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Stochastic master equation 
for early protein aggregation 
in the transthyretin amyloid 
disease
Ruo‑nan Liu & Yan‑Mei Kang*

It is significant to understand the earliest molecular events occurring in the nucleation of the amyloid 
aggregation cascade for the prevention of amyloid related diseases such as transthyretin amyloid 
disease. We develop chemical master equation for the aggregation of monomers into oligomers using 
reaction rate law in chemical kinetics. for this stochastic model, lognormal moment closure method is 
applied to track the evolution of relevant statistical moments and its high accuracy is confirmed by the 
results obtained from Gillespie’s stochastic simulation algorithm. Our results show that the formation 
of oligomers is highly dependent on the number of monomers. Furthermore, the misfolding rate also 
has an important impact on the process of oligomers formation. The quantitative investigation should 
be helpful for shedding more light on the mechanism of amyloid fibril nucleation.

The aggregation of soluble proteins or protein fragments into non-soluble fibrillary polymers is a hallmark of a 
range of increasingly prevalent and devastating human disorders such as Alzheimer’s disease, Parkinson’s disease, 
Huntington’s disease and familial amyloid  polyneuropathy1–4. In these amyloidoses, dozens of proteins or protein 
components of disease-associated amyloid deposits have been identified so far, for instance, amyloid-beta peptide, 
alpha-synuclein, Huntingtin and transthyretin. Among these components, transthyretin, as a homotetrameric 
protein which is mainly synthesized in the liver, the choroid plexus and the retina, is implicated in several amy-
loid pathologies including familial amyloid polyneuropathy, familial amyloid cardiomyopathy, senile systemic 
amyloidosis and central nervous system selective  amyloidosis4–6.

Increasing studies suggest oligomers, the aggregation intermediate species, are correlated with the cellular 
toxicity in various forms of  amyloidogenesis7–9, which motivates the researchers to disclose how the oligomeric 
species are formed during the early stages of amyloid aggregation. In most of the known mechanisms for amy-
loid  aggregation10–19, the aggregation process is initiated by a coarse-grained “primary nucleation” reaction step, 
which proceeds via oligomeric  intermediates10–19. Primary nucleation as a critical step in the amyloid formation 
cascade refers to the initial formation of nuclei through self-organization is characterized by the presence of a 
free energy  barrier20,21. During this early stage, there are still no amyloid fibrils.

Mathematical model researches for amyloid  aggregation15,22–24 are helpful in shedding light on experimental 
observations and developing therapeutic strategies. Knowles et al.15 developed an analytical solution to the 
kinetic of the complex self-assembly of filamentous molecular structures. Meisl et al.22 described a framework 
to elucidate a molecular mechanism of protein aggregation by ways of quantitative kinetic assays and global 
fitting. Michaels et al.24 presented an experimental and theoretical approach to drive the dynamics of oligomers 
during the aggregation of Alzheimer’s Aβ42 peptide. It is worth emphasizing that most kinetic models of protein 
oligomers in the literature are deterministic.

Due to the intrinsic stochasticity in biochemical  reaction25–27, however, the deterministic model cannot always 
accurately capture the essential dynamics of amyloid  aggregation28,29. Note that oligomers are the most toxic 
structures and play potential role as a target in drug  discovery30, so we take the early amyloid aggregation process 
of making oligomers as the main research focus, with transthyretin oligomers formed from the aggregation of at 
most six  monomers31,32. To capture the stochastic effects in early amyloid aggregation, we build a mathematical 
model of chemical master equation, which is well accepted as probabilistic description in well-mixed and dilute 
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condition, to describe the aggregation of monomers into oligomers. And then, we use lognormal closure moment 
method rather than direct simulation to acquire the time dependent evolution of low-order statistical moments, 
and we emphasize that the semi-analytic moment method can greatly reduce the computational  cost33–36.

The paper is organized as following. In “Chemical master equation model” we describe the stochastic method 
of modeling the aggregation of monomers into oligomers and present moment closure method for computing 
the time evolution of stochastic models. In “Results”, we apply the moment closure method to the stochastic 
model and examine the numerical results by comparing with the simulated results. Moreover, we investigate 
the impact of the number of monomers and the misfolding rate on the aggregation dynamics. The conclusions 
are drawn in last section.

chemical master equation model
Build model of oligomers formation. Amyloid formation is considered to be a complex protein aggre-
gation process, which consists of a range of molecular processes. In the process of protein filaments formation, 
primary nucleation is usually followed by  growth10–19 and self-replication through secondary pathways in some 
 cases11,17,18. The nucleation phase corresponds to the period where monomers undergo conformational changes 
and self-associate to form the oligomeric nuclei. This phase is determined by the critical concentration of nuclei 
and generally considered to be thermodynamically  unfavorable21. The growth/elongation phase represents the 
period in which the oligomeric nuclei acting as seeds rapidly grow and form mature fibrils. Considering the 
nucleation phase is an essential part of the overall aggregation process, as a large variety of oligomeric species are 
gradually  formed21, so we ignore elongation but focus on the process of nucleation below.

Following Refs.32,37, we suppose that (1) the monomers undergo conformational changes into misfolded 
monomers which then are polymerized into small polymers involving diameter (two monomers), trimer 
(three monomers), etc.; (2) the small polymers polymerize (depolymerize) into bigger (smaller) structures by 
attaching (losing) one misfolded monomer; (3) the maximum oligomer size is limited to six since this is rel-
evant for transthyretin  oligomers31,32. Then, the process of making oligomers can be illustrated in Fig. 1. Let 
M0,M1, M2, . . . ,M6 denote monomers, misfolded monomers, dimers, triamers, tetramers, pentamers, hexamers, 
respectively. The mathematical scenario is shown in Table 1.

First, we briefly present the stochastic formulation inspired by Ref.35. If a model has L biochemical reactions 
and N molecular species, it can be written as

where sli and rli are the coefficients of change of the molecular species Xi involved in the lth reaction. We define 
the stoichiometric matrix as S = (Slj) where Slj = rlj − slj denoting the change of the number of molecular spe-
cies Xj by the lth reaction.

Under well-mixed and dilute conditions, if P(x, t) denotes the probability for the state vector 
x = (x1, x2, . . . , xN ) at time t  , then the probability evolution of the system (1) can be described by chemical 
master equation

(1)sl1X1 + · · · + slNXN → rl1X1 + · · · + rlNXN , 1 ≤ l ≤ L

Nucleation phase Elongation phase

Monomer Dimer Hexamers FibrilsMisfolded
Monomer

...

Figure 1.  The two phases (nucleation phase and growth/elongation phase) of amyloid formation.

Table 1.  Kinetics of monomers aggregation.

Reaction Propensity function Reaction Propensity function

M0 → M1 K0M0 M1 → M0 K6M1

M1 +M1 → M2 K1M1M1 M2 → M1 +M1 K7M2

M1 +M2 → M3 K2M2M1 M3 → M1 +M2 K8M3

M1 +M3 → M4 K3M3M1 M4 → M1 +M3 K9M4

M1 +M4 → M5 K4M4M1 M5 → M1 +M4 K10M5

M1 +M5 → M6 K5M5M1 M6 → M1 +M5 K11M6
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where Sl = (Sl1, . . . , SlN ) is the row vector of the stoichiometric matrix and al(x) is the propensity function 
for the lth reaction determined by mass action kinetics. For example, in chemical  kinetics38, for the reaction 
s1X1 + s2X2 → r1X3 + r2X4 , the reaction rate law expression is

where K is the reaction constant.
Then, we establish the stochastic mathematical modeling of making oligomers. Denote the number of 

M0,M1,M2,M3,M4,M5,M6 by x(t) = x1(t), x2(t), x3(t), x4(t), x5(t), x6(t), x7(t) at time t  . In modeling, the 
source term of monomers written as x1(t) → x1(t)+ 1 is also considered and the production rate is assumed to 
be kp . For the system described in Fig.  1, the stoichiometric matrix is

S =

















1 −1 0 0 0 0 0 1 0 0 0 0 0

0 1 −2 −1 −1 −1 −1 −1 2 1 1 1 1

0 0 1 −1 0 0 0 0 −1 1 0 0 0

0 0 0 1 −1 0 0 0 0 −1 1 0 0

0 0 0 0 1 −1 0 0 0 0 −1 1 0

0 0 0 0 0 1 −1 0 0 0 0 −1 1

0 0 0 0 0 0 1 0 0 0 0 0 −1

















T

,then the chemical 

master equation of the model is

The above chemical master equation model describes the initial formation of oligomers in a stochastic sense. 
We remark that it is essential stochastic generalization of a time discrete deterministic  model32 and a continuous 
time deterministic  counterpart39 for the aggregation process. Actually, elegant analytical solutions have been 
developed to the time continuous model without an upper limit to oligomer  size39, and the time discrete model 
can be regarded as its simplification with an upper limit to the oligomer size.

Moment closure method. Although the chemical master Eq.  (4) is a powerful tool for describing the 
stochastic dynamics of the system (1), it is difficult to find an exact analytic solution. Instead, some simula-
tion techniques such as Gillespie’s stochastic simulation algorithm (SSA) have been  presented40. But the SSA 
is relatively expensive in computational cost especially when the system size is large. To overcome this short-
coming, moment closure techniques for approximating the low-order moments have become more and more 
 popular33,34,41–43. This is acceptable because the first two order statistical moments (mean and variance or covari-
ance) are sufficient for a decent description of the ensemble dynamics such as averaging behavior and evolution 
of the noise in the  system41.

The moment equations corresponding to Eq. (4) is not self-closed since the evolution of the Mth order 
moments depend on the (M + 1)th order moments. That is, the evolution of the resultant first two order moments 
involves the third order moments. The so called moment closure is to approximate the involving higher order 
moments as nonlinear functions of lower-order moments. The frequently adopted closure schemes include 
Gaussian moment closure, lognormal moment closure, gamma moment closure and binominal moment closure. 
Here, we apply a kind of lognormal moment closure to Eq. (4) for two reasons. The first reason is that the impor-
tant features of asymmetry and nonnegativity of the molecular reaction system make that population of species 
in bio-statistics tends to be lognormal  distributed34. The second reason is that the lognormal closure scheme, 
also named the derivative matching closure as presented in Refs.42,43, does not necessitate assumptions about the 
priori distribution. In this method, the nonlinear closure functions are given by matching time derivatives of the 
unclosed exact moment equations with those of the approximate closed moment equations at some initial point.

Given m = (m1,m2, . . . ,m7) ∈ N7
≥0 , we define moment generating function to be

(2)
dP(x, t)

dt
=

L
∑

l=1

P(x − Sl , t)al(x − Sl)−

L
∑

l=1

P(x, t)al(x)

(3)a(x1, x2) = K · xs11 · xs22

(4)

dP(x1, x2, x3, x4, x5, x6, x7, t)

dt
= kpP(x1 − 1, x2, x3, x4, x5, x6, x7, t)

+K0(x1 + 1)P(x1 + 1, x2 − 1, x3, x4, x5, x6, x7, t)+ K1(x2 + 2)2P(x1, x2 + 2, x3 − 1, x4, x5, x6, x7, t)

+K2(x3 + 1)(x2 + 1)P(x1, x2 + 1, x3 + 1, x4 − 1, x5, x6, x7, t)+ K3(x4 + 1)(x2 + 1)

×P(x1, x2 + 1, x3, x4 + 1, x5 − 1, x6, x7, t)+ K4(x5 + 1)(x2 + 1)P(x1, x2 + 1, x3, x4, x5 + 1, x6 − 1, x7, t)

+K5(x6 + 1)(x2 + 1)P(x1, x2 + 1, x3, x4, x5, x6 + 1, x7 − 1, t)

+K6(x2 + 1)P(x1 − 1, x2 + 1, x3, x4, x5, x6, x7, t)+ K7(x3 + 1)P(x1, x2 − 2, x3 + 1, x4, x5, x6, x7, t)

+K8(x4 + 1)P(x1, x2 − 1, x3 − 1, x4 + 1, x5, x6, x7, t)+ K9(x5 + 1)P(x1, x2 − 1, x3, x4 − 1, x5 + 1, x6, x7, t)

+K10(x6 + 1)P(x1, x2 − 1, x3, x4, x5 − 1, x6 + 1, x7, t)+ K11(x7 + 1)P(x1, x2 − 1, x3, x4, x5, x6 − 1, x7 + 1, t)

−(kp + K0x1 + K1x2x2 + K2x2x3 + K3x3x4 + K4x2x5 + K5x2x6 + K6x2 + K7x3 + K8x4 + K9x5 + K10x6 + K11x7)

×P(x1, x2, x3, x4, x5, x6, x7, t)

(5)M(θ, t) =
∑

x

eθxP(x, t) =

∞
∑

m=0

µm

θm

m!
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 where xm := xm1

1 · · · xm7

7  , θ
m

m!
=

θ
m1
1

m1!
×

θ
m2
2

m2!
× · · · ×

θ
m7
7

m7!
 , µm = E[xm] =

∑

x

x
mP(x, t) is the raw moment of x 

associated with m and the sum 
7
∑

i=1

mi is called the order of the raw moment. Then, multiplying Eq. (4) by eθx and 

summing over all possible values of x , we obtain

The detailed derivation can be found in supplementary method. With the moment generating function (5) in 
mind, the general form of moment equations is given by rewritten the Eq. (6) and extraction of the coefficients 
of θ1, θ2, . . . , θ7

 where al,i is the multinomial coefficient of al(x).
Since we mainly focus on the important stochastic quantities namely mean and variance, the system of 

2C1
7 + C2

7 = 35 equations for the first two order moments are derived shown in supplementary equations, from 
which we can see these equations depending on third order moments. For calculating, we truncate the infinite 
hierarchy (7) to a finite-dimensional system by the lognormal closure scheme. Following the lognormal closure 
 scheme43, the third order moments can be expressed by the nonlinear function of first two order moments. 
Assume µm(m = (m1, . . . ,m7) ) be one of the third order moments, then we can find a suitable closure function 
φ(m)(·) with the separable form

 where µ = [µm1
, . . . ,µms ] is the vector of the first two order moments and γ1, . . . , γs are chosen as the unique 

solution of the following set of linear equations

With the closure functions in Eq. (8) available, all the involving third-order moments can be expressed by the 
first two order moments, thus a self-closed moment system consisting of thirty-five ordinary differential equa-
tions can be deduced from Eq. (7). The detailed deduction based on the lognormal closure scheme (8) can be 
found from the supplementary. We emphasize that all the deductions are implemented by hand. We then apply 
the fourth order Ronge-Kutta method to the closed moment system and the first-order and the second-order 
moments are solved.

Results
It is generally hard to determine the unknown rate constants of oligomer growth. For simplicity, we assume all 
the polymerization rates are identical, namely K1 = K2 = K3 = K4 = K5 = Ka and all the polymerization rates 
are the same, i.e. K7 = K8 = K9 = K10 = K11 = Kb . Although the identical assumption as an approximation to 
the nonlinear system is not that realistic, our numerical experience shows that the accuracy of the lognormal 
closure scheme does not rely on the relative variation of these rate parameters. As oligomeric intermediates in 
fibril formation are thermodynamically  unstable24,44,45, we specify equilibrium constant ke = Ka/Kb around 
0.02, which ensures oligomers are suitably unstable compared to monomers. Since monomers are usually not 
produced in vitro experiments, we set the rate of monomer production kp = 0 . We assume the refolding rate ( K6 ) 
is larger than misfolding rate ( K0 ) in all the simulation. The initial conditions for the seven species are taken as 
x2(0) = . . . = x7(0) = 1 and x1(0) = 2000 not including Fig. 3.

Figure 2 shows the mean and the standard deviation we obtain for monomers, misfolded monomers, diamers, 
… and hexamers. It can be seen that the results derived from the lognormal closure are in good agreement with 
the results obtained from the SSA realization. This coincidence implies that the moment method is efficient and 
accurate in capturing the time evolution of mean and standard deviation. Thus, we only show the results obtained 
by the moment closure method in the other figures. As seen from the figure, all the reaction species can evolve 
into a steady state for suitable parameters.

Figure 3 shows that the quantitative evolution of the numbers of diamers, …, hexamers under different initial 
numbers of the monomers. It is shown from the picture that the initial number of monomers has same effect on 
different tapes of oligomers. That is, as the initial number of the monomers increases, the number of oligomers 
increases and the difference among initial values also undergoes a transient increase. This result implies that 
increasing the initial number of the monomers will speed up the process of nucleation phase. This observation 
supports the statement in Ref.21 that the aggregation process is highly dependent on the number of monomers. 

(6)
d

dt

∑

x

P(x, t)eθx =

13
∑

l=1

[

(eθSl − 1)
∑

x

eθxP(x, t)al(x)

]

(7)
∂

∂t
µm =

13
∑

l=1

[

∑

i

al,i

m
∑

k=0

S
k

l

(

m

k

)

µi+m−k

]

−
∑

i

13
∑

l=1

al,iµi+m

(8)µm ≈ φ(m)(µ) =

s
∏

p=1

(µmp )
γp

(9)

(

m

mq

)

=

s
∑

p=1

γp

(

mp

mq

)

q = 1, . . . , s
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Note that the number of the monomers of transthyretin is typically at steady state but may vary from person to 
person, thus the observation from Fig. 3 may be helpful in explaining why some people are more apt to suffer 
from transthyretin amyloid disease under same condition to some extent.

Figure 4 shows the influence of misfolding rate on the number of oligomers. This qualitative observation in 
Fig. 4 demonstrates that the misfolding rate has a major impact on the aggregation process, that is, as the mis-
folding rate increases, all the five types of oligomers grow in number, and the time for these oligomers to reach a 
given level also becomes shortened. Since the toxic oligomers accumulation plays a central role in  amyloidoses46, 
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Figure 2.  The time evolution of the number of M0,M1,M2, . . . ,M6 . Comparison of the mean + standard 
deviation (upper red curve), mean (middle green curve) and mean − standard deviation (lower blue curve) 
by moment closure method (solid curves) and SSA (block dots). The initial condition is x1(0) = 2000 , 
x2(0) = . . . = x7(0) = 1 and parameter values are kp = 0 , K0 = 0.01min−1 , Ka = 0.002min−1 , 
K6 = 0.1min−1 , Kb = 0.1min−1 . The results by SSA are based on 10,000 realizations.
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our observation suggests that decreasing the misfolding rate should be useful in slowing or inhibiting the forma-
tion of transthyretin amyloid disease. In fact, there have been some literatures towards to reduce the misfloding 
rate of  proteins47,48.

conclusion
It is well known that amyloidal aggregation is the hallmark of amyloidoses. In order to quantitatively explore 
the process of early amyloidal aggregation, we have developed a stochastic mathematical model about oligomers 
aggregation from monomers using rate law in chemical kinetics. We have adopted a typical moment method 
based on lognormal closure to capture the statistical moments, and massive calculations show very good agree-
ment between the semi-analytic method and the Gillespie’s SSA for the stochastic model. Our results show that 
the aggregation of monomers into oligomers is highly dependent on the number of monomers and the misfold-
ing rate, and decreasing the number of monomers and the misfolding rate can inhibit the formation of the toxic 
oligomers. Our research may be helpful in explaining the individual variation in suffering from transthyretin 
amyloid disease and emphasizes the importance of controlling the misfolding of protein in preventing this type 
of disease.

Additionally, we remark that the lognormal moment method is successful for stochastic master equation 
relevant to the transthyretin with an upper limit of oligomer size N = 6 , and we expect this method would also 
be effective with a different upper limit which might be relevant to other amyloidogenic systems. The method 
in the present work can provide essential quantitative insights into the mechanism of the early steps in the 
aggregation reactions. The mechanism behind the formation of amyloidoses is far from clear, and in the future 
we will continue to investigate the kinetic of amyloid nucleation and the mechanism of amyloid fibril growth.
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Figure 3.  The time evolution of the number of different tapes of oligomers obtained by the moment closure 
method for different initial number of monomers x1(0):x1(0) = 1000 (blue broken line), x1(0) = 1500 (green 
solid line) and x1(0) = 2000 (red dotted dash line). The horizontal dotted line represents a given level of the 
number of oligomers, while the vertical dotted line represents the time required to reach the given level. The 
other parameters are same as Fig. 2. The results by SSA are based on 10,000 realizations.
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