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Identification of candidate miRNAs 
in early‑onset and late‑onset 
prostate cancer by network 
analysis
Rafael Parra‑Medina1,2,3, Liliana López‑Kleine4, Sandra Ramírez‑Clavijo1 & 
César Payán‑Gómez1*

The incidence of patients under 55 years old diagnosed with Prostate Cancer (EO‑PCa) has increased 
during recent years. The molecular biology of PCa cancer in this group of patients remains unclear. 
Here, we applied weighted gene coexpression network analysis of the expression of miRNAs from 24 
EO‑PCa patients (38–45 years) and 25 late‑onset PCa patients (LO‑PCa, 71–74 years) to identify key 
miRNAs in EO‑PCa patients. In total, 69 differentially expressed miRNAs were identified. Specifically, 
26 and 14 miRNAs were exclusively deregulated in young and elderly patients, respectively, and 29 
miRNAs were shared. We identified 20 hub miRNAs for the network built for EO‑PCa. Six of these hub 
miRNAs exhibited prognostic significance in relapse‐free or overall survival. Additionally, two of the 
hub miRNAs were coexpressed with mRNAs of genes previously identified as deregulated in EO‑PCa 
and in the most aggressive forms of PCa in African‑American patients compared with Caucasian 
patients. These genes are involved in activation of immune response pathways, increased rates of 
metastasis and poor prognosis in PCa patients. In conclusion, our analysis identified miRNAs that are 
potentially important in the molecular pathology of EO‑PCa. These genes may serve as biomarkers in 
EO‑PCa and as possible therapeutic targets.

The incidence of patients under 55 years old diagnosed with prostate cancer (PCa) (Early onset, EO-PCa) in 
the United States has increased during recent years. Between 1986 and 2008, the incidence of EO-PCa was from 
5.6 to 32 cases per 100.00 persons years (IC 95% CI 5.0–6.7)1,2. In 2012, PCa was diagnosed in 241,740 men 
(10%) < 55 years old in the United  States3. Thus, PCa in young patients is an emerging issue for public  health1,2. 
Interest in understanding the molecular and clinical behavior of EO-PCa has been  increased4. Several risk fac-
tors are associated with diagnosis: family’s medical background, ethnicity, and genetic factors, such as single 
nucleotide polymorphisms and mutations in BRCA1, BRCA2, and  HOXB135,6. Different single nucleotide poly-
morphisms in germinal  DNA7 and rearranged genes in the androgen receptor axis (e.g., TMPRSS2-ERG, PTEN, 
and AR) have been identified EO-PCa8. Additionally, abnormal expression of genes involved in inflammatory and 
antitumoral immune-related pathways (CTL4, IDO1/TDO2) was  detected9. A recent analysis of 1281 EO-PCa 
cases (≤ 60 years) identified 23 unique DNA repair genes associated with an increased predisposition or risk of 
aggressive PCa disease, and four genes (BRCA2, MSH2, ERCC2, and CHEK2_non1100del) were associated with 
more aggressive  disease10. Other recent studies identified four molecular subgroups that included a particularly 
aggressive subgroup with recurrent duplications (8q22) associated with increased ESRP1  expression11.

MicroRNAs (miRNAs) are small (~ 20–22 nucleotides), noncoding RNA molecules that are well conserved 
among different species of organisms and play multiple roles in several biological processes. miRNAs can interact 
with the RNAm of their target gene to exert its biological regulatory effect on gene expression by inhibiting the 
translation  process12. This effect is achieved by binding to the cognate sequence 3′ UTR of RNAm to promote 
its degradation or inhibit the translation  process13. Transcription activation is a non-canonical mechanism of 
miRNA action that was recently  described14. In addition, miRNAs regulate expression of up to 30% of human 
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genes with a proven impact in significant parts of different molecular pathways, including cell proliferation, 
differentiation and  apoptosis13. In addition, miRNA expression in human cancer is dysregulated as a result of 
chromosomal disorder (amplification, translocations, and deletions), the presence of single-nucleotide polymor-
phisms (SNPs), the induction of epigenetic changes, deficiency in its biogenesis machinery, and modification of 
the expression of transcription factors necessary to control miRNA gene  transcription15.

Different miRNAs may have similar expression profiles when the miRNAs are functionally related or modu-
late the same  pathway16. Based on the previous assumption, the Weighted Gene Coexpression Network Analysis 
(WGCNA) has been used to calculate the level of correlation among miRNA expression and identify clusters 
of coexpressed miRNAs in biological samples. A cluster of coexpressed miRNAs could be involved in the same 
pathway or biological  process17. Additionally, using network analysis of coexpressed miRNA clusters, it is possible 
to identify its most central point within a cluster, namely, the hub genes, that could play the most important role 
or function in the initial step in the deregulation of other miRNAs.

In PCa, numerous miRNAs involved in different process related to PCa oncogenesis, such as cell cycle, apop-
tosis, epithelial-mesenchymal transition, DNA replication/repair, migration, androgen receptor suppression, 
metastasis, and treatment resistance, have been  described18. Therefore, the miRNAs are studied as promising 
candidates that can be detected using minimally invasive diagnostic techniques and prognostic biomarker  tools19. 
Several miRNAs involved in tumor growth are upregulated and downregulated in recurrent PCa compared to 
nonrecurrent PCa  samples20. In EO-PCa patients, miRNA expression has been evaluated in a few  studies8,9,21 and 
differences in expression profiles have been observed compared to LO-PCa (Late onset-PCa). Weischenfeldt et al.8 
focused the analysis on miRNAs involved in the PTEN pathway. Some upregulated and downregulated miRNAs 
were detected, and some of genes with hypermethylated promoter regions, particularly tumor suppressor genes, 
exhibit reduced expression (hsa-miR-106b-5p, hsa-miR-93-5p, hsa-miR-25-3p, hsa-miR-141-3p). Ding et al.9 
found several miRNAs with deregulated expression (miRNAs DE); however, the analysis focused on mRNAs 
and found genes mainly involved in inflammation pathways. Recently, Valera et al.21 found miRNAs DE in EO-
PCa tumor tissue compared to LO-PCa as well as tumor tissue compared to normal tissue. They also identified 
miRNAs associated with high Gleason score, extraprostatic extension and lymphatic invasion. In these studies, 
deeper miRNA expression analyses were not performed. Therefore, we employed a systems biology analysis to 
identify fundamental miRNAs with transcriptional alterations, their target genes and coexpressed mRNAs that 
can explain the early appearance of PCa as well as the increased aggressiveness and different responses to treat-
ment noted in these tumors.

Results
Data selection. Database analyses identified 3623 articles, of which 506 were duplicates. In total, 5 full-
text articles were assessed for eligibility, and one paper met the inclusion criteria:  GSE891939. The pathological 
stage of all tumors was T2 (T2a and T2c), and the Gleason score was 7 (3 + 4). Among these patients, 67% had 
PSA ≤ 10.0. In total, 58% and 76% of young and old patients, respectively, had PSA ≤ 10.0 In both groups, 88% 
(n = 22) were white, 4% (n = 1) African-Americans, 4% (n = 1) Hispanics and 4% (n = 1) Asians.

Total RNA was extracted from the primary tumor tissue and matched control normal tissue samples, which 
were obtained from formalin-fixed paraffin-embedded tissue blocks from prostatectomies. The small RNA profile 
was generated using the Illumina Human Whole-Genome DASL (cDNA-mediated annealing, selection, exten-
sion, and ligation), while the miRNAs were sequenced on the Illumina HuSeq 2500 platform.

Identification of differentially expressed miRNAs. The comparison between transcriptomes of tumor 
and normal prostate samples employed stringent criteria of a fold change (FC) greater than 2 and less than -2 
and a false discovery rate (FDR) less than 0.01. In the LO-PCa group, 43 miRNAs were identified as differentially 
expressed, including 26 upregulated and 17 downregulated miRNAs. In the EO-PCa group, 55 miRNAs were 
identified as differentially expressed, including 28 upregulated and 27 downregulated miRNAs. Subsequently, 
the two lists of differentially expressed miRNAs included 69 miRNAs DE in total with 29 miRNAs in common, 
and further analyses were conducted (Fig. 1 and Supplementary Table 1).

Functional enrichment analysis of miRNAs with dysregulated expression. KEGG pathway 
enrichment analysis was successively predicted by miRNet and aimed to validate that these miRNAs DE are 
involved in the prostate cancer pathway. This analysis revealed that in EO-PCa samples, 23 and 44 pathways 

Figure 1.  Venn diagram of DE-miRNAs. A. Upregulated DE-miRNAs; B. Downregulated DE-miRNAs.
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were present in upregulated and downregulated miRNAs, respectively. In LO-PCa, 10 and 33 pathways were 
upregulated and 33 downregulated, respectively (Fig. 2). Genes in the PCa pathway as annotated by KEGG were 
overrepresented as targets in upregulated and downregulated miRNAs in EO-PCa and LO-PCa. The detected 
pathways are dysregulated by upregulated and downregulated miRNAs in EO-PCa and by downregulated miR-
NAs in LO-PCa. These pathways had roles in carcinogenesis, such as increasing the cellular proliferation rate, 
reducing cellular focal adhesion, and alteration of signaling pathways, such as MAPK, p53, Jak-STAT, neurotro-
phin, Wnt and ErbB. These results are similar to previous reports in renal cell carcinoma and thyroid cancer. The 
identified pathways dysregulated by upregulated miRNAs in LO-PCa included cellular proliferation, p53 signal-
ing pathway, protein processing in the endoplasmic reticulum, adherens junction formation, and amino acid 
lysine degradation. Supplementary File 1 shows the target genes present in each of the dysregulated pathways.

Weighted coexpression networks. To capture most biological differences in the compared groups, we 
used less stringent criteria to select differentially expressed miRNAs: FC greater than 1.5 or less than – 1.5 and 
FDR less than 0.05. With those parameters, we identified in total 157 miRNAs differentially expressed (DE), 102 
miRNAs DE in EO-PCa, 121 miRNAs DE, and 66 miRNAs DE in common. Based on the expression levels of 
the 157 miRNAs DE, two coexpression networks were calculated. To generate comparable Weighted Coexpres-
sion Networks (WGCA), we used the same list of miRNAs in each of the two networks generated. First, the 24 
samples from young patients were used, and the similarity threshold was calculated using the maximum local 
method. A Pearson correlation coefficient greater than or equal to 0.57 differentiates the distributions of the 
correlations between the miRNAs and those of a random population. In total, 35 miRNAs had a correlation 
coefficient greater than the threshold. A similar process was performed with the 25 samples from the oldest 
patients using the same list of miRNAs. In this case, a Pearson correlation coefficient greater than or equal to 
0.62 differentiates the distributions of the correlations between the miRNAs and those of a random population. 
In LO-PCa, 33 miRNAs were coexpressed over the threshold and were used for the following analysis.

miRNA‑miRNA interactions to detect hub miRNAs. The networks calculated were analyzed using 
Cytoscape. The top 20 nodes ranked by the metrics MCC implemented CytoHubba were  chosen22. In young 
and elderly samples, two well-defined networks composed of downregulated and upregulated miRNAs were 
observed (Fig. 3 and Table 1). In EO-PCa, the network had 35 nodes, one connected component, a clustering 
coefficient of 0.695, network centralization of 0.250, and an average of 6.97 several partners of neighbors. On 
the other hand, in LO-PCa, the network had 33 nodes, two connected components, a clustering coefficient of 
0.740, network centralization of 0.180, and an average of 5.394 several partners of neighbors. The score of the 
top 10 hub miRNAs was from 1560 to 7716 in the young network and from 60 to 182 in the old network. In the 
EO-PCa top 10 miRNAs, all miRNAs were downregulated. However, in the LO-PCa network, the top 6 miRNAs 
were upregulated, and the following 4 were downregulated. In the comparison between the top 10 and the top 
group, hsa-miR-3065-3p and hsa-miR-676-3p were exclusively identified in young patients, whereas these genes 
did not exhibit statistical significance in the elderly population. Additionally, in the top 20, hsa-miR-488-3p was 

Table 1.  Top 20 of hub miRNAs in young and old obtained from CytoHubba analysis.

Hub miRNAs in young Hub miRNAs in old

Rank Name Score MCC logFC adj.P.Val Rank Name Score MCC logFC adj.P.Val

1 hsa-miR-31-5p 7716 − 2.021 0.00001 1 hsa-miR-32-5p 182 1.372 0.00007

2 hsa-miR-224-5p 7705 − 1.052 0.00000 2 hsa-miR-96-5p 169 1.216 0.00006

3 hsa-miR-3065-3p 744 − 1.082 0.00051 3 hsa-miR-182-3p 168 1.007 0.00942

4 hsa-miR-205-5p 6858 − 2.804 0.00002 4 hsa-miR-183-5p 160 0.986 0.00000

5 hsa-miR-205-3p 6738 − 2.283 0.00003 5 hsa-miR-375 156 1.297 0.00000

6 hsa-miR-3545-3p 6368 − 2.509 0.00000 6 hsa-miR-183-3p 126 0.886 0.00454

7 hsa-miR-224-3p 5544 − 1.052 0.00000 7 hsa-miR-224-3p 90 − 1.066 0.00039

8 hsa-miR-676-3p 5424 − 1.249 0.00024 8 hsa-miR-205-5p 80 − 2.327 0.00000

9 hsa-miR-135b-5p 1680 − 1.951 0.00161 9 hsa-miR-224-5p 72 − 1.142 0.00000

10 hsa-miR-452-3p 1560 − 0.761 0.00090 10 hsa-miR-31-5p 60 − 1.813 0.00018

11 hsa-miR-488-3p 846 − 1.368 0.00358 11 hsa-miR-3545-3p 48 − 1.829 0.00012

12 hsa-miR-1911-5p 762 − 2.578 0.00027 12 hsa-miR-452-5p 42 − 1.014 0.00000

13 hsa-miR-1912 732 − 2.022 0.00228 13 hsa-miR-32-3p 36 1.101 0.00160

14 hsa-miR-509–3-5p 258 − 2.235 0.00032 14 hsa-miR-1298 24 − 1.855 0.07505

15 hsa-miR-31-3p 246 − 1.557 0.00157 15 hsa-miR-10a-3p 24 − 0.391 0.29418

16 hsa-miR-452-5p 244 − 0.974 0.00000 16 hsa-miR-5096 24 1.181 0.00334

17 hsa-miR-150-5p 26 1.120 0.00005 17 hsa-miR-1911-5p 24 − 1.032 0.19284

18 hsa-miR-142-5p 26 1.140 0.00008 18 hsa-miR-1912 24 NS NS

19 hsa-miR-146b-3p 25 1.568 0.00000 19 hsa-miR-205-3p 24 − 1.942 0.00006

20 hsa-miR-514a-3p 24 − 2.516 0.00008 20 hsa-miR-944 18 − 1.988 0.00000
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exclusively identified in young patients, but this gene was not statistically significant in elderly patients. In the 
top 20 miRNAs, nine downregulated miRNAs were present in the two groups (hsa-miR-31-5p, hsa-miR-224-5p, 
hsa-miR-205-5p, hsa-miR-205-3p, hsa-miR-3545-3p, hsa-miR-224-3p, hsa-miR-1911-5p, hsa-miR-1912, and 
hsa-miR-452-5p). In addition, only three miRNAs were upregulated in young patients (hsa-miR-150-5p, hsa-
miR-142-5p, and hsa-miR-146b-3p). This result is in contrast to elderly patients, where eight miRNAs were 
upregulated (hsa-miR-32-5p, hsa-miR-96-5p, hsa-miR-182-3p, hsa-miR-183-5p, hsa-miR-375, hsa-miR-183-3p, 
hsa-miR-32-3p, and hsa-miR-5096). The exclusively upregulated and downregulated hub miRNAs in the young 
patients were not statistically significant in the elderly patients.

To identify the relevance of the hub miRNAs in the EO-PCa network we used miRNet to perform a KEGG 
pathway enrichment analysis with the predicted transcriptional targets of the 20 hub miRNAs. The analysis 

Figure 2.  Pathway enrichment analysis for the predicted target genes of potential DE-miRNAs (p value < 0.05). 
(A). Enriched KEGG pathways for target genes of upregulated DE-miRNAs in EO-PCa. (B). Enriched KEGG 
pathways for target genes of downregulated DE-miRNAs in EO-PCa. (C). Enriched KEGG pathways for target 
genes of upregulated DE-miRNAs in LO-PCa. (D). Enriched KEGG pathways for target genes of downregulated 
DE-miRNAs in LO-PCa.



5

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:12345  | https://doi.org/10.1038/s41598-020-69290-7

www.nature.com/scientificreports/

showed that 32 genes in the Prostate Cancer pathway were potentially regulated by the selected miRNAs (Sup-
plementary File 1).

Assessment of prognostic significance of EO‑PCa cohort. The prognostic significance of the 20 hub 
miRNAs of the EO-PCa network were analyzed via PROGmir V2, which used the PRAD  dataset23. Of the 20 hub 
miRNAs, four had prognostic value using survival data from general PCa. The hub miRNAs that are exclusively 
dysregulated in EO-PCa were hsa-miR-3065 (Hazard ratio (HR): 1.3) and hsa-miR-146b (HR: 1.34), which are 
associated with poor relapse‐free survival. In addition, miR-676 (HR: 1.84) was related to poor overall survival. 
On the other hand, two miRNAs exclusively identified in old patients, namely hsa-miR-32 and hsa-miR-96 (HR: 
1.46), were associated with poor relapse‐free survival. In addition, hsa-miR-10a (HR: 2.31) was related to poor 
overall survival. Figure 4 presents the Kaplan-Meir survival plots and the number of events in each analysis.

Correlated mRNA genes with hub miRNAs from the EO‑PCa coexpression network. To molec-
ularly explain the effects of dysregulation of those miRNAs in EO-PCa, we identified genes that were coex-

Figure 3.  Network analysis identified hub miRNAs using cytoHubba plug-in ranked by MCC. (A) EO-PCa. 
(B) LO-PCa. miRNAS with high centrality are noted in red. miRNAS with high-moderate centrality are noted 
in orange. miRNAS with low-moderate centrality are noted in yellow. miRNAS with low centrality are noted in 
blue.
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pressed with the hub miRNAs. We used mRNA microarray data generated using the same samples from the 
same patients who were used to generate the miRNA expression data.

After normalization and batch effect correction of the microarray dataset, six samples were identified as outli-
ers, three in EO-PCa patients and three in LO-PCa patients. Those samples were not included in the additional 
analysis.

The Pearson coefficients of the correlation of the 20 hub miRNAs in EO-PCa with the genes in the microar-
ray were calculated for the EO-PCa samples and similarly for the LO-PCa samples. A permutation test revealed 
that correlation coefficients greater than or less than ± 0.614 were statistically significant for EO-PCa samples 
and correlation coefficients greater than or less than ± 0.673 were statistically significant for LO-PCa samples.

Different numbers of coexpressed genes were identified for each hub miRNAs with numbers ranging from 0 
to 167 genes. Supplementary file 2 presents the numbers, names and correlation coefficients of the coexpressed 
genes for EO-PCa and LO-PCa samples. The most remarkable result was that EO-PCa upregulated hub miRNAs 
had more coexpressed genes than downregulated miRNAs, and most of these miRNAs exhibited positive cor-
relation coefficients (Supplementary file 2).

To provide a biological meaning of the lists of coexpressed genes, a pathway analysis with the statistically 
significant coexpressed genes for each hub miRNA was performed. We performed an overrepresentation analyses 
against the 21 cancer prostate pathways that we collected from Molecular Signatures Database (MSigDB)24 and 
the list of DEGs detected by Ding et al. (Supplementary file 3). We found that the three upregulated miRNAs 
(hsa_miR_142_5p, hsa_miR_146b_3p and hsa_miR_146b_3p) were coexpressed with the DEGs in EO-PCa 
versus normal tissue (Ding Early onset prostate cancer 2016)9. Two of the upregulated miRNAs were coexpressed 
with DEGs upregulated in the more aggressive prostate cancers of African-Americans compared with the less 
aggressive prostate cancers of European-American patients (WALLACE PROSTATE CANCER RACE UP)25 
(Table 2). Among the downregulated miRNAs, hsa_miR_3545_3p and hsa-miR-224-5p were significantly coex-
pressed with genes in LIU PROSTATE CANCER  DN26(Table 2). This pathway was obtained from microarray 
analysis of 31 PCa samples. The Gleason score was variable, and information on patient age was not provided. 
Table 3 shows all the genes with significant correlation coefficients for Ding Early onset prostate cancer 2016 
and WALLACE PROSTATE CANCER RACE UP.

A similar analysis was performed using the LO-PCa data, demonstrating that none of the miRNAs had 
more coexpressed genes in the pathways of early onset prostate cancer or more aggressive cancer in African-
Americans than expected by chance. Four miRNAs (hsa_miR_31_5p, hsa_miR_205_5p, hsa_miR_224_3p, and 
hsa_miR_3545_3p) were significantly coexpressed with genes in the pathway LIU PROSTATE CANCER  DN26 
(Supplementary Table 2).

Assessment of prognostic significance of genes coexpressed with hub miRNAs. Using  GEPIA27, 
which employed the PRAD dataset, the genes correlated with hub miRNAs that exhibited statistical signifi-

Figure 4.  Kaplan–Meier survival plots for overall survival related to hub miRNAs exclusively identified in 
young patients. The X and Y axes represent survival time (days) and recurrence-free survival (A and C) or 
percent survival (B), respectively. The analysis was made in PROGmiR V2.
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Table 2.  Over-representation analysis of co-expressed genes with hub miRNA using EO-PCa data. Only 
statistically significant associations are shown. Size means the number of genes in the pathway. Expect 
means the expected number of genes in the pathway co-expressed by chance with the miRNA. Ratio means 
the additional number of times that there are more genes co-expressed with the miRNA compared with the 
expected number. Overlap means the number of co-expressed genes that are part of the pathway. FDR is the 
false discovery rate of the overlap.

hub miRNA Gene set Size Expect Ratio Overlap FDR

hsa_miR_142_5p WALLACE PROSTATE CANCER RACE UP 277 3.64 4.12 15 1.0889E−06

hsa_miR_150_5p WALLACE PROSTATE CANCER RACE UP 277 2.32 3.88 9 8.83E−04

hsa_miR_142_5p Ding Early onset prostate cancer 2016 158 2.08 5.78 12 1.0889E−06

hsa_miR_150_5p Ding Early onset prostate cancer 2016 158 1.32 6.81 9 1.46E−05

hsa_miR_146b_3p Ding Early onset prostate cancer 2016 158 6.89 4.93 34 3.12E−13

hsa_miR_3545_3p LIU PROSTATE CANCER DN 473 5.65 2.30 12 0.015

Table 3.  Genes with coefficient of correlation statistically significant for Ding Early onset prostate cancer 2016 
and WALLACE_PROSTATE_CANCER_RACE_UP with upregulated hub miRNAs in EO-PCa. Genes in bold 
are common genes between both pathways.

Ding Early onset prostate cancer 2016 WALLACE_PROSTATE_CANCER_RACE_UP

ID_REF hsa-miR-142-5p hsa-miR-150-5p hsa-miR-146b-3p ID_REF hsa-miR-142-5p hsa-miR-150-5p

ADAMTS1 NS NS − 0.639 ADAMDEC1 0.724 0.715

APOE NS NS 0.648 CCR7 0.695 0.680

C4A NS NS 0.664 CD28 0.668 NS

CCDC74B NS NS − 0.694 CD3D NS NS

CCL19 NS NS 0.660 CD48 0.657 NS

CCR7 0.695 0.680 0.746 CXCL9 0.677 NS

CD3D NS NS 0.644 DOCK10 0.681 0.693

CD3E NS 0.651 0.685 GZMK 0.707 0.709

CD3G 0.684 0.684 0.644 IDO1 0.657 NS

CD6 0.641 0.644 NS IL2RG 0.723 0.712

CD84 0.654 NS 0.675 IL7R 0.647 0.663

COL2A1 NS NS 0.658 ITGB2 0.705 0.640

CP NS NS 0.648 ITK 0.685 0.659

E2F2 NS NS 0.681 MMP9 0.640 NS

EOMES 0.650 NS 0.673 PLEK 0.655 NS

ERG NS NS 0.653 PTPRC 0.675 0.689

HIST1H2AI NS NS 0.723

HIST1H2BM NS NS 0.701

HLA-DMB NS NS 0.705

IKZF1 NS NS 0.716

IL7R 0.647 0.663 0.702

ITK 0.685 0.659 0.681

LEPREL1 NS NS − 0.770

LTB 0.639 NS 0.661

MMP7 NS NS 0.687

MMP9 0.640 NS 0.650

PDE3B NS NS 0.667

PLP1 NS NS − 0.705

PTPRC 0.675 0.689 0.687

PYHIN1 0.680 0.683 0.649

SERPINA3 NS NS 0.709

SLAMF6 0.726 0.672 0.647

SLC35F1 NS NS − 0.654

TMEM178 NS NS 0.671

UBD NS NS 0.767
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cance were analyzed (Table 3). Among the upregulated hub miRNAs, two genes that exhibited high expression 
(DOCK10: HR: 1.6, p = 0.02; ITGB2: HR: 2, p = 0.001) (Fig. 5) in the Wallace_Prostate_Cancer_Race_Up data-
base were associated with poor disease‐free survival. In the Ding_PlosGenetics2016, the high expression of four 
genes (CD3D: HR: 1.6, p = 0.03; APOE: HR: 1.8, p = 0.005; CD84: HR: 1.7, p = 0.01; E2F2: HR: 1.9, p = 0.003) was 
associated with poor disease‐free survival, and the low expression of two genes (SLC35F1: HR: 0.65, p = 0.04; 
SERPINA3: HR: 0.52, p = 0.002) served as protective factors. In the hub of downregulated miRNAs, the low 
expression of FBXO17 served as a protective factor (HR: 0.63, p = 0.03) of disease‐free survival.

Discussion
EO-PCa is a subtype of PCa, which is currently receiving high interest due to its impact on clinical behavior and 
pathobiological differences with the “classical” or elderly PCa (LO-PCa). In this study, novel data analysis was 
performed using transcriptomic data from patients with EO-PCa who were < 45 years old and LO-PCa who were 
71 to 74 years old. The data analyzed were generated by Ding et al. using 49 PCa  patients9. The tumor samples 
were GS 7 (3 + 4) and grade T2 (T2a or T2c). Samples were obtained from different ethnic groups, including 88% 
whites, 4% African-Americans, 4% Hispanics and 4% Asians. We identified 55 miRNAs DE in EO-PCa, including 
28 upregulated and 27 downregulated. In addition, 26 of these genes were exclusively dysregulated in EO-PCa. 
Using an overrepresentation analysis with the predicted targets genes of the miRNAs DE, we identified several 
pathways commonly dysregulated between EO-PCa and LO-PCa. These pathways are related to adherence junc-
tions, cell cycle and p53 signaling. In addition, the neurotrophin signaling pathway was identified as dysregulated, 
and members of this pathway are expressed in PCa, i.e., trk receptors and neurotrophins (NGF, BDNF, and/or 
NT-3).28. Strikingly, in upregulated miRNAs in elderly patients, the lysine degradation pathway exhibited statisti-
cal significance. Lysine modification is associated with carcinogenesis in different types of  tumors29.

Among the hub miRNAs exclusively deregulated in EO-PCa without significance in LO-PCa, three were 
downregulated (hsa-miR-3065-3p, hsa-miR-676-3p, and hsa-miR-488-3p), and three were upregulated (hsa-
miR-150-5p, hsa-miR-142-5p, and hsa-miR-146b-3p). The role of hsa-miR-3065-3p and hsa-miR-676-3p in 
PCa is unknown, but reduced expression of these genes is observed in tumors, such as esophageal squamous cell 
 carcinoma30, hsa-3065-3p in clear cell renal cell  carcinoma31, and hsa-miR-676-3p in breast cancer cell  lines32. In 
survival analysis, hsa-miR-3065 was associated with poor relapse‐free survival, and hsa-miR-676 was related to 
poor overall survival. In the PCa cell lines (LNCaP and C4-2B), hsa-mir-488-3p inhibits the androgen receptor, 
blocks proliferation and induces  apoptosis33. Among the exclusively upregulated hub miRNAs in EO-PCa, hsa-
miR-142-5p and hsa-miR-150-5p had been described as  deregulated34–37. The last may act as antitumor miRNA 
targeting  SPOCK135. hsa-miR-150 has been reported as upregulated with a role in proliferation and invasion by 
targeting  p5336, and its expression is associated with poor overall survival (HR: 1.87, CI: 1.19–2.94)37. In addition, 
Ding et al.9 found that hsa-miR-146b-3p exhibited the highest level of overexpression in young PCa patients. 
However, the specific role of hsa-miR-146b-3p in PCa its unknown, it was associated with poor relapse‐free 
survival in the survival analysis (Fig. 4). hsa-miR-146b-3p is member of the miR-146 a/b family. hsa-miR-146a 

Figure 5.  Kaplan–Meier survival plots for overall survival related to target genes correlated with hub miRNAs. 
The X and Y axes represent survival time (months) and disease-free survival, respectively. The analysis was 
made in GEPIA.
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is dysregulated in PCa and other tumors. In androgen-independent PCa, its downregulation is involved in 
apoptosis through regulation of the ROCK/Caspase 3  pathway38,39.

To understand how dysregulation of hub miRNAs modulates the normal behavior of prostatic tissue, we 
searched the targets genes of each hub miRNAs. The number of potential target genes identified was 112 for hsa-
miR-3065-3p, 51 for hsa-miR-676-3p, 131 for hsa-miR-488-3p, 534 for hsa-miR-150-5p, 226 for hsa-miR-142-5p, 
and 56 for hsa-miR-146b-3p. These hub miRNAs are annotated as members in different KEGG pathways that are 
relevant in PCa biology. For example, regulatory targets of hsa-miR-3065-3p, such as GSK3B (Glycogen Synthase 
Kinase-3), are involved in apoptosis, cell cycle, DNA repair, tumor growth, invasion, and metastasis pathways. 
In recent years, it has become a targeted gene for  therapy40. In the progression to androgen-independent PCa, 
GSK3B may act with  PTEN41 as a positive regulator of androgen receptor transactivation and growth independ-
ent of the Wnt/β-catenin  pathway42. hsa-miR-3065-3p and hsa-miR-488-3p are related to p53, which is a very 
relevant gene that is mutated in greater than half of all cancers and is associated with progression in  PCa43. hsa-
miR-3065-3p is repress by mutant  p5344, and hsa-miR-488-3p activates the p53 pathway through suppressing 
 ZBTB245. On the other hand, C-terminal Binding Protein 1 (CTBP1) is a target gene of hsa-miR-676-3p. This 
gene is a transcriptional corepressor of tumor suppressors genes involved in cell death, and dysregulated expres-
sion of this gene is associated with PCa  progression46. Platelet-derived growth factor receptors-β (PGDFR-β) is 
regulated by hsa-miR-488-3p and hsa-miR-146b-3p), which are key regulators of cell growth and  division47. In 
PCa, PGDFR-β is expressed in the early stage of the  disease48. Its activation is associated with the loss of  PTEN49, 
and high PGDFR-β expression is associated with prostate cancer  recurrence50.

Among the upregulated hub miRNAs, several target genes involved in the KEGG PCa pathway were identified. 
The targets of hsa-miR-150-5p in this pathway include CDK2, EP300, and TP53. CDK2 is a key regulatory protein 
involved in cell cycle arrest upon DNA  damage51. It is upregulation is associated with PCa progression, and it is a 
probable novel target gene in  treatment52. hsa-miR-142-5p is modulator of important genes involved in the patho-
genesis of PCa, including Cyclin D1 (CCND1), MAPK1, and PTEN. CCND1 is associated with  aggressiveness53. 
MAPKs are serine/threonine kinases that mediate intracellular signaling associated with a variety of cellular 
activities, such as cell proliferation. In PCa, MAPKs are involved in apoptosis, survival, metastatic potential, 
and androgen-independent  growth54. Additionally, PTEN is the most commonly lost tumor suppressor gene in 
primary disease. In most cases with PTEN loss, the gene is lost by genomic deletion. The loss of PTEN is associ-
ated with prostate tumor aggressiveness, progression, and poor prognosis (reduced disease-specific survival)55.

Given the limited number of studies on the effects of the hub miRNAs in the pathogenesis of PCa, we per-
formed a correlation analysis based on the expression of hub miRNAs and all the genes in the genome in patients 
with EO-PCa. The overrepresentation analysis of the genes with significant correlations among hub miRNAs in 
the EO-PCa network revealed that the three upregulated hub miRNAs were significantly coexpressed with the 
Ding Early-onset prostate cancer 2016 pathway: two of the upregulated hub miRNAs were coexpressed with 
Wallace_Prostate_Cancer_Race_Up and one downregulated hub miRNA was coexpressed with LIU PROSTATE 
CANCER DN (Table 2). In the primary analysis of the data used in the present study, Ding et al.9 reported dif-
ferential expression of genes annotated in immunological pathways in the age:tissue interaction analysis (B Cell 
Development, iCOS-iCOSL Signaling in T Helper cells, CD28 Signaling in T Helper Cells, Primary Immuno-
deficiency Signaling, Calcium-induced T Lymphocyte Apoptosis), including genes such as complement family 
genes, immune-cell surface antigens, chemokines, interleukin receptors, natural killer cells and extracellular 
matrix remodeling genes. Moreover, the  Wallace_Prostate_Cancer_Race_Up25 dataset was generated from the 
comparison of gene expression profiles of PCa from 33 African-American patients with 36 European-American 
patients. The genes in this pathway are involved in immune response, stress response, cytokine signaling, and 
chemotaxis pathways. Several known metastasis-promoting genes, including autocrine mobility factor recep-
tor, CXCR4 (chemokine (C-X-C motif) receptor 4), and MMP9, were more highly expressed in tumors from 
African-Americans than European- Americans. The expression profiles of two upregulated hub miRNAs, namely 
hsa-miR-150-5p and hsa-miR-142-5p, were correlated with the Wallace_Prostate_Cancer_Race_Up dataset.

The genes shared in Wallace and Ding pathways and statistically correlated with upregulated hub miRNAs 
(hsa-miR-150-5p and hsa-miR-142-5p) are genes involved in the immunology response, such as CCR7, IL7R, 
ITK, PTPRC, MMP9, APOE, CCL19, and CD3D. These genes were upregulated in PCa of African-American 
patients and in EO-PCa25. CCR7 and MMP9 are genes associated with PCa progression and  metastases56–58. 
MMP-9 is involved in several hallmarks of PCa progression, such as proliferation, angiogenesis, epithelial to mes-
enchymal transition, apoptosis, and  metastasis59. MMP-9 expression is associated with the risk of PCa (OR = 7.91; 
95% CI: 5.27–11.89; P < 0.00001)60. A primary PCa cell line derived from an African–American patient (E006AA) 
exhibited increased MMP9 expression compared to other studied cell lines (LNCaP, C4-2, and MDAPCa2b)61. 
CCR7 is a chemokine receptor that is associated with lymph node metastasis in other tumors, such as breast 
 cancer62, non-small cell lung  cancer63, and gastric  carcinoma64. The CCR7 ligand CCL21 is expressed selec-
tively in high endothelial venules at the entry point into the lymph node and promotes cancer  progression56,62. 
Polymorphisms in CCR7 (rs3136685) are present in African–American PCa  patients65. IL7R and IL7 are highly 
expressed in PCa and are associated cancer cell invasion and migration probably by activating the AKT/NF-κB 
pathway and upregulating MMP-3 and MMP-7  expression66.

All the coefficients of correlation among the upregulated hub miRNAs and the mRNAs genes were positive. 
It could be counterintuitive that the upregulation of a specific miRNA causes the up-regulation of a specific 
mRNA. We proposed that it may explained by the activation of the transcription of target genes by binding of 
miRNAs with reverse complementary sequences in promoter regions of  genes14. For example, overexpression 
of hsa-miR-205 increases IL-35 and IL-24  expression67. In PCa cells (DU145 and PC3), overexpression of miR-
3619-5p induces CDK1N1 gene expression via direct interaction with the promoter  region68. On the other hand, 
one gene target can be targeted by several  miRNAs69. Therefore, the targets of this gene are potentially regulated 
by miRNAs DE. Thus, it is necessary study the regulation of this gene’s targets.
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In the analysis of overall survival of genes with high expression in  Wallace_Prostate_Cancer_Race_Up25, high 
expression of DOCK10 and ITGB2 was associated with poor prognosis. Both genes are coexpressed with hsa-
miR-150-5p and hsa-miR-142-5p. The roles of these genes in PCa are unknown. In cancer, DOCK10 (Dedicator 
Of Cytokinesis 10) is involved in the regulation of the epithelial to mesenchymal  transition70. ITGB2 (Integrin 
beta-2 (CD18)) combines with integrin alpha to form the integrin lymphocyte function-associated antigen-1 
(LFA-1). This gene is involved in tumor growth and  metastasis71.

A limitation of this study was the high homogeneity of the patients, who all had Gleason scores of 7 (3 + 4). 
Patients with low-grade PCa have different molecular characteristics, clinical behavior and  treatment72. However, 
the expression profile of miRNAs in low-grade PCa does not exhibit significant differences. Walter B et al.73 
compared miRNA expression in 26 patients with low-grade and 15 patients high-grade PCa. The results did not 
reveal any specific signatures to differentiate the two groups. Another limitation involves the survival analyses 
of DE miRNAs and DEGs because the data were obtained from TCGA database. In this analysis, we could not 
perform separate evaluations for EO-PCa and LO-PCa.

In conclusion, this is the first study that analyzed the expression of miRNAs in EO-PCa and LO-PCa patients 
using network analysis. Connections among miRNA expression, target genes, and molecular pathways for EO-
PCa and LO-PCa were identified. Furthermore, specific miRNAs with clinical significance in young patients may 
explain molecular differences, and the different biological processes in young and elderly patients were identified. 
In addition, we found coexpression of genes and hub miRNAs that play important roles in PCa progression and 
metastasis and genes associated identified in Afro-American PCa patients. Most of these genes are involved in the 
immunology response. As a recommendation, the constructed network of biomarkers should be further assessed 
in EO-PCa, and candidate miRNAs and gene targets should be validated for patient diagnosis and prognosis.

Materials and methods
Data selection. In June 2019, an advance search was performed to identify studies that analyze miRNA 
expression in EO-PCa patients. The sources used included PubMed and the National Center for Biotechnology 
Information (NCBI) GEO database (https ://www.ncbi.nlm.nih.gov/geo/). The keywords ’young OR early-onset 
AND prostate cancer’ were used in the search. The results were limited to Homo sapiens as the organism and 
expression profiles were determined using array dataset types.

The inclusion criteria for the systematic review were (1) miRNA expression was assessed in prostate tissue 
of young and elderly PCa patients in the same dataset, (2) raw data were available, and (3) data passed quality 
control. Two reviewers performed an eligibility assessment by screening titles and abstracts from the publica-
tions. Subsequently, the articles that did not meet the eligibility criteria were rejected. Additionally, we searched 
The Cancer Genome Atlas (TCGA); however, we could not use these data because the database only contained 
matched tumor and normal data from three patients diagnosed with PCa under the age of 55 years.

Preprocessing and identification of differentially expressed miRNAs. Raw counts of miRNAs 
from 49 patients with prostate cancer diagnoses were downloaded from GSE89193 and deposited in the Gene 
Expression Omnibus (GEO) database (https ://www.ncbi.nlm.nih.gov/geo/query /acc.cgi?acc=GSE89 193). The 
data included 25 elderly men (ages 71–74 years) and 24 young men (ages 38–45 years). For each patient, the 
tumor and a standard region of the prostate were analyzed. Samples were sequenced on the Illumina HiSeq 2.500 
platform (https ://www.illum ina.com/syste ms/seque ncing -platf orms/hiseq -2500.html).

Raw count miRNA data were normalized using the trimmed mean of the M-value (TMM) method through 
the EdgeR  package74. Because the original data were sequenced in two  batches9, this nonbiological variability 
source was corrected using nonparametric Bayesian statistics methodology using the sva package.75. The extent 
of the batch effect correction was assessed by principal component analysis.

The samples were assigned to two different experimental groups to identify the differentially expressed miR-
NAs in LO-PCa (71–74 years old) and EO-PCa (38–45 years old). miRNA expression levels were compared 
between tumor and normal samples in each group. The statistical significance level for this study was calculated 
using the Limma statistics package (Linear Models for Microarray and RNA-Seq Data)76. Limma uses a linear 
modelling to detect differentially expressed genes. The fold change was calculated, and the statistical significance 
was adjusted for multiple comparisons (False Discovery Rate (FDR)).

Weighted gene coexpression networks analysis (WGCNA). The total levels of differentially 
expressed miRNAs between normal and tumor samples in older and young patients were collected in one list. 
Two coexpression networks were developed using this gene list. The first list was generated for the young sam-
ples, and the second list was generated for the older group. First, the similarity matrix was calculated by identify-
ing the Pearson correlation coefficients of the expression levels for the samples based on all possible gene pairs. 
Then, the similarity threshold was calculated with the adjacency function, which was established according 
to the unique characteristics of each similarity  matrix77. The method developed by Elo was used to select the 
 threshold78. This method compared the tau values for the network grouping coefficient (Co) with that expected 
for a random network (Cr). It uses the clustering coefficient of the real graph in comparison to a rando graph. 
The threshold for significant similarities is chosen so that the obtained real graph is scale free. Finally, the adja-
cency matrix (2 × 2) of the network was established and allowed the representation of binary relationships. In 
this case, a pair of genes that exhibit coordinated gene expression activity (coexpression) is indicated by (1); 
otherwise, a (0) is reported. All WGCNA analyses were performed in an R unique environment using statistical 
functions (https ://www.r-proje ct.org/).

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89193
https://www.illumina.com/systems/sequencing-platforms/hiseq-2500.html
https://www.r-project.org/
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Detection of hub miRNAs. The hub miRNAs were identified through network analysis using Cytoscape 
and its plugin (CytoHubba). This plugin accurately identifies hub genes by 12 topological analysis methods. 
For this study, the Maximal Clique Centrality (MCC) method proposed by CytoHubba was used; recently, this 
method exhibits improved performance to capture essential targets in the top rank list in both high- and low-
grade  PCa22. In addition, MCC helped to identify the top 20 hub miRNAs. On the other hand, the network 
analyzer plugin was used to recognize the network parameters.

Functional annotations of hub miRNAs. The miRNet database to identify target genes (https ://www.
mirne t.ca/) was used to facilitate the interpretation of biological mechanisms related to hub miRNAs. This tool 
integrates data from eleven different miRNA databases: TarBase, miRTar-Base, miRecords, miRanda, miR2D-
isease, HMDD, PhenomiR, SM2miR, PharmacomiR, EpimiR, and  starBase79. The following information was 
provided for miRNet analysis: organism name (H. sapiens), ID type (miRBASE ID), and tissue origin (Not speci-
fied). No degree or betweenness filter was used for network visualization. Additionally, miRNet was applied to 
identify biological pathways and processes, molecular functions, and cellular components that are statistically 
enriched for the corresponding miRNA target genes. For the functional evaluation of the miRNAs, the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted in mirNet. Only statistically 
significant annotation categories (P value < 0.05) were retained.

Survival analyses of miRNAs with dysregulated expression. PROGmiR V2 is an online free tool 
and is available at https ://www.compb io.iupui .edu/progm ir. This program combines the prognostic data of miR-
NAs for different types of cancers from TCGA dataset. This tool was used to compare the overall, relapse-free, 
and metastasis-free survival of prostate adenocarcinoma patients with DE of miRNAs in young and old cohorts. 
It also divides samples based on high and low expression and calculates the hazard ratio (HR) with relative con-
fidence intervals (CI) and P values for the proportional hazards  model23.

Determination of mRNA expression levels of all genes in normal and tumor tissues from 
EO‑PCa and LO‑PCa for the diagnosis of prostate cancer. The level expression of mRNAs from can-
cer and normal tissues from EO-PCa and LO-PCa patients were downloaded from the same dataset GSE88808 
available in the GEO OMNIBUS database (https ://www.ncbi.nlm.nih.gov/geo/query /acc.cgi?acc=GSE88 808).

These data were generated in parallel with the miRNA dataset. The same patients and same tissues were 
used to identify the level expression of mRNAs and miRNAs. A detailed description of the RNA obtention 
and determination of mRNA expression level are provided in the primary  paper9. In summary, total RNA was 
extracted from approximately 5 mg of unsectioned formalin-fixed paraffin-embedded core samples using the 
RecoverAll Total Nucleic Acid Isolation kit (Life Technology, Inc.). The Illumina HumanHT-12 WG-DASL V4.0 
expression beadchip was used for mRNA expression profiling of 29,000 genes in the human genome. The levels 
of intensity were normalized using the quantile normalization  method80. The batch effects secondary to differ-
ent times of hybridization were corrected using the empirical Bayes methods as is implemented in the ComBat 
in sva  package81.

Identification of outliers was performed using the Pearson correlation measurements of the level expres-
sions of all genes in the microarray between all the samples. Samples with correlation coefficients less than 0.9 
compared with the other samples were excluded from additional analyses.

Analysis of the correlation of the expression of hub miRNAs with the expression of genes 
involved in the pathogenesis of prostate cancer. The hub miRNAs in the EO-PCa coexpression net-
work were included in additional correlation analyses to determine whether they were coexpressed with genes 
involved in prostate cancer.

First, we collected the 183 differentially expressed genes (DEGs) identify by Ding et al.in the primary analysis 
of the mRNA expression  data9; they identified differences in tumor vs. normal tissues between samples from 
young and old patients. We refer to this list of genes as Ding Early-onset prostate cancer 2016.

Second, the Molecular Signatures Database (MSigDB)24 was interrogated to collect the pathways related to 
prostate cancer. In total, 22 different pathways were identified (Supplementary file 3). This collection of path-
ways represents the state of knowledge about transcriptomic modifications between tumor tissues compared 
with normal tissues from prostate cancer patients (19 pathways) and tumor samples from African-American 
compared with European-American patients with primary prostate  cancer25.

Third, Pearson correlation coefficients were calculated among the expression profiles of selected hub miRNAs 
and mRNA expression levels from all the genes in the Illumina microarray. We initially performed correlation 
analysis only for young or old samples. Using a permutation test, the confidence intervals were calculated. Cor-
relations coefficients with P values less than 0.002 were selected as statistically significant.

Finally, overrepresentation analyses were performed using the hypergeometric test as implemented in 
 WebGestalt82. For each selected hub miRNA, statistically significant coexpressed genes were interrogated against 
the genes in the 22 prostate cancer pathways to identify whether more (overrepresentation) genes coexpressed 
with miRNAs are present than expected by chance.

Survival analyses of genes coexpressed with hub miRNAs. Gene Expression Profiling Interactive 
Analysis (GEPIA; https ://www.gepia .cance r-pku.cn)27  was used to calculated disease‐free survival and overall 
survival between DEGs coexpressed with hub miRNAs. The lower and upper 50% of gene expression levels were 

https://www.mirnet.ca/
https://www.mirnet.ca/
https://www.compbio.iupui.edu/progmir
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE88808
https://www.gepia.cancer-pku.cn
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set as the standard for analysis. The confidence interval was 95%. High and low expression genes are represented 
in red and blue, respectively. Log-rank test results with P < 0.05 were regarded as statistically significant.
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