that the number of SNP markers mapped to the B and A genome were five 
times greater than those mapped to the D genome. This difference suggests a comparatively high level of SNP 
variation in the D genome for Iranian wheat genomes when compared with other genotypes. As Jia et al.40 state 
higher variations in the D genome could prepare new useful and elite alleles that can control important agro-
nomical traits to cope with global climate changes.

Varshney et al.41 and Wang et al.42 state that in QTL mapping approaches the two main factors involved in 
detecting significant MTAs are high values of heritability and abundance of polymorphic markers. However, 
Tavakol et al.43 indicated that a small population size is inevitably a limiting factor in detecting related loci with 
low effects. Despite the comparatively small size of our studied panel and the moderate value of heritability, the 
results of our survey seem reliable because the data were collected under six different conditions and also the 
BLUEs data based on these environments were more stable.

The outcome of GWAS was the identification of 24 significant MTAs (P < 0.05 after applying FDR-correction) 
for both traits in two or more environments; these results suggest pleiotropy, but may also suggest linkage. The 
SNPs significantly associated with TTN and FTN were determined on nearly all of the chromosomes tested, 
and were mainly distributed on chromosomes 1A, 2A, 2D, 6A, 6D, 7A and 7D (Supplementary Table S4). The 
genome-wide association study of Qaseem et al.30 showed that all the markers significant for tillers per plant, 
under a combined high temperature and drought regimes, were present on chromosomes 2A, 3B, 3D, 4B, 5A, 
6A and 7D. Guo et al.44 identified different MTAs for tiller on chromosomes 1A, 2A, 3A, 4A, 5A, 6A, 7A, 1B, 2B, 
3B, 4B, 5B, 6B and 6D and some of them were close to the associated SNPs in our study. The association study of 

Figure 4.  GWAS-derived Manhattan plots showing significant SNPs associated with the fertile tiller number 
(BLUEs values) on chromosome 2A (a), 2D (b) and 7A (c) using FarmCPU method. The horizontal dashed 
red line indicates FDR significance threshold of P = 0.05. (d) The box plots of the allele effects for the five SNPs 
associated with fertile tiller number.
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Table 2.  Bibliography of QTL studies involving total tiller and fertile tiller number in wheat used for meta-
analysis.

Ref. No

Population QTL

ReferencesParents Size Type Marker type Projected number

1 RAC875 × Kukri 368 DH DArT, SSR 7 63

2 Kharchia65 × HD2009 114 RIL SSR 1 64

3 Opata85 × W7984 114 RIL SSR 7 65

4 Iran#49 × Yecora Rojo 168 RIL SSR 3 66

5 Excalibur × Kukri 192 DH DArT, SSR 2 67

6 Berkut × Krichauff 152 DH DArT, SSR 8 68

7 Weebill × Bacanora 105 RIL DArT, SSR, KASP 7 69

8 ND3338 × JD6 203 DH SNP 19 70

9 Fukuho-kumogi × Oligoculm 107 DH AFLP, SSR 4 71

10 CN18 × T1208 371 RIL SSR 3 72

11 Flair × XX86 111 BC SSR 1 73

12 Nanda2419 × Wangshuibai 230 RIL SSR 2 74

13 WL711 × PH132, Opata85 × W7984 110 RIL SSR 12 75

14 Huapei3 × Yumai57 168 DH,  IF2 SSR, EST-SSR 17 76

15 Opata85 × W-7984 111 RIL SSR 7 77

16 20,828 × Chuannong16 199 RIL SNP 3 78

17 Q1028 × Zhengmai9023 186 RIL DArT, SSR 2 79

18 Reeder × Conan 91 RIL DArT, SSR 8 80

19 Xiaoyan54 × Jing411 142 RIL SSR 4 81

20 CN18 × T1208 371 RIL SNP 13 7

21 McNeal × Thatcher 160 RIL DArT, SSR 3 82

22 Hanxuan10 × Lumai14 120 DH AFLP, SSR, EST-SSR 16 83

23 Lovrin10 × Chinese Spring 92 DH SSR 8 84

24 Chuanmai42 × Chuannong16 127 RIL SSR, SRAP 6 85

25 Line3228 × Jing 4,839 237 F2:3 SSR 3 86

26 H461 × CN16 249 RIL SNP 30 42

27 UIP × SYC 110 DH SNP 4 8

28 NAUH167 × Wangshuibai 93 RIL SSR 9 87

29 Chuan35050 × Shannong483 131 RIL DArT, SSR 3 88

30 Attila × CDC Go 167 RIL SNP 5 89

Figure 5.  Distribution of initial QTLs for tillering number. (a) Frequency distribution of initial QTLs density 
based on different levels of 95% confidence interval, (b) Distribution of phenotypic variance explained (PVE) 
for each initial QTLs.
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Figure 6.  Diagrams show the different features that were drawn using the ggplot2 package in R environment. 
(a) Distribution of initial QTLs on each chromosome of wheat (black lines). (b). Probability density computed 
as ‘QTL-overview index’25. (c) Distribution and density of marker on the consensus genetic map. The red dashed 
line with the value of 0.00106 indicates the high-value threshold. The red color arrow indicates the centromeric 
region of the chromosome.
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Table 3.  Results of meta-analysis of QTLs controlling total tiller and fertile tiller number in wheat.

Meta QTL Chr

MQTL 
position 
(cM)

95% 
confidence 
interval 
(cM)

Genomic 
position 
(Mb)

Mean 
initial QTL 
confidence 
interval 
(cM))

Coefficient 
of reduction 
in CI from 
mean 
original 
QTLs to 
MQTL

Mean  R2 for 
the original 
QTL

Flanking 
markers

Number of 
initial QTLs

Number of 
experiments

Number 
of genes 
laying at 
the MQTL 
interval

MQTL1A-1 1A 72.43 5.94 16.44–19.81 21.98 3.7 9.19 Xgpw2005-
Xwmc95 12 8 18

MQTL1A-2 1A 103.8 0.93 232.73–236.4 18.5 19.89 11.6 Xwmc183-
Xgpw2045 12 6 7

MQTL2A-1 2A 105.4 3.7 310.83–
320.05 10.12 2.73 13.67 Xgwm473-

Xwmc455 3 2 17

MQTL2A-2 2A 121.9 8.66 668.68–
682.62 23.6 2.72 3.06 Xwmc261-

Xgwm445 6 2 181

MQTL2A-3 2A 177.4 8.03 709.62–
758.39 26.36 3.28 6.63 IWB43724.1-

IWB39958 5 3 874

MQTL2B-1 2B 63.91 8.82 31.72–41.46 25.06 2.84 5.91 Xwmc25-
wPt-5374 4 4 112

MQTL2B-2 2B 110.4 4.9 117.99–
133.02 23.4 4.78 6.74 IWB58039- 

IWB73449 9 6 81

MQTL2B-3 2B 138.1 7.54 523.78–
545.75 25.75 3.41 5.27 Xbarc128-

IWB60084 5 4 138

MQTL2B-4 2B 163.8 7.67 686.04–708.2 25.55 3.33 4.97 wPt-8340-
wPt-1646 4 4 234

MQTL2B-5 2B 214.1 0.12 793.02–
796.68 5.86 48.87 12.8 Xbarc159-

Xwmc356 13 2 83

MQTL2D-1 2D 45.52 3.75 37.53–48.17 15.48 4.13 11.12 Xwmc470-
Xgwm484 11 7 86

MQTL2D-2 2D 73.46 1.7 74.94–87.76 6.39 3.76 36 IWB25847-P35/
M48-4 7 2 175

MQTL2D-3 2D 98.31 1.78 553.72–
570.41 9.52 5.35 13.88 Xcfd73-Xcfd62 9 5 212

MQTL2D-4 2D 142.6 1.22 632.08–647.5 9.67 7.93 12.62 Xwmc167-
Xgwm382 19 4 325

MQTL2D-5 2D 155.5 0.26 648.12–
649.59 5.6 21.53 14.84 XksuD23-

XksuH16 3 2 29

MQTL5D-1 5D 49.6 16.33 302.38–
396.42 33.28 2.04 18.4 XksuD30-Xcfd8 3 2 960

MQTL5D-2 5D 95.69 0.5 472.63–
481.56 14.21 28.42 18.07 Xgwm212-

Xcfd29 12 5 134

MQTL6A-1 6A 42.27 3.25 16.57–18.71 15.9 4.89 14.22 IWA6390- 
IWB6327 9 4 37

MQTL6A-2 6A 95.81 5.24 93.77–108.94 19.69 3.76 12.29 IWB12213-
Xcfd190 8 4 161

MQTL6A-3 6A 105.4 5.24 467.05–
500.51 18.82 3.59 9.12 Xgwm356-

IACX5753 5 3 206

MQTL6A-4 6A 140 4.8 520.76–
581.75 25.8 5.37 5.24 Xabc175-

IWA4949 3 3 590

MQTL6B-1 6B 129.5 6.28 47.77–115.95 12.99 2.07 6.93 Xgwm508-
IWB11358 4 3 489

MQTL6D-1 6D 83.82 7.21 62.08–86.72 14.63 2.03 6.34 Xcfd19-
Xbarc202 3 2 231

MQTL6D-2 6D 92.64 3.33 115.02–
117.36 9.68 2.91 14.1 Xbarc123-

Xgpw304 3 2 21

MQTL6D-3 6D 153.2 3.97 419.65–
434.81 10.32 2.6 11.13 Xgpw312-

Xcsb112(Dhn5) 3 2 227

MQTL6D-4 6D 165.5 0.75 456.46–
469.25 10.99 14.66 14.08 Xcfd5-Xcm-

wg684a 6 2 261

MQTL7A-1 7A 73.8 3.39 54.96–57.87 8.41 2.48 18.91 Xgwm60-
IWB50066 4 3 47

MQTL7A-2 7A 119.5 6.68 83.94–117.08 20.07 3 11.03 IWB8251-
Xcfa2174 5 3 291

MQTL7A-3 7A 207.3 11.25 518.18–
576.77 28.93 2.57 4.19 Xwmc286-

Xcfd20 6 3 430

MQTL7D-1 7D 79.56 8.11 38.72–40.56 27.6 3.4 3.84 Xwmc463-
Xbarc352 2 2 14
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Chen et al.4 employed a high-density 90 K SNP array to evaluate a panel of 205 elite winter wheat accessions. Their 
work demonstrated that 27 loci were associated with tiller number traits in different growth stages. Although 
no associations for the same SNPs were detected and the evaluated stages of the traits and the number of SNPs 
differ in this study, taken together, all of these loci harbor some tillering responsive genes that may play a key 
role in determining tiller-related traits.

In general, most MTAs are identified in a single environment and affect certain traits differently under dif-
ferent growing environments. As Chen et al.4 described, results in inconsistent association of markers or loci 
with specific characteristics if environmental conditions alter. This phenomenon has been witnessed on different 
markers that were putatively stress-specific, such as IWA6592 (Chromosome 2A), IWB53633 and IWB74344 

Figure 7.  Genomic locations of detected MQTLs for tillering number that overlap with significant SNP 
markers from the GWAS results of this study. MQTLs names are shown on the right side of each chromosome, 
with black segments indicating their confidence interval. The genomic positions of the MQTL regions 
correspond to Table 3. The red bold markers in each chromosome represent location of significant SNP 
identified by GWAS. Ruler on the left side indicates the Mb distance.
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(Chromosome 1A), which were associated only with TTN under stress condition. In contrast, the expression 
of a consistent MTA is less affected by environmental factors. An MTA stable across the different environ-
ments is of great value to marker-assisted selection (MAS) in breeding genotypes adapted to diverse ecological 
 environments4. Overall, in this study, five MTAs (IWB44377, IWB39005, IWA5084, IWA4483 and IWB44155) 
were consistently associated with TTN or FTN in two water regimes environments (− log10 (p-value) ≥ 4.5), and 
the result considered relatively stable loci controlling tiller traits.

A pleiotropic locus influences the expression of more than one phenotypic trait and the loci controlling these 
traits can be in the same genomic position. Pleiotropic effects are especially beneficial in crop breeding, as they 
permit the breeder to choose multiple traits  simultaneously30. In this study, pleiotropic MTAs (i.e., IWB44377, 
IWB39005) were identified which were associated with both TTN and FTN under all conditions. High phe-
notypic trait correlations (with r2 greater than 0.82 between TTN and FTN in all environments) might explain 
this pleiotropic effect. Mwadzingeni et al.45 said this is supported by the presence of different multiple MTAs in 
which one gene pleiotropically affects highly correlated characteristics and a common QTL often controls highly 
correlated traits. A review of other studies showed that Marker IWB39005 at 36.63 Mbp on Chromosome 2A was 
previously reported to be associated with tiller dry  weight44. Marker IWB44155 at 323.74 Mbp on chromosome 
7A (Table 1) which was associated with TTN under normal and drought stress treatment, associated with spike 
dry  weight46, quality  traits47 and resistance to zymoseptoria tritici48. Marker IWB44377 has significant associa-
tion with days to maturity and grain yield traits in bread wheat cultivars reported by Qaseem et al.30. Genomic 
region (IWB11256) on chromosome 5D at 489.77 Mbp, associated with number of grains per ear (reported by 
 Amer49) and anther extrusion (reported by Muqaddasi, et al.50). Furhrmore, Mohajeri Naraghi et al.51 reported 
one association i.e., IWA4483 for end-use quality. Zanke et al.52 also identified IWB28961 marker which was 
associated with thousend grain weight. A region (AX-95138710) near marker IWB55568, (on chromosome 
2D) was reported in another study by Guo et al.44 and found to be significantly associated with spike length and 
total spikelet number. Ideally, the effects of such pleiotropic loci may not be affected by changes in the external 
environment. When breeding for broad adaptation, such loci or genomic regions could be valuable in gene 
introgression or breeding programs. Therefore, these MTAs could be employed to begin mining tillering genes 
via bioinformatics analysis and to develop cleaved amplified polymorphic sequence (CAPS) markers for MAS.

Meta-analysis method has been used to integrate the QTL data in order to clearly identify regions of the 
genome that are most frequently involved in trait variation and to narrow down the confidence interval of the 
QTLs. The results of the meta-analysis strongly depend on the quality of the studies have identified QTLs, qual-
ity of QTL projection and confidence intervals of  QTLs10. In this study, based on the integration of a consensus 
map with 14,548 molecular markers and through meta-analysis, we combined 217 initial QTLs located on 
chromosomes 1A, 2A, 2B, 2D, 5D, 6A, 6B, 6D, 7A and 7D into 30 meta-QTLs. Intriguingly, we found that five 
significant MTAs i.e., IWA6592, IWB9024, IWB55568, IWB25250 and IWA1406 for the tiller number traits 
were located in the MQTL2A-3, MQTL2A-3, MQTL2D-4, MQTL6A-4 and MQTL6D-4 regions, respectively 
(Fig. 7). These MQTLs with relatively narrow CI had the highest number of QTLs for TTN and FTN traits and 
therefore considered as one of the most reliable chromosomal positions that can assist wheat molecular breeding. 
These results suggest that some MTAs identified in our study can serve as important MTAs for marker-assisted 
selection and gene cloning of important tiilering genes. QTL linkage mapping and association mapping are two 
effective strategies to identify the genes responsible for particular traits in crops. Both methods have particular 
advantages, such as higher statistical power and lower false positive rate for QTL mapping and relatively high 
mapping accuracy offered by association  mapping53. Combining meta-analysis and association mapping can 
exactly identify suitable candidate genes involved in complex agronomic traits, such as grain yield, biomass, and 
phenology in wheat, barley and other close cereal  species12.

conclusion
Overall, despite the moderate value of heritability and the fairly small size of the panel examined in this study, 
the results revealed 24 significant loci (FDR ≤ 0.05) associated with two traits: total tiller number and fertile tiller 
number under two irrigation regimes conditions at chromosomes 1A, 2A, 2B, 2D, 5D, 6A, 6B, 6D, 7A, and 7D. 
Among these loci, markers IWB44377 and IWB39005 were consistently associated with both TTN and FTN 
in all environments; thus, they could be used to develop CAPS markers. In addition, a meta-analysis of QTLs 
associated with TTN and FTN validated the GWAS results. The results of the current study, as well as the MTAs 
detected in the population, can add to the presently available genetic resources, gene pools, and candidate genes 
for wheat breeding. They can also provide evidence for further examinations and studies on the genetic bases of 
wheat adaptation under various climatic conditions both in Iran and other countries.

Materials and methods
Plant material and experimental design.  The study employed a set of 92 Iranian hexaploid wheat gen-
otypes (Supplementary Table S3) including 22 landraces and 70 cultivars, kindly provided by the Seed and Plant 
Improvement Institute (SPII) of Karaj, Iran. They were selected among 180 local bread wheat genotypes from 
diverse breeding programs and were assessed using a randomized complete block design with three replications 
from 2013 to 2015.

The study examined the results under two irrigation regimes, at two locations and in different years. The 
first irrigation regime was a hundred percent field capacity until harvest, and the second had no irrigation after 
anthesis. The two locations were the research farm of Shahed university, located at Shahr-e-Rey, 15 km southwest 
of Tehran (35°34′ N, 51°8′ E), 1,130 MASL (two years, 2013–2015), and a research field at National Institute of 
Genetic Engineering and Biotechnology (NIGEB) located at Vardavard, northwest of Tehran, 35°44′ N, 51°10′ 
E, 1,305 MASL (one year, 2014–2015). The temperature at the first research location varied from a minimum 
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of -15° C to a maximum of 41 °C, and the climate was characterized by a mean annual precipitation of 224 mm 
(the highest of which is 49% in winter and 21% in spring). Whereas in the second research field, the minimum 
and maximum temperatures were − 20 °C and 42°C, respectively, with annual precipitation of 247.3 mm (the 
highest of which is 43% and 36% in winter and spring, respectively). In both research fields, sowing was done by 
hand in plots of four two-meter rows at 25 cm apart. All field plots were tilled before being sowed. Fertility was 
constrained by low organic matter and phosphorus contents, with application of 50 kg ha−1 of N, 50 kg ha−1 of 
 P2O5 on the surface which was tilled into the soil before sowing.

Trait phenotyping and data analysis.  Five plants were randomly selected from each experimental unit, 
and the collected data were averaged and recorded for subsequent analysis. Later, the intended traits, total tiller 
number per plant (TTN) and fertile tiller number per plant (FTN) were evaluated. For all the environments (i.e., 
the two irrigation regimes at the Shahed university field for two years and at the NIGEB field for one year), the 
datasets were balanced; hence, the best linear unbiased estimates (BLUEs) equaled the arithmetic means across 
environments, places and irrigation regimes. Initially, separate analyses of data for each environment were con-
ducted. A linear mixed model including the effects of places, genotypes, and replications was used to examine 
the data and BLUEs of the genotypes for each condition and across environments and the results served as input 
for the second step of analysis. The second step employed a linear mixed model that included the effects of G × E 
variance, calculated by the GenStat software package (14th edition):

in which μ represents an overall mean, both environment and genotype are fixed effects, and e is a residual term.
To identify discriminating traits, principal component analysis (PCA) was carried out using the ‘factoextra’ 

 package54 and the results displayed in a biplot. Pearson’s linear correlation was used to assess the strength and 
direction of association among the quantitative traits and the results were visualized using the ‘PerformanceAna-
lytics’ package implemented in the R enviroment.

SNP genotyping.  For this step, approximately 1.0 g of young wheat leaf tissue was collected from each of 
the genotypes before the elongation stage and the total genomic DNA was extracted, using the Cetyl Trimethyl 
Ammonium Bromide (CTAB) method. DNA dissolved in TE buffer was shipped to TraitGenetics company 
(GmbH, Gatersleben, Germany) for high-throughput genotyping using a set of 15 k Illumina Infinium iSelect 
SNP array (Illumina Inc). After filtering out SNPs with 10% missing data and 10% minimum allele frequency 
(MAF), a total of 6,349 SNP markers were determined based on the Chinese Spring reference assembly IWGSC 
RefSeqv1.0 (https ://urgi.versa illes .inra.fr/) and later included in analyses. Moreover, PowerMarker V3.25 
 software55 was employed to estimate the number of alleles for each locus, MAF and polymorphism information 
content (PIC) values.

Population structure and genome-wide prediction.  An analysis of the population structure for the 
association panel was estimated by a Bayesian model-based approach accomplished in STRU CTU RE software 
V2.3.4 with 6,349 SNP markers located at least two cM apart in the genome. For each subpopulation value K, 
ranging from 1 to 8, STRU CTU RE was run 10 times with a burn-in of 100,000 iterations and 50,000 iterations 
for the analysis. The inference of true K, using an ad-hoc statistic ΔK, was calculated based on the second-order 
rate of change in the log probability of data between successive  values56. The results were processed using Struc-
ture Harvester web version v0.6.94 (https ://taylo r.biolo gy.ucla.edu/Struc tureH arves ter/). Principal coordinates 
analysis (PCoA) was used to examine the population structure of the panel for later use in GWAS, generated 
through the 6,349 SNP markers utilizing the Paleontological Statics (PAST).

Fixed and random model Circulating Probability Unification (FarmCPU) is a Genome Wide Association 
Study (GWAS) method, which utilizes both Fixed Effect Model (FEM) and a Random Effect Model (REM), 
iteratively, to control false positives. FarmCPU substitutes kinship with a set of markers associated with the 
causal genes to remove the confounding between kinship in a mixed linear model (MLM) and genes underlying 
interested  trait22. in the present study, Genome-wide association scans for tiller number traits were performed 
by FarmCPU model on the BLUEs values calculated for each condition (normal and drought stress), as well as 
for the BLUEs values of all conditions (based on 6 environments) using R package ‘FarmCPUpp’57 to calculate 
P-values for Manhattan plots and Q-Q plots.

Because many MTAs were found, we selected an overall cutoff significance level of − log10 (p-value) ≥ 3.0, 
which means one false positive is expected in one-thousand events. A second, more stringent threshold was 
also included: false discovery rate (FDR) ≤ 0.05 threshold (− log10 (p-value) ≥ 4.5). Thus, SNPs with corrected 
p-value ≤ 0.05 were considered significantly associated with TTN and FTN traits. The GWAS results were illus-
trated in a circular Manhattan plot using the R package ‘SOFIA’58. All the mentioned packages were implemented 
in R environment version 3.5.359.

QTL projection and meta-analysis.  A QTL dataset for the total tiller and fertile tiller (or spike) number 
on ten chromosomes (1A, 2A, 2B, 2D, 5D, 6A, 6B, 6D, 7A, and 7D) was compiled from a review of 30 inde-
pendent studies published from 2002–2020. Those QTLs with available map positions, log of odds ratio (LOD) 
scores and R2 values were integrated for analysis. A new integrated consensus map (Supplementary Table S5) 
was created using data from two identified well-known genetic maps in wheat including Soriano and  Alvaro13 
and Maccaferr et  al.60 with high-density markers using BioMercator V4.2. This map has 14,548 markers on 
4,813.72 cM total length with the distance average of 0.33 cM. Projections of the QTLs’ positions were based on 

y = µ+ genotype + environment + e
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a simple scaling method between the interval of the QTL flanking markers on the original map and the interval 
between these markers on the consensus map. The confidence interval of 95% on the consensus map was esti-
mated according to the empirical formula proposed by Guo et al.61. After projecting the QTLs, the Biomercator 
V4.2 software was used for QTL integration and to predict the location of meta-QTL(s). Using the approach of 
Veyrieras et al.62 BioMercator estimates the most likely assumption based on model choice criteria from AIC, 
AICc, AIC3, BIC and AWE. Based on the values for five models, the best meta-QTL model with the lowest value 
was considered the best fit. The probability of QTL for every segment of 0.5 cM on the consensus map was esti-
mated following the approach described as ‘QTL-overview index’25.
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