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Study on the preparation of geranyl 
acetone and β‑cyclodextrin 
inclusion complex and its 
application in cigarette flavoring
fu Du1, tingting pan2, Xiaoming Ji1*, Jingyan Hu1 & tianbao Ren1*

β-Cyclodextrin (β-CD) inclusion complex containing geranyl acetone as a guest was prepared by 
saturated water solution method. Furthermore, the structure and properties of the inclusion complex 
were studied. The formation of the inclusion complex was demonstrated by. Fourier transform 
infrared spectroscopy (FTIR), X-ray diffraction (X-RD), thermogravimetric analysis (TG) and differential 
scanning calorimetry (DSC). The thermodynamic analysis of the inclusion complex showed that 
the inclusion reaction is an endothermic spontaneous reaction. The average of △H, △S and △G is 
11.66 kJ mol−1, 0.082 kJ mol−1 and − 14.49 kJ mol−1, respectively. Moreover, the kinetic analysis of 
thermal decomposition of the inclusion compound showed that the thermal decomposition reaction 
is a first-order reaction (the inclusion ratio is 1:1), the average activation energy of the reaction is 
180.90 kJ mol−1, and the binding force in the inclusion compound is mainly Van der Waals force. 
The flavor test of cigarettes showed that the inclusion compound improved the stability of geranyl 
acetone and the sensory quality of cigarettes. This study improves the solubility and thermal stability 
of geranyl acetone, and provides theoretical support and technical guidance for expanding the 
application of geranyl acetone.

Geranyl acetone (GA), scientific name 3,7-dimethyl-2,6-octadienyl acetone, is a kind of natural perfume with 
Magnolia fragrance, which has potential application  prospects1. It is one of the main components of Conyza 
bonariensis L. (up to 25.3%)2, large yellow restharrow (20.3%)3 and field horsetail (13.7%) essential  oils4. Because 
of its fresh and light floral fragrance with slightly sweet aroma of rose, it is widely used in daily chemical flavor 
 enhancer5, food perfume fixative, and deployment of edible essence. Furthermore, GA has strong biological 
 activity6 and antioxidant  activity7, and it is used as a pharmaceutical intermediate and synthetic vitamin in 
medicine.  Kawai8 found that it has a recovery effect on the heat shock response of gastric mucosa in malnutri-
tion mice. GA has the ability to inhibit the growth of melanoma B-16 and leukae-mia HL-60 cell  lines9. GA is a 
white or yellowish oily liquid at room temperature and difficult to dissolve in water and volatile, so that limits its 
application in the food industry and medicine. Therefore, improving the water solubility and stability of GA is the 
key to expand its application. Wang et al.1 studied the adsorption and slow-release effects of different adsorption 
materials on GA, and improved the stability of GA.

Cyclodextrin (CD) is a kind of conical cavity polymer composed of several d-glucopyranosyl units. It is 
predominantly divided into three products: α-CD, β-CD and γ-CD10–12, which contains six, seven and eight 
glucose units respectively. At present, the most widely used is β-CD, because it has a low production cost and 
moderate molecular void space, which is suitable for various  fields13,14. The annual worldwide production of CDs 
exceeds 10,000 tons, of which ∼ 30% is used in pharmaceuticals, ∼ 20% for food industry, and the rest for vari-
ous consumer  products15. It has been pointed out that cyclodextrin can form noncovalent host–guest inclusion 
complex with a variety of molecules, including food  additives16–18. In the inclusion system, the guest molecules 
penetrate the cavity of cyclodextrin, and they are mainly combined by Van der Waals force to form a relatively 
stable  structure19–21. It has been emphasized that cyclodextrin inclusion complexes can increase the solubility of 
insoluble substances and the antioxidant activity of some drug  molecules22–27, and improve the chemical stability 
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and bioavailability of guest  molecules28–30. Some studies also shown that cyclodextrin inclusion complex has a 
good sustained release  effect31.

In this study, the inclusion complex of β-CD–GA was prepared by β-CD and geranyl acetone (GA). As far as 
we know, the β-CD–GA inclusion complex was synthesized and studied for the first time. The inclusion complex 
was distinguished by FTIR, X-RD and DSC. What’s more, the reaction thermodynamics and thermal decompo-
sition kinetics of the inclusion complex were studied as well. The effect of inclusion complex on the stability of 
geranyl acetone was studied by cigarette flavor application.

Materials and methods
Reagents. GA (AR, ≥ 97%) was provided by Henan Xinzheng Jinye Flavor Co., Ltd (China), without further 
purification. β-CD (≥ 99.5%) was purchased from Sinopharm Chemical Reagents Co., Ltd (China). Absolute 
ethanol was purchased from Tianjin Kermel Chemical Reagents Co., Ltd (China).

Equipment and instruments. UV-1800 ultraviolet visible spectrophotometer (Japan), Nicolet iS50 Fou-
rier transform infrared spectrometer (America), D8 advance polycrystalline X-ray diffraction (Germany), 
NETZSCH STA 449 F3 simultaneous thermal analyzer (Germany).

Preparation of β-CD–GA. Using saturated aqueous solution method prepared the β-CD–GA24. The GA 
was added into saturated β-CD solution in a molar ratio of 1:1 (β-CD: GA), and stirred them at 60 °C for 6 h. 
After the reaction, the obtained solution was slowly cooled to 4 °C and stood for 48 h. Then, the obtained solu-
tion was filtered to obtain white solid and washed repeatedly with deionized water. After freeze-drying, the white 
powder was β-CD–GA inclusion complex, which was stored in a sealed glass dryer for standby.

FTIR. Four samples of β-CD, GA, MGA (the physical mixture of β-CD and GA (molar ratio 1:1) and β-CD–
GA with KBr powder were respectively pestled to make a 1 mm thick sheet. Then the four kinds of tablets were 
analyzed by FTIR (Nicolet iS50). The scanning range was 4,000–400 cm−1 and the resolution was 4 cm−1.

X-RD. Set the Cu-kα target λ = 1.54056 A, the working voltage is 40 kV, the current is 35 mA. Then take the 
appropriate amount of β-CD, MGA and β-CD–GA, scan in the range of 5°–50° 2θ, and the scanning speed is 
0.02°  min−1.

DSC. Four samples of β-CD, GA, MGA and β-CD–GA were placed in the differential scanning calorimeter. 
The flow rate of carrier gas (high purity AR) was set at 20 mL min−1, the heating rate was 10 °C min−1, the heating 
range was 50 ~ 900 °C, and DSC was carried out.

TG. The inclusion compound β-CD–GA was placed in the differential scanning calorimeter, and the carrier 
gas (high purity AR) flow rate was set at 20 mL min−1, and the temperature range was 50 ~ 900 °C. The inclusion 
compound was determined with the heating rates of 5 K min−1, 10 K min−1 and 20 K min−1, respectively.

Drawing of the standard working curve of GA. Using UV-1800 ultraviolet visible spectrophotometer 
to scan the ethanol (anhydrous) solution of GA with the maximum UV absorption, it is found that there is a 
strong absorption peak at 279 nm. The results of repeated scanning showed that when the concentration of 
GA was 9.0 × 10–3  mol  L−1, the absorbance was between 0.3 and 0.8. The concentrations of 6 × 10–3  mol  L−1, 
7.0 × 10–3 mol  L−1, 8.0 × 10–3 mol  L−1, 9.0 × 10–3 mol  L−1, 1.0 × 10–2 mol  L−1 and 1.1 × 10–2 mol  L−1 GA solution were 
prepared respectively. The absorbance at 279 nm was measured. The standard curve was Y = 54.1277X + 0.00286 
 (R2 = 0.99782).

Study on the application of cigarette flavoring with inclusion complex. Using the Yellow Crane 
Tower brand cigarette as the material, according to 1% feed ratio (100 g cut tobacco added 1 g inclusion com-
plex), 0.500 g β-CD–GA, was weighed by analytical balance and dissolved in 10 mL 50% ethanol, then sprayed 
evenly on 50 g cut tobacco with a sprayer and balanced for 48 h under the condition of constant temperature 
(22 ± 1)  °C and constant humidity (65% relative humidity). Then cut tobacco was taken out and made into 
cigarettes and stored in the refrigerator. The samples were sampled every 30 days for a total of 4 times, and the 
smoking was evaluated by experts from Hubei China Tobacco Industry Co., Ltd., in order to evaluate the stability 
of the inclusion complex in cigarettes. Cigarettes with the same quality of MGA were used as control.

Results
FTIR study of inclusion complex. The infrared spectra of β-CD, GA, MGA and β-CD–GA are shown 
in Fig. 1. The IR spectrum of β-CD (Fig. 3a) demonstrated crucial transmittance bands at ca. 3,300 cm−1 (O–H 
stretching), ca. 2,900 cm−1 (C–H stretching), ca. 1,600 cm−1 (H–O–H stretching), ca. 1,100 cm−1 (C–O stretch-
ing), and ca. 1,000 cm−1 (C–O–C stretching)32,33. In the curve (b), there is a strong v(C=O) stretching vibration at 
ca. 1,700 cm−1 frequency, which is the characteristic peak of GA. There are both the characteristic peaks of β-CD 
and GA in the curve (c), which is the simple addition of the two, indicating that MGA is only a simple mixture 
and does not form an inclusion complex. Compared with (c), the number of (d) peaks of the curve is obviously 
reduced, and the peak intensity is weakened. At ca. 1,700 cm−1 frequency, the characteristic peak of GA basi-
cally disappears, it might be attributed to that GA molecules were encapsulated into the cavity of cyclodextrin 
by hydrophobic force, hydrogen bonds and other secondary bonds, and restrained by the  cavity34. The shape of 
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the curve (d) is basically consistent with the shape of the curve (a) peak. It is suggested that GA has formed an 
inclusion complex with β-CD.

X-RD study of inclusion complex. As shown in Fig. 2a, the main diffraction peaks of β-CD were 6.2°, 
9.0°, 10.7°, 12.5° (2θ)34, and the diffraction peak of the curve (c) shows the superposition of GA and β-CD. The 
curve (b) ceases to be a simple superposition of the two diffraction peaks, which is consistent with the curve 
(a) diffraction peak, but the peak intensity is weakened. Compared with the curve (c), the number of peaks 
decreased, the peak intensity weakened, and the characteristic peaks disappeared at 7.33° 2θ, 10.09° 2θ and 
26.08° 2θ, the diffraction peaks of GA basically disappeared in the inclusion complex, while some weak new 
diffraction peaks were obtained, which might be due to the formation of inclusion complex of β-CD and  GA34.
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Figure 1.  FTIR for: (a) β-CD; (b) GA; (c) MGA; (d) β-CD–GA.
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Figure 2.  X-RD for: (a) β-CD; (b) β-CD–GA; (c) MGA.



4

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:12375  | https://doi.org/10.1038/s41598-020-69323-1

www.nature.com/scientificreports/

DSC study of inclusion complex. Due to the occurrence of interactions between the guest and the CD, 
the DSC curves shall present a not coincident profile with the sum of the effects observed in the thermograms 
of the  constituents35, as shown in Fig. 3, β-CD has a characteristic endothermic peak at 96 °C and 271 °C cor-
respond to the events of water loss and cyclodextrin decomposition,  respectively36. GA has a characteristic endo-
thermic peak at 140.5 °C, and MGA has both a characteristic peak of β-CD and a characteristic peak of GA, 
which is the addition of the two curves. It is merely that the intensity of the peak is weakened, indicating that 
MGA is only a simple physical mixture of the two. The DSC of physical mixtures at 85.5 °C and 305 °C is attrib-
uted to the dehydration and thermal degradation of β-CD, respectively. These changes have been  confirmed37,38. 
However, β-CD–GA has a new endothermic peak at 261 °C, and the endothermic peaks of β-CD and GA disap-
pear, the disappearance of the dehydration peak in the thermogram of the inclusion complex can be explained 
by the fact that the host molecule (GA) occupies the place of the water in the β-CD cavity, which proves the 
formation of inclusion complex β-CD–GA. 

Study on reaction thermodynamics. There is a Hildebrand Benesi relation for 1:1 inclusion  system39:

[G]T and  [CD]T denote the total concentrations of GA and β-CD, respectively. ε is the molar absorptivity and 
 KCD·G is the stability constant of the inclusion complex.

Several parts of 9 × 10–3  mol  L−1 GA solution (20% ethanol solution as solvent) were prepared, and 
4.0 × 10–3 mol  L−1, 6.0 × 10–3 mol  L−1, 8.0 × 10–3 mol  L−1 and 1.0 × 10–2 mol  L−1 β-CD aqueous solution were added, 
respectively. Stirring at different temperatures (30 °C, 40 °C, 50 °C and 60 °C) for 6 h, the absorbance of the system 
was determined at 279 nm after inclusion equilibrium. The regression curves (Fig. 4) at different temperatures 
were obtained by using 1/[CD]T as abscissa and  [G]T/A as longitudinal coordinate. It can be seen from the 
diagram that there is a good linear relationship between  [G]T/A and 1/[CD]T, indicating that the optimal molar 
ratio of β-CD to GA in the solution is 1:1.  Sambasevam23 and  Wang40 also found the same results. The stability 
constants (Table 1) of the inclusion complex at 30 °C (303 K), 40 °C (303 K), 50 °C (303 K) and 60 °C (303 K) 
can be obtained from the slope and intercept of the straight line. With the increase of temperature, the stability 
constant of the inclusion complex increases, indicating that the inclusion process is an endothermic reaction. 

(1)[G]T/A = 1/KCD·G · [CD]T · ε + 1/ε
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Figure 3.  DSC for: (a) β-CD; (b) Geranyl acetone; (c) MGA; (d) β-CD–GA.
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According to the relational formula lnK = − ∆H/RT + ∆S/R, the lnK of β-CD and GA inclusion system is used 
to map  T−1 (Fig. 5). According to the slope and intercept of the straight line and the relation ∆G = − RTlnK, the 
∆G, ∆H and ∆S of the inclusion system at different temperatures can be calculated (see Table 2). The average ∆H, 
∆S and ∆G of the reaction are 11.66 kJ mol−1, 0.082 kJ mol−1 and −  14.49 kJ mol−1, respectively. From ∆H > 0 and 
∆S < 0, it can be seen that the inclusion reaction is a spontaneous endothermic reaction. 

Study on thermal decomposition kinetics. The thermal decomposition TG curves of β-CD–GA at dif-
ferent heating rates are shown in Fig. 6. It can be seen from Fig. 6 that different heating rates have an effect on the 
decomposition (weight loss) rate of the inclusion complex, and a higher heating rate can promote the thermal 
decomposition reaction. There is a relationship for simple thermal  decomposition41:

The kinetics of any solid-state decomposition reaction can satisfy the relation of Flynn and  Wall42 and 
 Ozawa43:

When n = 1, the relation (3) can be converted to:

In (2), (3) and (4), α is the mass loss rate, b is the constant, A is the pre-exponential factor, T is the tempera-
ture, E is the activation energy, R is the gas constant, and Φ is the heating rate. When the thermal decomposition 
reaction of the inclusion complex is a first-order reaction, lnln (1/(1 − α)) is a straight line for 1. In (4), f(α) = ∫dα/
(1 − α)n, (n is the reaction order).

Table 3 lists the corresponding temperature values of the inclusion complex at the same weight loss rate (α) 
at different heating rates (5 K min−1, 10 K min−1 and 20 K min−1). The median of Table 3 was brought into the 
relation formula (2), and the lnln (1/(1 − α)) of the inclusion complex was plotted at three heating rates, and 

(2)lnln(1/(1− α)) = −E/RT + b

(3)log� = log(−AE/Rf (α))− 2.315− 0.4567(E/RT)

(4)log� = log(−AE/R ln(1− α))− 2.315− 0.4567(E/RT)
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Figure 4.  Relation between  [G]T/A and 1/[CD]T.

Table 1.  Curve equations of  [G]T/A and 1/[CD]T at different temperatures.

Temperature (K) Fitting equation R2 K

303 Y = 0.000174X + 0.03288 0.99734 1.89 × 102

313 Y = 0.000132X + 0.02979 0.99912 2.26 × 102

323 Y = 0.000100X + 0.02591 0.99792 2.58 × 102

333 Y = 0.000090X + 0.02647 0.99886 2.87 × 102
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Figure 5.  The relation of lnK and  T−1 in different temperature.

Table 2.  Stability constants and ΔG of β-CD–GA at different temperatures.

Temperature (K) K ∆H (kJ  mol−1) ∆S (kJ  mol−1) ∆G (kJ  mol−1)

303 1.89 × 102 11.69 0.082 − 13.25

313 2.26 × 102 11.61 0.082 − 14.11

323 2.58 × 102 11.63 0.082 − 14.91

333 2.87 × 102 11.69 0.082 − 15.67
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Figure 6.  TG curves of β-CD–GA in different heating rate.
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the Fig. 7 was obtained. It can be seen from Fig. 7 that, lnln (1/(1 − α)) has a good linear relationship with 1 at 
different heating rates, indicating that the thermal decomposition reaction of inclusion complex β-CD–GA is a 
first-order reaction. At the same weight loss rate, α is constant, and the lines in the Fig. 8, diagram obtained by 
linear quasi-combination of 1 and logΦ have a satisfactory linear relationship. According to Fig. 7, the kinetic 
parameters of thermal decomposition of the inclusion complex can be obtained in Table 4, and the activation 
energy E and pre-exponential factor A are calculated according to the slope and intercept of the straight line.

In the non-isothermal thermal decomposition reaction, the values of E and A decrease with Φ, which can 
be characterized by the kinetic effect of solid-state thermal decomposition. The law of dynamic compensation 
effect is logA = kE + b (k, b is the dynamic compensation constant). The mathematical expression of dynamic 
compensation is logA = 0.08644E − 0.2670 by substituting the data in Table 4. The average activation energy of 
thermal decomposition of β-CD–GA is 180.90 kJ mol−1 and the pre-exponential factor is 1.05 × 1016. The lower 
apparent activation energy indicates that there is no strong chemical bond between β-CD and GA, which is 
mainly due to the combination of Van der Waals force.

Study on the flavor stability of cigarette with inclusion complex. The scores of sensory quality 
indexes of cigarettes with MGA and β-CD–GA changing with storage time under constant temperature and 
humidity are shown in Fig. 9. It can be seen that there is no significant difference in sensory quality between the 
two kinds of cigarettes after being placed for 0 day under the condition of constant temperature and humidity, 
which indicates that the preparation of geranyl acetone inclusion complex does not affect the sensory quality 
of cigarettes. However, with the increase in storage time, there was a great difference in the sensory quality of 
the two kinds of cigarettes, and the difference reached the maximum at 90 days. The addition of inclusion com-
plex mainly improved the aroma quality and quantity of cigarettes, reduced miscellaneous gases and irritation, 
and improved the coordination of cigarette smoking evaluation. After 90 days of storage, the score of sensory 

Table 3.  Temperatures corresponding to the same mass loss in different heating rate.

α

T(K)

5 (K  min−1) 10 (K  min−1) 20 (K  min−1)

0.30 576.70 587.30 599.50

0.35 580.50 592.00 603.80

0.40 584.20 595.10 606.20

0.45 586.30 597.50 608.80

0.50 590.50 601.80 611.10

0.55 592.20 604.20 613.80

0.60 597.20 607.50 616.60
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Figure 7.  The relation of [lnln (1/(1 − α))] and (1/T) in different heating rate.
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quality of cigarettes with β-CD–GA was basically unchanged. However, with the passage of time, the sensory 
quality scores of cigarettes with MGA gradually declined, which was not conducive to cigarette smoking. The 
above results show that β-CD–GA has strong stability in cigarette flavoring and improves the sensory quality of 
cigarettes. The results also proved that the inclusion complex could reduce the volatility of geranyl acetone and 
improve its stability.

Discussion
In this study, β-CD was utilized as an embedding material to prepare β-CD–GA. A series of analytical results of 
FTIR, X-RD and DSC spectra proved the formation of the inclusion complex. By studying the thermodynam-
ics of the inclusion complex reaction, it is found that the formation of the inclusion complex is a spontaneous 
endothermic reaction, and the stability constants at different temperatures are obtained. The study of the thermal 
decomposition kinetics of the inclusion complex shows that the thermal decomposition reaction of the inclu-
sion complex β-CD–GA is a first-order reaction, indicating that β-CD and GA combine to form the inclusion 
complex at 1:1, and the average activation energy of the thermal decomposition reaction is 180.90 kJ mol−1. The 
main force between β-CD and GA is the Van der Waals force. The inclusion complex can improve the stability 
of geranyl acetone in cigarette flavor and improve the sensory quality of cigarette.

In conclusion, the formation of the inclusion complex improves the solubility and stability of geranyl acetone. 
This study can provide guidance and basis for the application of geranyl acetone in food processing, medical 
medicine, cigarette formula flavor and other industries.
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Figure 8.  The relation of logΦ and (1/T) in different weightlessness rate.

Table 4.  The kinetic parameters of thermal decomposition of β-CD–GA.

Sample α Slope Intercept E (kJ  mol−1) A

β-CD–GA

0.30 − 9,121.57 16.52 166.05 1.22 × 1014

0.35 − 9,050.75 16.30 164.87 8.95 × 1013

0.40 − 9,691.29 17.29 176.43 9.63 × 1014

0.45 − 9,550.40 16.99 173.86 5.72 × 1014

0.50 − 10,500.88 18.47 191.16 1.85 × 1016

0.55 − 10,233.60 17.96 186.30 6.72 × 1015

0.60 − 11,404.80 19.79 207.62 4.67 × 1016

Average activation energy E (kJ  mol−1) 180.90
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