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Single‑cell mass cytometry 
on peripheral blood identifies 
immune cell subsets associated 
with primary biliary cholangitis
Jin Sung Jang1,2, Brian D. Juran3, Kevin Y. Cunningham4,5, Vinod K. Gupta6,7, 
Young Min Son8,9, Ju Dong Yang10, Ahmad H. Ali3, Elizabeth Ann L. Enninga9,11, 
Jaeyun Sung6,7,12* & Konstantinos N. Lazaridis3*

The relationship between primary biliary cholangitis (PBC), a chronic cholestatic autoimmune liver 
disease, and the peripheral immune system remains to be fully understood. Herein, we performed 
the first mass cytometry (CyTOF)-based, immunophenotyping analysis of the peripheral immune 
system in PBC at single-cell resolution. CyTOF was performed on peripheral blood mononuclear 
cells (PBMCs) from PBC patients (n = 33) and age-/sex-matched healthy controls (n = 33) to obtain 
immune cell abundance and marker expression profiles. Hierarchical clustering methods were 
applied to identify immune cell types and subsets significantly associated with PBC. Subsets 
of gamma-delta T cells  (CD3+tcRgd+),  CD8+ T cells  (CD3+CD8+CD161+PD1+), and memory B cells 
 (CD3−CD19+CD20+CD24+CD27+) were found to have lower abundance in PBC than in control. In 
contrast, higher abundance of subsets of monocytes and naïve B cells were observed in PBC compared 
to control. Furthermore, several naïve B cell  (CD3−CD19+CD20+CD24−CD27−) subsets were significantly 
higher in PBC patients with cirrhosis (indicative of late-stage disease) than in those without cirrhosis. 
Alternatively, subsets of memory B cells were lower in abundance in cirrhotic relative to non-cirrhotic 
PBC patients. Future immunophenotyping investigations could lead to better understanding of 
PBC pathogenesis and progression, and also to the discovery of novel biomarkers and treatment 
strategies.

Primary biliary cholangitis (PBC) is an autoimmune liver disease characterized by immune infiltration and tar-
geted destruction of intrahepatic bile ducts. This results in chronic cholestasis and ultimately in progression to 
cirrhosis and liver  failure1–3. PBC predominantly affects women (90% of patients), and serum antimitochondrial 
antibodies (AMA) specific to the E2 subunits of 2-oxoacid dehydrogenase complexes are present in 90–95% 
of  patients4,5. These autoantibodies provide bile duct specificity due to a unique aspect of biliary epithelial cell 
apoptosis, which leaves the E2 subunit of the pyruvate dehydrogenase complex immunologically intact and 
available on apoptotic  blebs6.
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Recent insights suggest that the offending immunological processes may vary depending on disease stage/
activity, and that individual differences in immune response are likely to contribute to variability in disease 
 course3. As such, personalized approaches to treatment would be highly beneficial; however, direct and routine 
assessment of immune activity in the liver is precluded due to the invasiveness and risks associated with liver 
biopsy. Moreover, biopsy material is quite localized and not always reflective of disease state throughout the 
whole liver. A number of studies focused on peripheral immunity in PBC have reported alterations in vari-
ous immunological subsets including natural killer (NK)  cells7, regulatory T  cells8,  CD8+CD57+ T  cells9 and 
mucosal-associated invariant T (MAIT)  cells10. To what extent these differences reflect ongoing liver pathology, 
or directly implicate pathological subsets, remains to be determined. However, the use of peripheral blood to 
assess alterations to immune composition allows for the incorporation of much larger sample sizes into studies, 
and facilitates longitudinal observations that may ultimately prove clinically relevant.

Mass cytometry is an emerging platform for immunophenotyping that overcomes key limitations of tradi-
tional fluorescence-based flow  cytometry11,12. This technology utilizes heavy-metal ion tags instead of fluoro-
phores to detect target-bound monoclonal antibodies, allowing for simultaneous quantification of 40 or more 
cell  markers11. This increased dimensionality facilitates a more comprehensive survey of immune composition 
and has recently been employed in the examination of peripheral blood in various pathologies, including auto-
immune diseases and  cancers12–14.

In this pilot study, we aimed to evaluate the use of mass cytometry to immunophenotype stored peripheral 
blood mononuclear cells (PBMCs) collected from PBC patients and healthy subjects (controls) in order to study 
differences in immune cell subsets, as well as to inform future studies utilizing our extensive biobank blood 
collections.

Methods
Study population.  All participants in this study, i.e., well-documented PBC patients and clinic-based con-
trols, were previously recruited into our Mayo Clinic PBC Genetic Epidemiology (MCPGE) Registry and Bio-
specimen Repository, which was initiated with the aim to elucidate the genetic and environmental contributors 
to PBC  pathogenesis15. Diagnosis of PBC was based on the published American Association for the Study of 
Liver Diseases (AASLD)  criteria16: (a) elevated serum alkaline phosphatase for at least 6 months; and (b) posi-
tive antimitochondrial antibody (AMA) test; or (c) liver histological findings consistent with PBC. In the current 
study, we defined cirrhosis by the following criteria: (a) histological stage IV on liver biopsy according to the 
Ludwig staging  system17; (b) hepatic parenchymal changes on imaging characteristic of cirrhosis, namely liver 
surface nodularity and decreased liver  size18; and/or (c) presence of portal hypertension, documented by the 
presence of esophageal varices and ascites, and hepatic  encephalopathy19. Patient selection included only female 
patients who tested AMA positive and were taking ursodeoxycholic acid (UCDA) at the time of sample collec-
tion. Controls were individually matched to patients based on sex, age at sample collection (± 1 year) and date 
of sample collection (± 1 year). Demographic and clinical characteristics of participants are provided in Table 1. 
All blood samples were obtained from study participants following written informed consent. This study was 
approved by the Mayo Clinic Institutional Review Board in accordance with the Declaration of Helsinki. All 
methods and procedures were performed in accordance with Mayo Clinic Institutional Review Board guidelines 
and regulations.

Cell  isolation, preparation, and  labeling.  Human PBMCs were isolated using Ficoll-Paque density-
gradient centrifugation (GE Healthcare, NJ), slow-frozen and stored in liquid nitrogen until preparation for 
mass cytometry. Frozen PBMCs were thawed at 37 °C, combined with 1 mL of cell media (RPMI, 10% FBS, Pen/
Strep), centrifuged at 1500 RPM for 5 min and resuspended in 1 mL of warm cell media. Cells were then counted 
on a Countess II automated cell counter and approximately 3 × 106 cells (in 1 mL volume) of each PBMC sample 
was prepared and incubated at 37 °C for 1 h prior to labeling. Cell labeling was performed as per manufacturer 
recommendations (Fluidigm Sciences). Briefly, cells were isolated, resuspended in 0.5 μM Cell-ID cisplatin solu-
tion (Fluidigm Sciences) and incubated at room temperature for 5  min to stain dead cells. Cells were then 

Table 1.  General characteristics of the study subjects. N/A not applicable, AMA serum antimitochondrial 
antibodies, UDCA ursodeoxycholic acid. † Mean ± standard deviation.

Characteristics PBC (range) Control (range)

Number of subjects 33 33

Age at initial diagnosis (years) 50.6 (37–63) N/A

Age at sample collection (years) 57.9 (50.1–64.8) 57.9 (50.4–64.8)

Duration between diagnosis and sample collection (years) 7.28 (0.0–23.4) N/A

Gender (female) 33 (100%) 33 (100%)

Race (caucasian) 33 (100%) 33 (100%)

Non-cirrhosis/cirrhosis/unavailable 25/7/1 33/0/0

Alkaline phosphatase (U/L)† 185.7 ± 131.2 78.0 ± 19.5

AMA (positive/negative) 33/0 0/33

UDCA treatment (yes/no) 33/0 0/33
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washed twice with 1 mL Maxpar Cell Staining Buffer (MCSB, Fluidigm Sciences) and resuspended in 50 μL of 
MCSB. To this, 50 μL of antibody cocktail consisting of 36 metal-conjugated antibodies in MCSB was added and 
samples were incubated at room temperature for 45 min with gentle agitation. The antibodies were obtained 
from Fluidigm or generated in-house by the Mayo Clinic Hybridoma Core using Maxpar X8 Ab labeling kits 
(Fluidigm) and are detailed in Supplementary Table S1. Following staining, cells were washed twice with 1 mL 
MCSB, resuspended in 1 mL of fixation solution (1.6% PFA in CyPBS) and incubated at room temperature for 
20 min with gentle agitation. Fixed cells were then rinsed twice with 1 mL MCSB and cell pellets were stored 
overnight at 4 °C. Pellets were next resuspended in 1 mL intercalation solution [62.5 nM Cell-ID Intercalator-Ir 
(Fluidigm Sciences) in MaxPar Fix and Perm Buffer (Fluidigm Sciences)] to which 50 μl of diluted barcoding 
solution prepared using the Cell-ID 20-Plex Pd Barcoding Kit (Fluidigm Sciences) was added and samples were 
incubated overnight at 4 °C. Barcoded samples were washed with 1 mL MCSB, resuspended in 1 mL CyPBS and 
cells were counted on a Countess II automated cell counter. Finally, cells were resuspended in Cell Acquisition 
Solution-EQ Bead mixture (Fluidigm Sciences) to a concentration of 5 × 105  cells/mL before loading onto a 
Helios CyTOF system (Fluidigm, CA).

Mass cytometry and data acquisition.  The barcoded samples were loaded onto a Helios CyTOF system 
using an attached autosampler and were acquired at a rate of 200–400 events per sec. Data were collected as .FCS 
files using CyTOF software (Version 6.7.1014, Fluidigm). After acquisition, intrafile signal drift was normalized 
to the acquired calibration bead signal and individual files were deconvoluted and stored into .fcs files using 
CyTOF software. File clean-up (e.g., removal of dead cells, debris, doublets, and beads) was performed using 
Gemstone software (Verity Software House).

Identification of immune cell subsets associated with PBC using clustering analyses.  Gem-
stone-cleaned .fcs files were used for subsequent analyses in the Cytobank cloud-based platform (Cytobank, 
Inc.). First, all 66 files (corresponding to the 66 study subjects) were uploaded onto Cytobank. viSNE, which 
is a dimensionality reduction technique for high-dimensional single-cell data based upon the Barnes–Hut 
implementation of t-SNE20, was then used to visualize the mass cytometry data as 2D t-SNE maps with the 
following parameters: Desired Total Events (with Equal Sampling): “100,000” (per group); Channels: select all 
36 antibody-metal channels; Compensation: “File-Internal Compensation”; Iterations: “2000”; Perplexity: “60”, 
and Theta: “0.75”. For more advanced data visualization and exploration of cytometry data to identify clinically-
relevant immune cell subsets, two additional computational methods, FlowSOM and CITRUS, were used with 
default settings unless otherwise noted. FlowSOM uses Self-Organizing Maps (SOMs) to partition all individual 
cells based on their marker expression phenotypes into clusters and metaclusters (i.e., groups of clusters) and 
provides their global connections in the format of a Minimum Spanning Tree (MST)21. Following the generation 
of an MST, each cluster and metacluster can be queried for its immune cell abundance and distribution of dif-
ferent cell surface markers. FlowSOM was performed with the following parameters: Event Sampling Method: 
“Equal”; Desired events per file: “17,178”; Total events actually sampled: “1,133,748”; SOM Creation: “Create a 
new SOM”; Clustering Method: “Hierarchical Consensus”; Number metaclusters: “20”; Number clusters: “256”; 
Iterations: “10”; Seed: “1,234”. CITRUS (cluster identification, characterization, and regression) identifies clus-
ters of cell subpopulations that are statistically associated or correlated with an experimental or clinical phe-
notype of interest (e.g., disease/control, responder/non-responder)22. The output is a network topology of cell 
subpopulation clusters that represents a hierarchical stratification of the original samples. Features that drive the 
differentiation between phenotypes may be either the relative abundance of cell subpopulations or the median 
expression levels of functional markers measured across cells of each population. CITRUS was performed using 
the Significance Analysis of Microarrays (SAM) correlative association model [Benjamin-Hochberg-corrected 
P value, i.e., false discovery rate (FDR) < 0.01] with the following parameters: Clustering channels: “select all 
36 antibody-metal channels”; Compensation: “File-Internal Compensation”; Association Models: “Significance 
Analysis of Microarrays (SAM)—Correlative”; Cluster Characterization: “Abundance”; Event sampling: “Equal”; 
Events sampled per file: “5000”; Minimum cluster size (%): “1”; Cross Validation Folds: “5”; False Discovery 
Rate (%): “1”. Identification of differentially abundant immune cell subsets between groups was performed by 
comparing the mean of the relative abundances of each FlowSOM cluster, of each FlowSOM metacluster, or of 
each CITRUS cell subpopulation cluster. Unless otherwise noted, the Mann–Whitney U test was used for all 
statistical hypothesis testing, with a minimum fold-change of 2 and P value < 0.05 required to be considered as 
statistically significant.

Training  a  neural  network  with  mass  cytometry  data  features  for  supervised  classifica‑
tion.  The Python version of the H2O AutoML package (version 3.26.0.3) was used to train a neural network 
model with stochastic gradient descent for distinguishing mass cytometry profiles from PBC and control sub-
jects. On the training data, AutoML runs in parallel a large selection of candidate machine-learning algorithms 
with uniquely tuned parameters (using random grid-search) and provides the top-performing, parameter-tuned 
model for future cases. To run AutoML,  H2O provides individual cloud instances utilizing Amazon Web Services 
(AWS). The input parameters that were used prior to model-training are the following: Epochs = “10,000”; Mini 
batch size = “1”; Random seed = “1234”. Data curation and model implementation was performed in Python 
version 3.6.4.



4

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:12584  | https://doi.org/10.1038/s41598-020-69358-4

www.nature.com/scientificreports/

Results
A schematic overview of our analysis of the PBMC immunophenotyping data is shown in Fig. 1. Briefly, PBMCs 
were collected from 33 female PBC patients and 33 age-/sex-matched controls, and subjected to single-cell mass 
cytometry (CyTOF) to obtain immune cell abundance profiles. A summary of the output data from our mass 
cytometry experiments, including total number of cells collected and stained for each sample, event counts 
detected by the instrument, and number of live/singlets for analysis, is provided in Supplementary Fig. S1 and 
Supplementary Table S2. After post-processing of raw sample data obtained from the CyTOF machine, immune 

Figure 1.  Schematic overview of the current study’s analysis pipeline to investigate immune cell populations 
implicated in PBC using the Cytobank cloud-based platform (Cytobank, Inc.).
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profiles were analyzed through the Cytobank cloud-based platform for the following: (1) 2D-visualization and 
exploration of single-cell data using viSNE; and (2) identification of immune cell types and their subsets associ-
ated with PBC using hierarchical clustering approaches in FlowSOM and CITRUS.

PBC patients and control  subjects exhibit global differences  in  the peripheral  immune sys‑
tem.  To perform a qualitative analysis of the PBMC immunophenotyping data, we first applied viSNE on the 
immune cell abundance profiles from all PBC patients and control subjects. The resulting t-SNE maps for PBC 
and control groups show several distinct spatial regions (Fig. 2A). This finding reflects the heterogeneity of major 
immune cell lineages (e.g., T cells, B cells), which can be loosely defined using t-SNE maps colored by marker 
intensities (Supplementary Fig.  S2), across immune profiles. Interestingly, we observed differences in densi-
ties of particular localized regions between the two maps, implying altered relative abundances of immune cell 

Figure 2.  Qualitative analysis of PBMC immunophenotyping data using (A) viSNE and (B) FlowSOM reveals 
differences in immune cell lineages between PBC and control. (A) Mass cytometry samples from 33 PBC 
patients were concatenated into 100,000 randomly-sampled total events and mapped onto a t-SNE plot using 
viSNE (left). Analogously, samples from 33 age-/sex-matched controls were mapped using viSNE (right). Each 
point in the t-SNE plot represents a single event (e.g., cell) detected by the mass cytometer, and colors vary 
according to cell abundance density. Observed regional differences in cell densities correspond to differences in 
relative abundances of major immune cell lineages. (B) FlowSOM clusters cells into cell subsets based on their 
marker expression patterns, and generates a Minimum Spanning Tree (MST) of those clusters (left: PBC; right: 
control). Each node is characterized by a pie chart, whose diameter is proportional to the number of events, and 
whose colors indicate specific markers defined in the legend. The background colors group nodes into cell types 
that correspond to different major immune cell types (FlowSOM Metaclusters). Each link connects cell subsets 
of similar marker expression patterns. In the two MSTs of PBC and control, the nodes located in the same 
position correspond to the same cell subset.
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types and their subsets between PBC patients and controls. These regions of differential density can be broadly 
inferred to include B cells  (CD3−,  CD19+,  CD20+; center far right), natural killer (NK) cells  (CD3−,  CD19−, 
 CD14−,  CD56+; far bottom center),  CD4+ T cells  (CD3+,  CD4+; center near left),  CD8+ T cells  (CD3+,  CD8+; 
upper left), and monocytes  (CD3−,  CD19−,  CD14+; upper right). To further evaluate differences in immune cell 
distributions between PBC patients and controls, we used FlowSOM to generate cell clusters, which are visual-
ized as a MST (Fig. 2B). As with viSNE, differences in B cell, T cell, NK cell and monocyte clusters between 
patients and controls are visually apparent.

Major immune cell lineages differentially abundant between PBC and control.  FlowSOM iden-
tified twenty metaclusters, of which three were found to be differentially abundant between the PBC and control 
groups (Table 2 and Fig. 3A–C). The first, Metacluster-3 (Fig. 3A), expresses markers indicative of a gamma-delta 
T cell population  (CD3+TCRgd+) and was 1.2-fold lower in abundance in PBC patients than in controls (0.9% vs. 
1.1%; p < 0.05). The second, Metacluster-4 (Fig. 3B) expresses markers consistent with a subset of  CD8+ T cells 
that express CD161 and PD1  (CD3+CD8+CD161+PD1+) and was found to be 2.7-fold lower in abundance in 
PBC patients relative to controls (0.6% vs. 1.6%; p < 0.001). Finally, Metacluster-16 (Fig. 3C) expresses markers 
consistent with a subset of memory B cells  (CD3−CD19+CD27+CD38−) and was 1.8-fold lower in abundance in 
PBC patients than in controls (1.7% vs. 3.1%; p < 0.005).

Marker  expression  patterns  reveal  immune  cell  subsets  associated  with  PBC.  Metacluster-
level analysis provides an important means to safe-guard against the potential of FlowSOM to over-fractionate 
cells into multiple clusters with similar marker expression profiles, which could diminish our ability to detect 
significant differences. However, the metacluster approach also has the potential to over-combine clusters, as 
evidenced by our Metacluster-11, which apparently contains all of the  CD4+ T cells (Table 2). As the markers 
included in our panel could facilitate further characterization of these metaclusters, we also considered the 
association of individual immune cell clusters with PBC (see cluster-specific marker expression signatures in 
Supplementary Fig. S3). Based on our statistical analysis (i.e., significant difference in abundances consisting of 
a minimum fold-change of 2 and p < 0.05), nine (among a total of 256) FlowSOM clusters were considered to 
be associated with PBC (Table 3 and Supplementary Fig. S4; marker expression for these clusters are shown in 
the heatmap in Fig. 3E). Five of these clusters are members of the aforementioned PBC-associated metaclusters; 
these include: (1) Cluster-9 (Metacluster-3), a subset of gamma-delta T cells expressing CXCR3; (2) Cluster-10 
(Metacluster-4), a subset of  CD161+CD8+ T cells expressing high levels of CD56; (3) Cluster-11 (Metacluster-4), 
a subset of  CD161+CD8+ T cells expressing high levels of CTLA4; (4) Cluster-27 (Metacluster-4), a subset of 
 CD161+PD1+CD8+ T cells; and (5) Cluster-177 (Metacluster-16), a subset of B cells expressing high levels of 
CD24 and CX3CR1. Four of the PBC-associated clusters were not members of PBC-associated metaclusters; 
these include: (1) Cluster-50 (Metacluster-9), a subset of  CD14+CD16+ monocytes expressing high levels of IL3R 
and TIM3; (2) Cluster-68 (Metacluster-9), a subset of monocytes with low CD14 expression; (3) Cluster-113 

Table 2.  FlowSOM metacluster analysis. † Metaclusters 12, 13, 14, 15, 17, 19, and 20 were excluded from this 
table due to their lack of CD45 expression or their having a mean abundance of < 0.1%. ‡ Cirrhosis information 
was unavailable for one patient. § P-values from Mann–Whitney U test (PBC vs. Control / Non-cirrhosis vs. 
Cirrhosis / Non-cirrhosis vs. Control / Cirrhosis vs. Control). Values in bold correspond to p < 0.05. NK, 
natural killer. DC, dendritic cell.

FlowSOM 
metacluster 
 ID†

PBC (n = 33) Control (n = 33)

p  value§
Primary immune cell type (marker expression 
phenotype)

Non-cirrhosis +  
cirrhosis (n = 33)

Non-cirrhosis 
(n = 25)‡ Cirrhosis (n = 7)

Mean (%) SD (%)Mean (%) SD (%) Mean (%) SD (%) Mean (%) SD (%)

1 3.3 ± 3.0 2.9 ± 2.4 4.4 ± 4.6 4.4 ± 3.3 0.093/0.750/0.066/0.455 NK cell  (CD3−CD19−CD14−CD56+CD16+)

2 3.3 ± 3.7 3.6 ± 4.1 2.3 ± 1.7 3.8 ± 2.4 0.087/0.494/0.174/0.117 NK cell  (CD3−CD19−CD14−CD56+)

3 0.9 ± 1.0 1.0 ± 1.1 0.5 ± 0.5 1.1 ± 0.8 0.027/0.171/0.153/0.015 Gamma-delta T cell  (CD3+TCRgd+)

4 0.6 ± 0.6 0.7  ± 0.7 0.4 ± 0.4 1.6 ± 1.2  < 0.001/0.075/0.001/0.002 CD8+ T cell  (CD3+CD8+CD161+PD1+)

5 1.2 ± 1.6 1.3 ± 1.8 0.9 ± 0.9 1.0 ± 1.0 0.778/0.820/0.632/0.901 CD8+ T cell  (CD3+CD8+CD25+)

6 9.6 ± 3.6 9.9 ± 3.8 8.4 ± 3.3 8.8 ± 3.2 0.397/0.374/0.272/0.831 CD8+ T cell  (CD3+CD8+CCR7+)

7 7.1 ± 7.1 7.5 ± 7.8 5.5  ± 4.0 6.4 ± 5.7 0.847/0.891/0.851/0.943 CD8+ T cell  (CD3+CD8+)

8 0.5 ± 0.3 0.5 ± 0.3 0.4 ± 0.3 0.5 ± 0.3 0.964/0.616/0.950/0.606 DC  (CD3−CD14−CD19−CD56−CD11c+ 

HLADR+CD123+CD366+)

9 11.1 ± 7.3 10.8 ± 7.8 12.3 ± 6.3 8.0 ± 5.2 0.072/0.438/0.195/0.075 Monocyte  (CD3−CD19−CD14+)

10 1.4 ± 1.2 1.5 ± 1.3 1.1  ± 0.5 1.4 ± 1.2 0.644/0.927/0.615/0.929 DC  (CD3−CD14−CD19−CD56−CD11c+HLADR+ 

CD123+CD366−)

11 47.8 ± 13.6 47.8 ± 15.3 46.9 ± 7.0 50.5 ± 8.8 0.248/0.964/0.338/0.240 CD4+ T cell  (CD3+CD4+)

16 1.7 ± 1.3 2.0 ± 1.5 0.9 ± 0.2 3.1 ± 2.6 0.003/0.005/0.055/ < 0.001 B cell  (CD3−CD19+CD20+CD24+CD27+)

18 9.3 ± 5.5 8.2 ± 5.0 14.2 ± 5.0 8.0 ± 4.8 0.302/0.007/0.838/0.004 B cell  (CD3−CD19+CD20+CD24−CD27−)

Sum (%) 97.9 97.8 98.2 98.6
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Figure 3.  FlowSOM metaclusters, which represent immune cell types, characterize differences in immune 
profiles between PBC and control. (A–D) FlowSOM metaclusters that varied in relative abundance, i.e., 
proportion, across study groups. Boxplots indicate relative abundances of Metacluster-3, Metacluster-4, 
Metacluster-16, and Metacluster-18, which corresponds to gamma-delta T cell  (CD3+TCRgd+), 
 CD8+ T cell  (CD3+CD8+CD161+PD1+), memory B cell  (CD3−CD19+CD27+CD38−), and naïve B cell 
 (CD19+CD27−IgD+CCR7+) immune cell types, respectively. The ‘Cirrhosis’ and ‘Non-cirrhosis’ groups are 
subsets of the ‘PBC’ group. Numbers in parentheses indicate sample size of the group. Cirrhosis status was 
unavailable for one PBC patient. Horizontal bars indicate the Mann–Whitney U test performed on the 
respective group pairs (significance level: *0.01 ≤ p < 0.05; **0.001 ≤ p < 0.01; and ***p < 0.001). (E) Marker 
expression patterns for each of the nine FlowSOM clusters (derived from Metaclusters-3, -4, -16, and -18) found 
to be differentially abundant (i.e., fold-change ≥ 2.0 and p < 0.05) between PBC and control. Clusters from the 
same metacluster grouped according to their marker intensities. Color corresponds to marker intensity, which 
was scaled and centered for each marker.
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(Metacluster-9), a subset of  CD66b+ cells (contaminating granulocytes); and (4) Cluster-196 (Metacluster-18), a 
subset of  CD45− cells expressing B cell markers (CD19 and CD20).

Naïve B cell subsets differ in abundance between PBC patients with and without liver cirrho‑
sis.  We next explored links between disease severity and immune cell-type abundance in PBC by applying the 
same FlowSOM analysis to compare PBC patients with liver cirrhosis to those without (Table 2 and Fig. 3C–D). 
The clinical, imaging, histological, and endoscopic features of PBC patients who developed cirrhosis prior to 
blood sample collection are detailed in Supplementary Table S3. Metacluster-16 (Fig. 3C), which was shown 
to be of reduced abundance in PBC patients compared to controls, also demonstrated reduced abundance in 
cirrhotic relative to non-cirrhotic PBC patients. Metacluster-18 (Fig. 3D) was found to have increased relative 
abundance in cirrhotic PBC patients compared to controls (14.2% vs. 8.0%; p < 0.01) and to non-cirrhotic PBC 
patients (14.2% vs. 8.2%; p < 0.01). This metacluster, which was found to be comprised of twenty individual 
clusters, expresses markers consistent with a non-specific B cell population  (CD3−CD19+CD20+). In this regard, 
to better define the B cell subtype(s) responsible for the Metacluster-18 association, we identified which of the 
constituent clusters were individually associated with cirrhosis in PBC patients. Five of the twenty clusters of 
Metacluster-18 were found to be associated with cirrhosis, all of which were increased in cirrhotic PBC patients 
compared to non-cirrhotic PBC patients (Table 4). All of these clusters express markers consistent with naïve B 
cells  (CD19+CD27−IgD+CCR7+) with minor variability in expression of chemokine receptors and other markers.

CITRUS  confirms  immune  cell  subsets  previously  identified  as  differentially  abundant  in 
PBC.  As a complement to our FlowSOM analyses, we used CITRUS to analyze the immune cell profiles of 
PBC patients and controls. CITRUS identified a total of 162 clusters (Fig. 4A), of which three were found to be 

Table 3.  FlowSOM clusters differentially abundant between PBC and Control. † Ratio of larger mean to 
smaller mean. Positive and negative signs indicate higher mean in PBC and in Control, respectively. ‡ P-values 
from Mann–Whitney U test. FlowSOM clusters were considered to be associated with PBC if fold-change 
was ≥ 2.0 and p < 0.05.

FlowSOM cluster 
ID

FlowSOM 
metacluster ID Immune cell subset

PBC Control

Fold-change† p  value‡Mean (%) SD (%) Mean (%) SD (%)

9 3 Gamma-delta T cells 
 (CXCR3+) 0.19 ± 0.32 0.37 ± 0.47 2.0(−) 0.014

10 4 CD8+ T cells 
 (CD161+PD1+CD56+) 0.16 ± 0.21 0.56 ± 0.64 3.5(−) 0.003

11 4 CD8+ T cells 
 (CD161+PD1+CTLA4+) 0.16 ± 0.15 0.32 ± 0.28 2.0(−) 0.002

27 4 CD8+ T cells 
 (CD161+PD1+) 0.31 ± 0.38 0.75 ± 0.57 2.4(−) < 0.001

50 9 Monocytes 
 (IL3R+TIM3+) 0.52 ± 0.60 0.26 ± 0.45 2.0(+) 0.032

68 9 Monocytes 0.63 ± 1.08 0.26 ± 0.42 2.4(+) 0.035

113 9 CD66b+ Granulocytes 
(contaminant) 0.90 ± 0.84 0.37 ± 0.50 2.4(+) 0.006

177 16 Memory B cells 0.25 ± 0.29 0.71 ± 0.25 2.9(−) 0.004

196 18 CD45− cells 0.59 ± 0.60 0.26 ± 0.25 2.3(+) 0.007

Table 4.  Marker expression phenotypes and abundances of cirrhosis-associated clusters belonging to 
Metacluster-18. † All clusters are  CD45+CD3−CD19+CD20+IgD+CD45RA+CCR7+HLADR+ in addition to 
the listed markers. ‡Ratio of larger mean to smaller mean. Positive sign indicates higher mean in Cirrhosis. 
§ P-values from Mann–Whitney U test. Only FlowSOM clusters corresponding to fold-change ≥ 2.0 and p < 0.05 
are shown.

FlowSOM cluster ID Immune cell subset Marker expression  phenotype†

PBC

Fold-change‡ p  value§

Cirrhosis (n = 7)
Non-Cirrhosis 
(n = 25)

Mean (%) SD (%) Mean (%) SD (%)

193 Naïve B cell CD27−CD24hiCD38hiCXCR5intCCR6+CX3CR1int 0.78 ± 0.73 0.27 ± 0.27 2.9( +) 0.018

210 Naïve B cell CD27−CD24intCD38intCXCR5hiCCR6+CX3CR1int 1.87 ± 1.46 0.63 ± 0.64 3.0( +) 0.020

225 Naïve B cell CD27−CD24−CD38intCXCR5hiCCR6+CX3CR1int 0.48 ± 0.23 0.25 ± 0.21 2.0( +) 0.009

227 Naïve B cell CD27−CD24−CD38intCXCR5hiCCR6+CX3CR1low 1.78 ± 1.14 0.90 ± 1.33 2.0( +) 0.020

242 Naïve B cell CD27−CD24-CD38intCXCR5hiCCR6+CX3CR1hi 1.28 ± 0.87 0.54 ± 0.46 2.4( +) 0.042
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Figure 4.  CITRUS identifies differentially abundant immune cell subsets between PBC patients and age-/
sex-matched controls. (A) CITRUS produces a radial hierarchical tree of cells subsets using an unsupervised 
clustering approach. Each node (i.e., cluster) represents a subset of cells, and each edge points from a parent 
node to child node(s). Only the highlighted nodes correspond to cell subsets of statistically significant 
differential abundance using a significance analysis of microarray (SAM) correlative association model 
(Benjamini–Hochberg adjusted p value < 0.05). (E) CITRUS map shows a significantly higher abundance of 
 CD14+CD11c+CD66b+ cells, and lower abundances of  CD19+CD24hiCD27+ and  CD3+CD8+CD161+ cells, in 
PBC compared to control. CITRUS maps overlaid with marker-specific intensities show their relative expression 
levels (across all nodes) in the proposed (B)  CD19+CD24hiCD27+; (C)  CD14+CD11c+CD66b+; and (D) 
 CD3+CD8+CD161+ cell subsets. The nodes circled in black indicate positive or high expression of a particular 
marker.
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differentially abundant between the PBC patients and controls (Fig. 4E). CITRUS maps overlaid with marker 
intensities (Fig. 4B–D) identify the clusters as: (1) a subset of B cells expressing CD27 and a high level of CD24 
(Fig. 4B); (2) a subset of  CD66b+ cells (contaminating granulocytes) (Fig. 4C); and (3) a subset of  CD8+ T cells 
expressing high levels of CD161 (Fig. 4D). Notably, these results are consistent with PBC-associated clusters 
from the FlowSOM analysis.

Neural  network  classification  model  to  distinguish  PBC  from  control.  Finally, we used our 
FlowSOM data set to construct a neural network model in order to determine if the immune profiles are capable 
of discriminating PBC patients from controls. Performance evaluation, which was done using ten-fold cross-
validation on the samples of our pilot study, demonstrated that our classification model achieved reasonably 
high accuracy: area under the ROC curve of 0.86 (Supplementary Fig. S5A); an overall classification accuracy 
of 86.4% (57/66) with PBC- and control-specific classification accuracies of 90.9% (30/33) and 81.8% (27/33), 
respectively (Supplementary Fig. S5B).

Discussion
Our study is the first to perform mass cytometry-based immunophenotyping to identify distinct immune cell 
subsets associated with PBC. Better understanding of how the immune system contributes to, and is affected by, 
the underlying liver damage and resulting cholestasis in PBC could provide novel insights leading to improved 
prognosis, management, and therapy of this complex, multifactorial disease. While liver tissue is not amenable 
to regular sampling, the peripheral immune system is easily accessable, previously shown to be altered in PBC, 
and well-suited to routine measurement. Recent advances in flow- and mass-cytometry have greatly increased 
the number of cellular markers that can be simultaneously detected, allowing for a more comprehensive assess-
ment of the immune system at single-cell resolution.

Using viSNE and FlowSOM-generated MST maps, we found that abundances and substructures of T cell, 
B cell, NK cell, and monocyte populations visually appear to differ between PBC patients and controls. Using 
FlowSOM clustering analysis, we demonstrated that metaclusters containing gamma-delta T cells (Metaclus-
ter-3),  CD8+ T cells expressing CD161 (Metacluster-4), and memory B cells expressing CD24 (Metacluster-16) 
are of lower abundance in PBC patients relative to controls. Refined cluster analysis highlights cell subsets 
within these lower-abundant metaclusters, including gamma-delta T cells expressing high levels of CXCR3; 
 CD8+CD161+ T cells expressing high levels of CD56; and  CD8+CD161+ T cells expressing high levels of CTLA4. 
Cluster analysis also identified an interesting population of  CD14+CD16+ monocytes expressing high levels of 
IL3R and TIM3, which were found to have significantly elevated abundance in PBC patients relative to controls. 
Notably, additional analysis using CITRUS was consistent with the FlowSOM findings. FlowSOM analysis also 
showed that one of the aforementioned three PBC-associated metaclusters, i.e., a metacluster containing CD24 
expressing memory B cells (Metacluster-16), was also of significantly lower abundance in cirrhotic compared to 
non-cirrhotic PBC patients. Moreover, this analysis also identified a non PBC-associated metacluster containing 
a number of naïve B cell subsets (Metacluster-18), which was found to be more abundant in cirrhotic compared 
to non-cirrhotic patients. Finally, we trained a neural network algorithm to differentiate PBC patients from 
controls, which demonstrated ~ 86% accuracy in cross-validation; this further highlights that peripheral immune 
cell populations differ between PBC patients and controls.

Identication of differentially abundant immune cell subsets offers a glimpse into potential immune mecha-
nisms contributing to PBC. Gamma-delta T cells are non-conventional T cells with a restricted T cell recep-
tor repertoire often conceived as forming a bridge between innate and adaptive  immunity23. In our study, the 
peripheral gamma-delta T cell population was found to be reduced in PBC compared to controls, visually on the 
FlowSOM-MST map and quantitatively in FlowSOM metacluster and cluster analyses. This finding is consistent 
with a previous study of PBC  patients24, but at odds with other studies that reported no significant difference in 
gamma-delta T cell abundance between PBC patients and  controls25, 26. One of the latter studies did report an 
elevation of Vdelta1 gamma-delta T cells, which is a subset that is generally resident in the intestine and liver, 
in PBC patients with active disease or those who poorly respond to UCDA treatment relative to controls and 
adequate responders, respectively. Specifically targeting this subset with additional markers will be of interest 
in our future efforts.

CD8+ T cells expressing high levels of the C-type lectin CD161 include a population of unconventional 
innate-like T cells known as MAIT  cells27. In our study, we found a metacluster and three of its constituent 
clusters expressing markers consistent with this population, and also to have significantly reduced abundance 
in PBC patients compared to controls. This finding is consistent with previous studies that reported reduced 
abundance of MAIT cells in peripheral  blood10,28 and in liver  tissues10 of PBC patients compared to healthy 
controls. Setsu et al. observed that depleted MAIT cells were not recovered to normal levels in the blood of PBC 
patients even after UDCA treatment, suggesting the possibility that MAIT cells were being activated, exhausted, 
and depleted due to ongoing liver  inflammation10. Along those lines, the reduced-abundance  CD8+CD161+ T 
cell metacluster in our study also expressed high levels of the immune-exhaustion biomarker PD-1, and one of 
the constituent clusters expressed high-levels of CTLA4, which is also a marker of exhaustion. This finding is 
consistent with studies of other chronic liver diseases, including hepatitis B viral  infection29 and hepatocellular 
 carcinoma30, which implicate exhaustion and loss of MAIT cells with worsening liver damage. Considering the 
apparent importance of these cells in PBC, our future efforts should include additional MAIT-specific markers 
such as the MAIT-invariant T cell receptor (Vα7.2).

The  CD24+CD27+ B cell population contains subsets of regulatory B cells  (Breg) that include plasmablasts, 
transitional B cells and B10 cells, which are important contributers to immune homeostasis and maintenance 
of  tolerance31. In our study, abundance of a metacluster and one of its constituent clusters expressing markers 
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consistent with this population was found to be markedly decreased in PBC patients relative to controls, and 
in cirrhotic compared to non-cirrhotic PBC patients. This finding is in contrast to other studies in PBC, which 
identified no such  differences32,33. However, the approaches in those studies were quite different from ours, so 
the disparity should be interpreted with caution. Among the  Breg subtypes, the PBC- and cirrhosis-associated 
cluster most closely represented B10 cells, due to the lack of CD38 and high expression of  IgD34. This rare subtype 
of B cells mediate immune responses through their secretion of anti-inflammatory cytokine IL-10, and have 
been implicated in  autoimmunity35. Considering our findings, along with the known anti-inflammatory effects 
of B10 cells and their therapeutic  potential36, more in-depth study of the role of memory and regulatory B cells, 
particularly B10 cells, in PBC is strongly warranted.

Three clusters belonging to the metacluster containing monocytes were found to have increased abundance in 
PBC relative to controls. One of the groups strongly expressed CD66b and was considered to represent granulo-
cyte contamination in the PBMC fraction. The second cluster expressed CD16 and low level of CD14, consistent 
with the classification of non-classical monocyte. While these cells are generally considered to be involved with 
resolving inflammation, some studies suggest they may be pathogenic in the context of certain inflammatory 
 diseases37. The third cluster expressed CD14 and CD16, consistent with the classification of intermediate mono-
cyte, but also expressed high levels of the IL3 receptor CD123, and the immunomodulatory molecule TIM3. 
While both CD123 and TIM3 have been shown to modulate the function of monocytes and other innate immune 
 cells38, there is currently no evidence on how this rare population of cells could contribute to PBC. Monocytes 
and other myeloid cells present in the PBMC fraction share many of the same markers; however, as our CyTOF 
immunophenotyping panel did not include many myeloid-specific markers, it is difficult to discriminate between 
these subtypes in the current study. Future efforts in PBC should consider inclusion of a more diverse set of 
markers to assist in characterizing myeloid  subtypes39.

B cells are widely acknowledged to contribute to the immunopathogenesis and maintenance of  PBC40–42. We 
identified a metacluster and five of its constituent clusters, all of which expressing markers indicative of naïve B 
cell-like properties, to be of higher abundance in cirrhotic compared to non-cirrhotic patients. Notably, these 
clusters were not found to differ in the full set of PBC patients relative to controls. While this finding should 
be taken with caution due to the low number of cirrhotic patients in the study, it does point to the need for an 
expanded set of B cell-specific markers in future studies of PBC.

While small in sample size, our study was able to identify a number of immune cell subsets demonstrating 
altered abundance in PBC patients relative to controls, and in cirrhotic compared to non-cirrhotic PBC patients. 
Our findings are generally consistent with the existing literature, suggesting that our stored PBMCs are of 
adequate quality to obtain meaningful results. Moreover, detection of immune cell subsets that show differential 
abundance in patients with more advanced disease suggests that immune profiling could eventually become a 
valuable tool for the clinical management of PBC. Our study warrants further efforts that include additional cell 
type-specific markers, a wider range of analytical modalities, and individuals representing a broader range of 
disease phenotypes and severities. In this regard, we expect that such future investigations will lead to a better 
understanding of PBC pathogenesis and potential discovery of novel biomarkers and treatment modalities that 
could benefit PBC patients. For instance, this might include the use of other continuous and dichotomous PBC 
risk scores to evaluate disease severity rather than just using cirrhosis status.

Data availability
Raw mass cytometry data for the current study are available from the corresponding authors upon reasonable 
request.
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