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A novel predictive model 
incorporating immune‑related 
gene signatures for overall survival 
in melanoma patients
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Guangtong Deng2,3,4* & Xiang Chen2,3,4*

Melanoma is the most invasive type of skin cancer, in which the immune system plays a vital role. 
In this study, we aimed to establish a prognostic prediction nomogram for melanoma patients that 
incorporates immune-related genes (IRGs). Ninety-seven differentially expressed IRGs between 
melanoma and normal skin were screened using gene expression omnibus database (GEO). Among 
these IRGs, a two-gene signature consisting of CCL8 and DEFB1 was found to be closely associated 
with patient prognosis using the cancer genome atlas (TCGA) database. Survival analysis verified that 
the IRGs score based on the signature gene expressions efficiently distinguished between high- and 
low-risk patients, and was identified to be an independent prognostic factor. A nomogram integrating 
the IRGs score, age and TNM stage was established to predict individual prognosis for melanoma. The 
prognostic performance was validated by the TCGA/GEO-based concordance indices and calibration 
plots. The area under the curve demonstrated that the nomogram was superior than the conventional 
staging system, which was confirmed by the decision curve analysis. Overall, we developed and 
validated a nomogram for prognosis prediction in melanoma based on IRGs signatures and clinical 
parameters, which could be valuable for decision making in the clinic.
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CI  Confidence interval
GSEA  Gene set enrichment analysis

Melanoma is an aggressive malignancy with incidence rate constantly growing over the past 40 years1–3. There 
were approximately 287,723 new cases and 60,712 deaths of melanoma in 2018  globally4. The prognosis of 
melanoma is generally unfavorable, with a 5-year overall survival (OS) ranging from 30 to 55% in recent clini-
cal trials for  immunotherapy5,6. Much effort has been put into identifying biomarkers to evaluate the prognosis 
of melanoma  patients7,8. Currently well-established markers include clinicopathologic features such as depth 
of tumor and ulceration, molecular biomarkers S100, HMB-45 and serum LDH according to the American 
Joint Committee on Cancer (AJCC) staging  system9–12. However, these markers still remain deficient given that 
patients at the same stage could have varied survival outcomes. Therefore, developing more superior biomarkers 
for melanoma is in urgent need.

Immune system is largely involved in surveillance and elimination of melanoma, while immunosuppression 
potentiates its proliferation and  metastasis13. Over the past decade, mechanistic understanding of immune regu-
lation in tumor fueled the development of novel immunotherapy, including checkpoint inhibitors PD-1 (pro-
grammed death-1) and CTLA-4 (cytotoxic T-lymphocyte antigen 4) monoclonal antibodies, which transformed 
the prognosis for many  patients14–17. Consequently, increasing research began to focus on finding immune-related 
 biomarkers18. Typically, PD-L1 expression, tumor mutational burden and tumor infiltrating T cells are shown 
to be predictive of patient outcomes, but these markers are used only for reference in the clinic due to their 
insufficient sensitivity and  specificity19–23. Moreover, the development of combined immune markers recently 
arose, for single biomarkers can be inadequate to achieve desirable  efficiency24,25. Despite all these, no combined 
immune markers are formally validated or recommended as a clinical tool for  prognosis9.

Bioinformatics analysis based on public database has been used to investigate the prognostic markers in 
various cancers, with which predictive models can be established to assess individual  survival26. Until now, 
there have been a few nomograms for melanoma prognosis prediction, which however, are limited by including 
merely clinical features as their evaluation indicators, without regard to any gene expression information, let 
alone combined immune  markers27,28. In this study, we identified immune-related genes (IRGs) that optimally 
predicted OS in melanoma, with the use of Gene Expression Omnibus (GEO) and The Cancer Genome Atlas 
(TCGA) database. For the first time, a prognostic nomogram combining IRGs score with clinical characteristics 
was constructed, thus providing values for recognizing high risk patients and helping with individualized treat-
ment strategy options.

Methods
Data retrieval and processing. Transcriptome profiling datasets and clinical parameters were down-
loaded from Gene Expression Omnibus (GEO) (https ://www.ncbi.nlm.nih.gov/geo) and The Cancer Genome 
Atlas (TCGA) database (https ://xenab rowse r.net/datap ages). GSE15605 and GSE46517 were used to screen dif-
ferentially expressed genes (DEGs). TCGA melanoma dataset was selected as the training dataset which included 
460 melanoma samples. GSE54467 dataset including 79 melanoma samples was selected as the GEO validation 
dataset. The DEGs in TCGA and GEO dataset were overlapped and their expressions were normalized using 
“limma” and “sva” packages in R version 3.6.0 software. IRGs were acquired from the ImmPort database (https 
://www.immpo rt.org).

Identification of differential expressed immune-related genes. GSE15605 including 46 primary 
melanoma patient samples and 16 normal skin samples and GSE46517 consisting of 31 primary melanoma 
patient samples and 7 normal skin samples were used to extract DEGs using GEO2R. Benjamini & Hochberg 
false discovery rate method was used as a P value adjustment. Adjusted P < 0.05 and log (fold change) ≥ 1 were 
considered as statistically significant. The overlap of the DEGs and IRGs was selected as the set of the differen-
tially expressed immune-related genes (DE-IRGs) for further analysis and visualized via Venn diagram.

Functional analysis with DE-IRGs. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene 
Ontology (GO) enrichment pathway analyses were performed to investigate the molecular functions, cellular 
component and biological processes of DE-IRGs. Signaling pathways that significantly related (P < 0.05) to DE-
IRGs were identified by DAVID (https ://david .ncifc rf.gov/). Protein–protein interactions (PPI) network of the 
DE-IRGs were explore by The STRING database (https ://strin g-db.org) where confidence score ≥ 0.4 was  used29, 
and visualized with Cytoscape v. 3.7.1 (https ://cytos cape.org/). Hub nodes were identified with the Cytoscape 
plugin cytoHubba by the maximal clique centrality method. DE-IRGs clusters that strongly correlated in the PPI 
network were identified with the Cytoscape plugin MCODE. GO enrichment analysis were further performed 
on DE-IRGs clusters.

Identification and validation of the prognostic IRGs score. Univariate Cox analysis was first per-
formed to screen the DE-IRGs significantly associated with overall survival (OS) in TCGA melanoma dataset 
using the “survival” package. Next, genes with P < 0.01 by the univariate analysis were chosen for least absolute 
shrinkage and selection operator (LASSO) logistic regression. Genes with nonzero coefficients were subsequently 
selected for multivariate Cox analysis to identify the independent prognostic genes. P < 0.05 was regarded as sta-
tistically significant in the multivariate Cox analysis. With these independent prediction genes, the IRGs score 
for OS was further calculated as follows: IRG score = β1*X1 + β1*X1 + … + βn*Xn (β: the coefficient derived from 
multivariate regression; X: gene expression value). The median risk score was chosen as a cutoff value in TCGA 
melanoma dataset, which was also used to separate patients in GEO validation datasets into high-risk or low-risk 

https://www.ncbi.nlm.nih.gov/geo
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 group30–32. Accordingly, a Kaplan–Meier survival curve was constructed to describe the survival of patients in 
the high-risk and low-risk group. Furthermore, patient clinicopathological features including age, gender, local 
ulceration, Breslow depth and tumor stage were obtained from TCGA melanoma dataset; Age, gender and stage 
were obtained from GEO validation dataset. Univariate and multivariate Cox regression with both IRGs score 
and clinicopathological features were performed to find out the independent prediction factors significantly 
associated with survival. To explore whether the IRGs score is helpful in the application of immunotherapy, 
GSE78220 dataset which includes a melanoma patient cohort treated with anti-PD-1 therapy and pre-treatment 
RNA sequencing data was analyzed. IRGs score, high- and low-risk groups were generated by the calculation 
formula and cutoff value described above. The proportions of anti-PD-1 therapy responders and non-responders 
in low-risk and high-risk groups were obtained.

Gene set enrichment and pathway analysis (GSEA). To illustrate the biological functions of the prog-
nostic genes in high-risk and low-risk patient groups, GSEA was performed in java GSEA (verision 3.0) based 
on the Molecular Signatures Database version 6.233. With the 460 melanoma samples in TCGA dataset, KEGG 
pathways, biological processes, cellular components, molecular functions associated with high-risk and low-risk 
groups were identified by using C2 (curated gene sets), C5 (GO gene sets). FDR q value < 0.05, |NES|> 1 were 
considered statistically significant.

Validation of CCL8 and DEFB1 expression. Gene expression profiling interactive analysis (GEPIA) is 
a website server to analyze the RNA sequencing data of tumors and normal samples from the TCGA and the 
Genotype-Tissue Expression (GTEx) projects (https ://gepia .cance r-pku.cn/index .html). Expressions of CCL8 
and DEFB1 were plotted with GEPIA in cutaneous melanoma and its subtypes.

Development and validation of the nomogram. Following multivariate analysis, all independent 
prognostic predictors including age, stage and IRGs score were used to develop a nomogram. Concordance 
index, receiver operating characteristic (ROC), area under the curve (AUC) and calibration curves were applied 
to evaluate the discrimination and accuracy of the nomogram. Decision curve analysis (DCA) was conducted to 
evaluate the clinical utility of the nomogram and TNM stage through quantifying net benefits against a range of 
threshold  probabilities34,35. Finally, the prognostic nomogram was externally validated in the GEO dataset. All 
analyses were conducted in R software. The packages of R used in this study included “rms”, “foreign”, “survival”, 
“survivalROC” and "stdca.R". P < 0.05 was considered statistically significant unless otherwise noted.

Results
Screening of differentially expressed IRGs on melanoma. The whole workflow for the study was 
presented in Fig. 1. By comparing expression profiles from melanoma tissue and normal skin in GSE15605 and 
GSE46517 dataset, 3,251 and 1,125 genes were identified as DEGs respectively with volcano plot analysis (FC ≥ 1, 
FDR ≤ 0.05) (Fig. 2a, b). A total of 1812 immune-related genes (IRGs) were downloaded from Immport data-
base. Ninety-seven candidate genes, defined as DE-IRGs, were overlapped between DEGs and IRGs and visual-
ized by Venn diagram (Fig. 2c). Finally, 81 DE-IRGs were identified mapped with TCGA (melanoma) dataset 
and GEO (GSE54467) dataset, where patient survival information was available for downstream prognostic gene 
identification.

Functional enrichment and PPI network analysis of DE-IRGs. KEGG and GO enrichment pathway 
analyses were applied to discover the functions of the 81 DE-IRGs (Fig. 2d,e). The DE-IRGs were remarkably 
enriched in biological processes related to chemokine signaling pathway and cytokine-cytokine receptor interac-
tions from KEGG analysis. And the extracellular region, immune response and cytokine activity were enriched 
in the DE-IRGs from GO analysis. These indicated an immune-related, secretary and soluble factor dominant 
function in DE-IRGs. A PPI network of the 81 DE-IRGs was established, where 76 nodes and 324 interactions 
was constructed, to identify the interactions between genes (Supplementary figure S1a). The top 15 candidate 
genes were identified to be significantly involved in the network (Supplementary figure S1b). Module analysis 
recognized related clustering modules in the PPI network (Supplementary figure S1c). With the DE-IRGs clus-
ters, GO analysis were applied for functional enrichment (Supplementary figure S1d). The results from PPI net-
work and pathway analysis suggested the extracellular region, specifically multiple chemokines and cytokines, 
were densely connected and enriched in the DE-IRGs.

Identification of CCL8 and DEFB1 as the independent prognostic DE-IRGs. With the 81 can-
didate DE-IRGs identified, TCGA melanoma dataset (training) and GEO GSE54467 dataset (validation) were 
used to recognize the genes associated with survival. Clinical features of these two datasets were summarized in 
Supplementary table S1. The 81 DE-IRGs in TCGA melanoma dataset were analyzed in univariate Cox analysis, 
and 30 DE-IRGs were significantly associated with patient survival (P < 0.01) (Supplementary table S2). Then, a 
LASSO logistic regression was applied to avoid collinearity of multiple variables, and 13 DE-IRGs were obtained 
(Fig. 3a). Coefficient of each gene in TCGA melanoma dataset was illustrated in Fig. 3b. With the 13 DE-IRGs 
selected, multivariate Cox regression were further performed to figure out the association of gene expression 
with the patient OS, where CCL8 (HR = 0.81, 95% CI 0.66–0.98, P = 0.031) and DEFB1 (HR = 1.15, 95% CI 1.01–
1.31, P = 0.030) were finally identified to be the independent prognostic genes (Fig. 3c). In addition, the differ-
ential expressions of CCL8 and DEFB1 were validated with GEPIA program in all mutation subtypes including 
BRAF, NF1, RAS mutations and triple wild type (Fig. 3d,e).

https://gepia.cancer-pku.cn/index.html
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Development and validation of IRGs score model. The independent prognostic genes CCL8 and 
DEFB1 were chosen to establish a risk score model. From multivariate Cox regression, the coefficients for CCL8 
and DEFB1 were − 0.364 and 0.200 respectively. Therefore, the IRG score of each patient was calculated accord-
ing to the formula: IRGs score = (− 0.364) × (expression value of CCL8) + 0.200 × (expression value of DEFB1). 
The patients were divided into high- and low-risk groups based on the median risk score (− 0.644) in TCGA 
melanoma dataset. Kaplan–Meier survival analysis showed that patients in the high-risk group had significantly 
shorter OS than those in the low-risk group (Fig. 4a). The distribution of the risk score, OS, expressions of CCL8 
and DEFB1 were also presented, suggesting that patients with high-risk score had lower expressions of CCL8, 
higher expressions of DEFB1 and more death cases (Fig. 4b). To confirm the robustness of our model, GEO 
dataset (GSE54467) which included 79 melanoma patients was applied as the external validation. The patients 
were divided into high- and low-risk groups according to the same formula and cutoff above. Consistent with the 
previous results, high-risk patients had significantly worse survival than low-risk patients (Fig. 4c). Expressions 
of decreased CCL8, increased DEFB1 and more deaths were found in high-risk group than in low-risk group in 
the GEO validation dataset (Fig. 4d). To further explore the application of IRGs in immunotherapy, we analyzed 
the pre-treatment mRNA data of 26 melanoma patients who received anti-PD-1 therapy in GSE78220 dataset. 

Figure 1.  Overall design of the present study. DEGs differentially expressed genes, IRGs immune-related genes, 
DE-IRGs differentially expressed immune-related genes, TCGA  the cancer genome atlas, GEO gene expression 
omnibus, LASSO least absolute shrinkage and selection operator, C-index concordance index, ROC receiver 
operating characteristic, AUC  area under the curve, DCA decision curve analysis.
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According to the IRGs score model described above, 11 and 15 patients were identified as high- and low-risk 
patients respectively. Surprisingly, 9 (81.8%) high-risk patients responded to the therapy, while only 5 (33.3%) 
low-risk patients responded, which suggested the high-risk patients were more sensitive to anti-PD-1 treatment 
than the low-risk group (Supplementary figure S2).

Gene set enrichment and pathway analysis for DE-IRGs. To investigate the underlying molecular 
mechanism of the IRGs signature, we conducted GSEA comparing the high-risk group with the low-risk group 
in 460 melanoma patients from TCGA. There was no GO or KEGG pathway significantly enriched in the high-
risk group. However, 946 and 35 pathways in GO and KEGG analysis were identified to be associated with low-
risk group, and the top 10 significant terms for each module were summarized in Supplementary table S3. The 
results demonstrated a major role of antigen presenting cells and T cells in the low-risk group (Supplementary 
figure S3).

Development and validation of nomogram based on IRGs and clinicopathological risk fac‑
tors. To construct a clinical nomogram that predicts the prognosis of melanoma patients, the clinicopatho-
logical factors including age, gender, ulceration, Breslow depth and stage, as well as IRGs score in TCGA mela-
noma dataset were analyzed with univariate and multivariate Cox analysis (Fig. 5a,b). Importantly, IRGs score 
was shown to be significantly associated with OS in both with univariate and multivariate analyses. Independ-
ent prognostic predictors for melanoma were found to be IRGs score (HR = 2.985, 95%CI 1.680–5.302), age 
(HR = 1.025, 95%CI 1.007–1.045) and stage (HR = 1.719, 95%CI 1.173–2.520) by multivariate analysis (Fig. 5b). 
We reached a similar conclusion in GEO validation dataset (IRGs score: HR = 4.214, 95%CI 1.856–9.568, age: 
HR = 1.039, 95%CI 1.017–1.062, and stage (HR = 2.129, 95%CI 1.377–3.292) (Fig. 5c,d).

Figure 2.  Identification of DE-IRGs and functional enrichment analysis. (a,b) Volcano plot illustrating 
differentially expressed genes (DEGs) between melanoma tissue and normal skin in GSE15605 (a) and 
GSE46517 (b). (c) Venn diagram of the overlapped genes between DEGs and IRGs. (d) Enriched Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways of DE-IRGs. (e) Enriched Gene Ontology (GO) 
pathways of DE-IRGs. MF molecular funcion, CC cell component, BP biological process.
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Figure 3.  Screening and verification of prognosis-related IRGs. (a,b) LASSO analysis for selecting the candidate 
IRGs in TCGA dataset. (c) Forest plot by multivariate analysis showing hazard ratio of the candidate IRGs. 
(d,e) Boxplots showing expressions of identified IRGs in melanoma tissue and normal skin in general (d) or its 
subtype (e) from Gene expression profiling interactive analysis (GEPIA). SKCM: skin cutaneous melanoma; T: 
tumor; N: normal; WT: wild type.
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With the combination of age, stage and IRGs score, we established an IRGs nomogram based on TCGA 
melanoma dataset to predict the individual risk of 3-year or 5-year survival (Fig. 6a). The concordance index 
of the nomogram was 0.705. Moreover, ROC analyses suggested that the nomogram achieved a superior 3-year 
prediction efficacy with an AUC of 0.778 compared to other models such as IRGs signature (0.701), age (0.607), 
and tumor stage (0.670), and a better 5-year prediction efficacy with an AUC of 0.745 compared to IRGs signature 
(0.709), age (0.613), and tumor stage (0.592) (Fig. 6b,c). Also, calibration curves indicated excellent agreement 
between the nomogram prediction and actual observation in terms of the 3-year and 5-year survival rates in the 
TCGA melanoma dataset (Fig. 6f). In addition, the nomogram of GEO validation dataset reached a concord-
ance index of 0.715. ROC analyses in the validation dataset demonstrated that the nomogram generated an AUC 
of 0.813 higher than that in IRGs signature (0.667), age (0.610), and tumor stage (0.721) in 3-year prediction, 
and an AUC of 0.838 in the nomogram higher than that in IRGs signature (0.704), age (0.637), and tumor stage 
(0.680) in 5-year prediction (Fig. 6d,e). Calibration curves also showed a satisfactory goodness-of-fit in GEO 
dataset (Fig. 6g). Decision Curve Analysis (DCA) has been used to assess the clinical value of models which 
integrates the preferences of the patients into analysis. DCAs results for the nomogram and the stage model in 
3-year and 5-year survival predictions were presented in Fig. 7, showing that melanoma prognostic prediction 
based on the nomogram added more net benefit than the “treat all”, “treat none” strategies and the stage model 
in both TCGA and GEO datasets.

Figure 4.  Prognostic analysis of the IRGs signature. (a,c) Kaplan–Meier survival curves of patients in high 
versus low risk groups in TCGA (a) and GEO datasets (c). (b,d) Distribution of IRGs score and survival days of 
each patient, and a heatmap of selected IRG expression profiles presented in order of IRGs score in TCGA (b) 
and GEO datasets (d).
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Discussion
Melanoma is the most invasive type of skin cancer with a challenge to identify prognostic biomarkers. As a 
cancer largely regulated by immune system, the development of immune-related biomarkers would be of much 
 value36–38. And prediction model for prognosis based on multiple markers including immune genes would 
potentially help with selecting the optimal therapy in the clinic.

In this study, we sorted out the most influential immune-related genes affecting patient survival with public 
database and bioinformatical method. Combining several clinical features, we generated a nomogram model 
that was capable of predicting patient outcomes. Notably, a satisfying AUC was obtained with patient age, stage 
and expressions of only two genes, which means that in our model, a relatively accurate survival prediction for 
prognosis can be achieved with a handful of accessible parameters. Further, the comparison between nomogram 
and other models demonstrated that, our nomogram, which included staging information, had a significantly 
higher efficiency than staging system alone, with AUC raised from 0.670 to 0.778 in 3-year prediction and from 
0.592 to 0.745 in 5-year prediction. This suggests that although tumor stage is a traditional indicator when pre-
dicting prognosis, the additional factors in our nomogram, IRGs signatures consisting CCL8 and DEFB1, and 
the age of patients, are also worth considering.

CCL8 was shown to be negatively correlated with high-risk status in our study. In present literatures, CCL8 is 
a cytokine that promotes the metastasis in kinds of tumors, including breast cancer, lung cancer and esophageal 
squamous cell  carcinoma39–41. The role of CCL8 is controversial when it comes to melanoma. Tamas Barbai et al. 
found an increased migration of melanoma cell lines with CCL8 added as a chemoattractant, whereas Kiyokazu 
Hiwatashi et al. demonstrated that CCL8 suppressed metastatic ability of B16F10 melanoma  cells42,43. Our results, 
however, showed that higher expression of CCL8 indicated better survival in patients, which was confirmed by 
external validation. This is in favor of the point that CCL8 in melanoma might play a protective role overall, of 
which the mechanism warrants further investigation.

DEFB1 is a peptide with multiple immune-related functions and is thought to be a tumor  suppressor44,45. It 
was found to be downregulated in renal, prostate and colorectal  cancers46,47. Our study demonstrated for the first 

Figure 5.  Determination of IRGs score as an independent prognostic factor in melanoma. (a,b) Forest plot 
showing the risk of IRGs score and clinical parameters for overall survival by univariate (a) and multivariate (b) 
analysis in TCGA dataset. (c,d) Forest plot showing the risk of IRGs score and clinical parameters for overall 
survival by univariate (c) and univariate (d) analysis in GEO dataset. P < 0.05 was regarded as statistically 
significant.
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Figure 6.  Developing and validating a nomogram based on the IRGs risk score model. (a) A prognostic 
nomogram through combining the IRGs score and clinical parameters. (b,e) ROC curves of IRGs nomogram 
compared with stage, age or IRGs score alone in TCGA 3-year (b) and 5-year (c) prediction and GEO 3-year (d) 
and 5-year (e) prediction. (f,g) Calibration curves for TCGA (f) and GEO (g) dataset. The grey line represents a 
perfect prediction, and the black line describes the predictive performance of the nomogram, where the fitness 
of the black line to the grey line indicates a good prediction by the model.
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time, an aberrant expression of DEFB1 in melanoma compared to normal skin. However, little was known about 
its function in melanoma, except for that Lara Fernandez et al. reported that genetic variations of DEFB1 might 
be correlated with the risk for melanoma, but they did not perform confirmatory studies on this  conclusion48. 
In this study, we showed that the higher DEFB1 expression indicated unfavorable prognosis, which would be 
informative in clinical evaluation for patients. On the other hand, though identified as a tumor suppressor gene 
by previous research, DEFB1 might play a different role in melanoma than other types of cancer, which could 
potentially fuel mechanistic research on its unfavorable role in melanoma. Taken together, DEFB1 is indicative 
of patient survival and is a potential biomarker in melanoma.

We attempted to apply our IRGs score model to predict patient response to anti-PD-1 therapy, and it showed 
differential response rates in low- and high-risk group patients, indicating that the high-risk group was more 
sensitive to anti-PD-1 treatment, while the low-risk group was tend to be resistant. However, there were only 
26 patients in this cohort, although the difference is statistically significant, larger scale validation is required to 
make a convincing conclusion.

Admittedly, there are a few limitations in our analysis. Firstly, our analysis is based on expressions at messen-
ger RNA level, without regard to protein level expressions or posttranscriptional modifications, which also have 
important biological effects. Further, we applied DEGs between melanomas and normal controls in predicting 
patient survivals, however, we might have ignored some genes with critical prognostic value that do not neces-
sarily differ between melanomas and normal controls. Lastly, there is a lack of validation by more melanoma 
cohorts, which is limited by the data availability.

Figure 7.  Model comparison and clinical usefulness of IRGs nomogram. Decision curve analysis of the 
nomogram model in TCGA 3-year (a) and 5-year (b) prediction and GEO 3-year (c) and 5-year (d) prediction. 
The clinical usefulness of IRGs nomogram model and the stage evaluation system were compared to treating 
none or all of the patients. The higher the net benefit, the better the evaluation model was. In both training and 
validation sets, using the IRGs nomogram to predict patient prognosis added more benefit than treating none or 
all patients, and was more beneficial compared to using the stage evaluation to predict.
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conclusions
In conclusion, we have constructed a predictive model which combined immune-related genes with clinical 
characteristics for the first time, to estimate melanoma patient survivals and therefore help with decision mak-
ing in the treatment.

Data availability
The GEO datasets analyzed during the current study are available in the Gene Expression Omnibus repository, 
https ://www.ncbi.nlm.nih.gov/geo/query /acc.cgi?acc=GSE15 605, https ://www.ncbi.nlm.nih.gov/geo/query /acc.
cgi?acc=GSE46 517, https ://www.ncbi.nlm.nih.gov/geo/query /acc.cgi?acc=GSE54 467.
The TCGA datasets analyzed during the current study are available in The Cancer Genome Atlas repository, 
https ://xenab rowse r.net/datap ages.
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