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Serum proteome profiles 
revealed dysregulated proteins 
and mechanisms associated 
with fibromyalgia syndrome 
in women
Chia‑Li Han1, Yung‑Ching Sheng2,6, San‑Yuan Wang1,6, Yi‑Hsuan Chen1 & 
Jiunn‑Horng Kang3,4,5*

Fibromyalgia syndrome (FM) is a multifactorial disorder whose pathogenesis and diagnosis are 
poorly understood. This study investigated differential serum proteome profiles in patients with 
FM and healthy pain‑free controls and explored the association between serum proteome and 
clinical profiles in patients with FM. Twenty patients with FM (according to the American College 
of Rheumatology criteria, 2010) and 20 healthy pain‑free controls were recruited for optimized 
quantitative serum proteomics analysis. The levels of pain, pressure pain threshold, sleep, anxiety, 
depression, and functional status were evaluated for patients with FM. We identified 22 proteins 
differentially expressed in FM when compared with healthy pain‑free controls and propose a panel of 
methyltransferase‑like 18 (METTL18), immunoglobulin lambda variable 3–25 (IGLV3–25), interleukin‑1 
receptor accessory protein (IL1RAP), and IGHV1OR21‑1 for differentiating FM from controls by using 
a decision tree model (accuracy: 0.97). In addition, we noted several proteins involved in coagulation 
and inflammation pathways with distinct expression patterns in patients with FM. Novel proteins 
were also observed to be correlated with the levels of pain, depression, and dysautonomia in patients 
with FM. We suggest that upregulated inflammation can play a major role in the pathomechanism of 
FM. The differentially expressed proteins identified may serve as useful biomarkers for diagnosis and 
evaluation of FM in the future.

Fibromyalgia syndrome (FM), manifesting as chronic widespread pain throughout the body, is associated 
with long-term pain and impaired quality of life, which can result in tremendous medical and socioeconomic 
 burden1–4. The prevalence of FM was reportedly between 0.2 and 6.6%, predominantly affecting women in the 
general  population5. The diagnosis of FM continues to be based mainly on clinical history taking and patients’ 
complaints. Currently, no specific laboratory measure or specific biomarkers are available for the diagnosis of FM.

FM has been recognized as a multifactorial disorder involving genetic, biological, and environmental factors. 
Although the pathogenesis of FM is poorly understood, altered central pain processing and pain sensitization 
are key elements in the pathogenesis of  FM2,6–8. Neuroimaging and neuroendocrine research have revealed 
that altered central nervous system structure and function occur in patients with  FM9–11. Patients with FM also 
exhibit a wide spectrum of associated symptoms such as sleep disturbance, depression, anxiety, fatigue, other pain 
disorders, and cognition  problems12. These symptoms add significant heterogeneity and difficulty in the clinical 
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management of FM. Furthermore, the linkage of relevant biological pathways with clinical symptom profiles is 
poorly understood. Therefore, FM treatments currently available are primarily symptomatic and usually require 
a multidisciplinary  approach13. Exploration of potential biomarkers that correlate with the clinical profiles of 
FM can be valuable for evaluating the patients with FM.

Proteomics analysis based on modern liquid chromatography–mass spectrometry (LC–MS) has enabled 
systematic profiling of proteome expressions in various specimens to identify disease-associated proteins. A few 
proteomics studies on FM have identified potential protein biomarkers in  saliva14,15 and serum or  plasma16,17. Pro-
teomics analyses of the cerebrospinal fluid (CSF) in FM revealed dysregulation of proteins involved in lipoprotein 
lipase activity, inflammatory signaling, energy metabolism, and neuropeptide  signaling18 as well as of proteins 
related to  pain19. However, none of the respective candidates were replicated in salivary and blood proteomics 
studies. Moreover, CSF proteins are not ideal for clinical diagnosis. More extensive proteomics analysis in easily 
accessible specimens for FM detection is required. For this purpose, the present study investigated differential 
serum proteome profiles in patients with FM and healthy pain-free controls by using an optimized serum prot-
eomics analysis workflow. We further explored the underlying molecular mechanism and the correlation between 
serum proteome and clinical profiles in patients with FM. These data can clarify the FM pathogenic mechanism 
and can help provide insights to objectively evaluate patients with FM and to develop specific treatments for FM.

Results
Optimization of depletion of high‑abundance serum proteins prior to proteomics analysis. In 
this study, we adopted the commercially available multiple affinity removal system (MARS) Hu-14 column, 
which utilizes antibodies targeting the top 14 high-abundance serum proteins to selectively remove high-abun-
dance proteins and generate depleted serum samples for proteomics analysis. The SDS-PAGE analysis of raw and 
depleted serum samples in Supplementary Fig. S1A revealed a significant depletion of high-abundance proteins 
and enhanced detection of other protein bands by using the MARS Hu-14 column. We further evaluated the 
loading amount for the MARS column; two loading conditions, a fixed serum volume (according to manu-
facturer’s instructions), and a fixed amount of serum proteins were tested using three selected serum samples 
with low (40.7 μg/μL), medium (70.9 μg/μL), and high (126.9 μg/μL) protein concentration levels. The depleted 
serum samples were analyzed in duplicate by using LC–MS/MS to obtain relative protein mass spectrometry 
(MS) abundances for comparison. As shown in Supplementary Fig. S1B, the use of fixed serum volume caused 
unequal depletion efficiency in the MARS column; the total MS abundances of the top 14 high-abundance 
proteins in the depleted serum samples were 34%, 26%, and 10% in high-, medium-, and low-concentration 
serum samples, respectively. The unequal depletion of high-abundance proteins led to significant bias in the 
precise quantitation of mid-to-low abundance proteins. By contrast, the use of a fixed serum protein quantity 
resulted in a more consistent depletion efficiency in the MARS column for high-abundance proteins (19–22%). 
We also tested various fixed quantities of serum proteins for MARS depletion. As seen in Supplemental Fig. S1C, 
an increase to 750 or 800 μg of serum proteins for the MARS column generated a similar depletion efficiency. 
Based on these observations and the resulting quantity of depleted proteins required for proteomics analysis, we 
selected the fixed quantity of 750 μg of serum proteins as preliminary materials for quantitative serum proteom-
ics analysis.

Quantitative profiling of serum proteome identified dysregulated proteins and mechanisms 
associated with FM. A total of 20 patients with FM and 20 healthy pain-free controls were recruited for 
quantitative serum proteomics analysis. The demographic data and clinical profiles are summarized in Table 1. 
The body mass index (BMI), work, and marital status were similar for patients with FM and controls. The age of 
patients with FM was slightly higher than that of controls (47.50 ± 7.45 vs. 52.90 ± 9.58 years, P < 0.048). Patients 
with FM experienced pain for an average of 9.05 years, significantly poorer sleep quality, and more severe anxi-
ety and depression (P < 0.01). In addition, patients exhibited abnormally elevated levels for the widespread pain 
index (WPI; 7.35 ± 4.77), symptom severity scale (SSS; 5.05 ± 2.46), fibromyalgia impact questionnaire (FIQ; 
43.53 ± 12.70), visual analog scale (VAS; 5.00 ± 2.18), and tender point pressure (2.35 ± 1.04) kg/cm2.

To achieve in-depth profiling of serum proteome, we used a tandem mass tag (TMT)-based quantitation 
strategy, which integrated optimized MARS Hu-14 depletion, gel-assisted digestion, TMT tagging, high-pH 
reversed-phase (Hp-RP) StageTip fractionation, and LC–MS/MS analysis (Fig. 1A). Five batches of TMT experi-
ments were performed using 40 samples and control references, which identified 890 serum proteins. Across 40 
samples, 375 proteins were commonly identified (Fig. 1B), of which 324 were successfully quantified (Fig. 1C). 
A total of 28–72 proteins were uniquely quantified in one of the batches, suggesting heterogeneous expression 
of serum proteins among individuals.

We next filtered candidate proteins from 324 commonly quantified proteins by using the Mann–Whitney 
U test (Fig. 2A). Only proteins with P values of < 0.05 and fold changes of > 1.3 or < − 1.3 were considered sig-
nificant candidates for distinguishing between patients with FM and healthy pain-free controls. Based on these 
criteria, 22 proteins were selected as candidate proteins (Table 2), of which 9 and 13 proteins were upregulated 
and downregulated, respectively, in patients with FM compared with controls. We further applied partial least 
squares discriminant (PLS-DA) analysis for the 22 candidate proteins. The PLS-DA transformation preserved as 
much covariance as possible between the 22 candidate proteins and sample labels in the first component, which 
is the most relevant for distinguishing sample labels. The first two components were retained to distinguish 
control and FM samples. As shown in Fig. 2B, the PLS-DA analysis of the 22 candidate proteins revealed a clear 
distinction between patients with FM and controls.

These 22 candidate proteins were mainly involved in biological processes such as blood coagulation, immune 
response, and extracellular matrix–receptor interactions. The functional enrichment analysis performed using 
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Table 1.  Characteristics and clinical data of patients with FM and healthy pain-free controls. BMI Body Mass 
Index, PSQI Pittsburgh Sleep Quality Index, BAI Beck Anxiety Inventory, BDI Beck Depression Inventory, WPI 
Widespread Pain Index, SSS Symptom Severity Scale, FIQ Fibromyalgia Impact Questionnaire, VAS Visual 
Analogue Scale, PPT Pressure Pain Threshold, P value Mann–Whitney U Test for continuous variables and 
chi-square test for categorical variables.

Control group (n = 20) FM group (n = 20) P value

Age, mean ± SD years 47.50 ± 7.45 52.90 ± 9.58 0.048

BMI, mean ± SD 21.62 ± 3.28 22.83 ± 4.01 0.204

Pain duration, mean ± SD years 0 ± 0 9.05 ± 8.89 < 0.01

Work status, n (%) 0.784

 Employed 18 (90) 16 (80)

 Unemployed 2 (10) 4 (20)

Marital status, n (%) 0.143

 Single 16 (80) 15 (75)

 Married 4 (20) 5 (25)

PSQI 3.95 ± 1.43 10.40 ± 3.03 < 0.01

BAI 2.74 ± 3.86 13.85 ± 8.75 < 0.01

BDI 3.25 ± 4.23 14.00 ± 9.78 < 0.01

WPI – 7.35 ± 4.77 –

SSS – 5.05 ± 2.46 –

FIQ – 43.53 ± 12.70 –

VAS – 5.00 ± 2.18 –

PPT, mean ± SD kg/cm2 – 2.35 ± 1.04 –

Figure 1.  (A) Experimental workflow for FM serum proteome analysis. The overlapping of (B) identified and 
(C) quantified proteins in the five batches of TMT experiments.
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the ingenuity pathways analysis (IPA) indicated several altered pathways, including acute phase response signal-
ing, liver X receptor–retinoid X receptor (LXR–RXR) activation, and synaptogenesis signaling pathways (Sup-
plementary Table S1). In addition, the upstream regulator analysis suggested that the levels of tumor necrosis 
factor-α (TNF-α) and transforming growth factor-β1 (TGFB1) were higher and those of interleukin (IL)-6, 
lipopolysaccharides, and MYC were lower in patients with FM than in controls (Supplementary Table S2). IL6, 
an inflammatory cytokine, is also a primary regulator of fibrinogen synthesis. The coordinate downregulation 
of fibrinolysis proteins (F2, GP5, FGA, GP1BA, THBS1, and THBS2) in our data suggests a lower level of IL-6 
in patients with FM.

Decision tree analysis identified a panel of protein candidates for fibromyalgia detection. To 
determine the diagnostic potential of these candidate proteins, we applied decision tree analysis for the abun-
dance ratio of the 22 candidate proteins to create a protein panel for FM detection. According to the Pareto 
Principle, known as the 80–20 rule, the ratio of 80:20 is commonly used for training and validation of data sets 
in supervised learning algorithms, namely decision tree  algorithms20. Hence, we used 80% of data to train and 
construct a decision. The remaining 20% of data were used to validate the efficiency of the decision tree. As seen 
in Fig. 2C, a panel of METTL18 (abundance ratio ≥ 0.82), IGLV3-25 (abundance ratio < 0.62), IL1RAP (abun-
dance ratio ≥ 0.84), and IGHV1OR21-1 (abundance ratio < 0.68) offered 100% detection sensitivity for patients 
with FM in the training cohort. Even a single protein, METTL18, could achieve a detection sensitivity of 0.94 
and a precision of 0.88 (Table 3). The panel was further verified in the validation cohort. All combinations of 
protein panels yielded identical performances in terms of sensitivity (1.0) and specificity (0.88) for the detection 
of FM (Table 3).

Figure 2.  (A) The analysis workflow for filtering significant candidate proteins. (B) The PLS-DA plot shows a 
clear grouping of patients with FM and controls by using the 22 candidate proteins. The PLS-DA transformation 
preserves as much covariance as possible between the 22 candidate proteins and sample labels in the first 
component, which is the most relevant for distinguishing sample labels. The first two components are retained 
to distinguish the control and FM samples. (C) The decision tree analysis of candidate proteins suggests a panel 
of four proteins for accurate identification of patients with FM.
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Clinical correlation of differential serum proteome profiles in fibromyalgia. We conducted a par-
tial correlation analysis among filtered candidate proteins, clinical symptoms, and heart rate variability (HRV) 
parameters (Fig. 3). For symptom profiles, the expressed levels of IGHV1-46 were slightly correlated with VAS for 
pain (P = 0.0493, r = 0.4696) and the level of KRT80 was significantly correlated with the score of BDI (P = 0.0142, 
r = − 0.5666). For HRV parameters, the expression level of C4 was significantly correlated with total power, low 
frequency (LF) power (P = 0.0332, r = − 0.5035), and very-low-frequency (VLF) power (P = 0.0162, r = − 0.5577). 
The level of TMPRSS13 was correlated with root mean square successive differences (RMSSDs; P = 0.0075, 
r = − 0.6071) and the number of pairs of successive normal-to-normal beats (NNs) differing by more than 50 ms 
(NN50; P = 0.0238, r = − 0.5297). The level of METTL18 was correlated with RMSSD (p = 0.0429, r = − 0.4817) 
and low frequency–high frequency (LF–HF) ratio (P = 0.0165, r = 0.5563); the expression level of FGA was cor-

Table 2.  Significant candidate proteins in FM. VIP Variable importance in the projection, P value Obtained 
with the Mann–Whitney U test. # P < 0.05: *; P < 0.01, **; P < 0.005, ***.

Accession Gene symbol Protein name
MS abundance in patients 
with FM

MS abundance in healthy 
controls Fold change (FM/control) VIP P  value#

(A) Upregulated in FM

Q86YZ3 HRNR Hornerin 1.026 ± 1.485 0.502 ± 0.173 2.04 0.63 **

O95568 METTL18 Histidine protein methyltrans-
ferase 1 homolog 1.055 ± 0.219 0.660 ± 0.175 1.60 1.69 ***

Q6KB66 KRT80 Keratin, type II cytoskeletal 80 1.112 ± 1.067 0.749 ± 0.209 1.49 0.57 *

P02743 APCS Serum amyloid P-component 1.100 ± 0.383 0.788 ± 0.390 1.40 0.88 **

P0C0L4 C4A Complement C4-A 1.129 ± 0.375 0.851 ± 0.354 1.33 0.96 *

Q9NPH3 IL1RAP Interleukin-1 receptor acces-
sory protein 1.128 ± 0.226 0.856 ± 0.240 1.32 1.18 ***

Q9BYE2 TMPRSS13 Transmembrane protease 
serine 13 1.096 ± 0.159 0.841 ± 0.118 1.30 1.61 ***

O75015 FCGR3B Low affinity immunoglobulin 
gamma Fc region receptor III-B 1.246 ± 0.353 0.957 ± 0.473 1.30 0.77 *

P08637 FCGR3
Low affinity immunoglobulin 
gamma Fc region receptor 
III-A

1.246 ± 0.354 0.957 ± 0.473 1.30 0.77 *

(B) Downregulated in FM

P35542 SAA4 Serum amyloid A-4 protein 0.906 ± 0.195 1.181 ± 0.381 − 1.30 0.97 *

P01717 IGLV3-25 Ig lambda chain V-IV region 
Hil 0.936 ± 0.991 1.224 ± 0.528 − 1.31 0.73 ***

P40197 GP5 Platelet glycoprotein V 0.895 ± 0.258 1.176 ± 0.281 − 1.31 1.07 ***

P00734 F2 Prothrombin 0.919 ± 0.331 1.207 ± 0.581 − 1.31 0.79 *

P01743 IGHV1-46 Ig heavy chain V-I region HG3 0.856 ± 0.731 1.137 ± 0.655 − 1.33 0.81 *

A6NJS3 IGHV1OR21-1
Putative V-set and immuno-
globulin domain-containing-
like protein

0.850 ± 0.732 1.150 ± 0.695 − 1.35 0.82 *

P23083 IGHV1OR15-1 Ig heavy chain V-I region V35 0.850 ± 0.732 1.150 ± 0.695 − 1.35 0.82 *

P0CG05 IGLC2 Ig lambda-2 chain C regions 0.862 ± 0.609 1.172 ± 0.518 − 1.36 0.76 *

P35442 THBS2 Thrombospondin-2 0.898 ± 0.295 1.232 ± 0.346 − 1.37 1.13 ***

P02671 FGA Fibrinogen alpha chain 0.867 ± 0.490 1.201 ± 0.464 − 1.39 0.81 *

P07359 GP1BA Platelet glycoprotein Ib alpha 
chain 0.847 ± 0.169 1.193 ± 0.333 − 1.41 1.29 **

P07737 PFN1 Profilin-1 0.900 ± 0.205 1.336 ± 0.563 − 1.49 1.07 **

P07996 THBS1 Thrombospondin-1 0.786 ± 0.396 1.250 ± 0.558 − 1.59 1.01 **

Table 3.  Performance of different protein panels for FM detection.

Candidate

Training cohort (16 patients with FM and 16 
controls)

Validation cohort (4 patients with FM and 4 
controls)

Accuracy Sensitivity Precision F-score Accuracy Sensitivity Precision F-score

METTL18 0.91 0.94 0.88 0.9 0.88 1 0.88 0.89

METTL18 + IGLV3-25 0.94 1 0.89 0.94 0.88 1 0.88 0.89

METTL18 + IL1RAP 0.94 0.88 1 0.94 0.88 1 0.88 0.89

METTL18 + IGLV3-25 + IL1RAP 0.94 0.88 1 0.94 0.88 1 0.88 0.89

METTL18 + IL1RAP + IGH-
V1OR21-1 0.97 0.94 1 0.97 0.88 1 0.88 0.89
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related with HF (P = 0.0473, r = 0.5563), RMSSD (P = 0.0140, r = − 0.4817), and NN50 (P = 0.0071, r = − 0.4565). 
The level of GP5 was correlated with RMSSD (P = 0.455, r = 0.4766) and NN50 (P = 0.0192, r = 0.5455). The level 
of THBS1 was correlated with RMSSD (P = 0.457, r = 0.4762), and NN50 (P = 0.0169, r = 0.5548). The expression 
level of FCGR3B was correlated with HF (P = 0.0239, r = − 0.5294) and TP (P = 0.0449, r = − 0.4778).

Discussion
Among the possible factors that underlie FM pathophysiology, a proinflammatory status and a decreased anti-
oxidant capacity are commonly reported in patients with  FM21,22. However, these changes are difficult to use 
as clinical biomarkers because most of them lack specificity. One advantage of using proteomics to investigate 
potential biomarkers of FM is the ensemble feature of proteomics. The novelty of the present study is using 
machine learning to explore the complex proteomics and locate potential biomarkers in patients with FM. Using 
a decision tree model, we could successfully differentiate patients with FM from controls based on the expres-
sion levels of METTL18, IGL3-25, and IL1RAP, yielding an accuracy of up to 0.97. We developed a diagnostic 
panel and decision tree by using a combination of more than two candidate proteins, which yielded better 
specificity and sensitivity in the diagnosis of FM. This panel may serve as an objective diagnostic tool for FM 
in the future. However, it is difficult to claim the proteomic difference exhibited in present study is associated 
with FM or chronic pain. Further study to compare the proteomic profile between FM and patients with other 
well-characterized chronic pain disorders should be considered.

We found that METTL18, known as histidine protein methyltransferase 1 homolog, is an efficient candidate 
protein for differentiating patients with FM from controls. However, data regarding the biological function of 
METTL18 are scant. The most well-known protein database, UniProt, suggests that METTL18 acts as a protein 

Figure 3.  The partial correlation among 22 candidate proteins, clinical symptoms, and HRV parameters. The 
color of the box indicates the correlation of candidate proteins and clinical data. The size of the box indicates 
the − log(P value). Only the correlation with P < 0.05 was labeled with the − log(P value) value in the box. 
VAS Visual analog scale of pain, PPT pressure pain threshold, FIQ Fibromyalgia impact questionnaire, PSQI 
Pittsburgh sleep quality Index, BDI-II Becker’s depression inventory version II, BAI Becker’s anxiety inventory, 
HRV heart rate variability. Parameters in HRV include SD1 standard deviation 1 of the scattergram, SD2 
standard deviation 2 of the scattergram, SD1–SD2 ratio of SD1 to SD2, LF (ms2) low frequency, VLF (ms2) 
very low frequency, HF (ms2) high frequency, TP (ms2) total power, LF–VLF low-frequency energy to high-
frequency energy, RMSSD (ms) root mean square difference of successive normal R–R intervals, SDNN (ms) 
Standard deviation of NN intervals, NN50 Number of pairs of successive NNs that differ by more than 50 ms, 
TINN (ms) Triangular interpolation of the NN interval histogram, pNN50(%) Proportion of NN50 divided by 
total number of NNs



7

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:12347  | https://doi.org/10.1038/s41598-020-69271-w

www.nature.com/scientificreports/

methyltransferase and participates in fundamental protein modification and heat shock protein binding. Nev-
ertheless, the role of METTL18 in FM pathophysiology requires further study. A significant downregulation of 
immunoglobulin G-associated proteins (IGLV3-25, IGHV1-46, IGHV1OR21-1, IGHV1OR15-1, and IGLC2) was 
noted in the present study. Although relevant data are scant, an unexpectedly high prevalence of immunoglobulin 
deficiency in FM was  reported23. Furthermore, FM is common in patients with primary  immunodeficiency24. 
Primary immune deficiency states are well known to predispose patients to autoimmunity. This finding reinforces 
the hypothesis that FM is associated with dysregulated immune response.

After performing further pathway analysis for candidate proteins (Supplementary Table S1), we observed 
that proteins (complement C4-A, IL-1 receptor accessory protein, and immunoglobulin gamma Fc region recep-
tor III-A and B) and pathways involved in coagulation and inflammation were affected mainly in patients with 
FM. Furthermore, we found that proteins involved in the activation of the retinoid X receptors and the liver X 
receptor involved in the regulation of inflammation response showed increased activation from the IL-1 to the 
Nf-kB pathway in patients with FM. Ramírez-Tejero et al. reported the plasma proteomic signature in patients 
with FM and also found differentially expressed proteins to be mainly involved in inflammatory (LXR–RXR) and 
coagulation  pathways16. Our results suggest that inflammation plays a role in the pathophysiology of patients 
with FM, as seen in another  study25. Subtyping of FM according to unique inflammatory features as inflamma-
tory FM has been  proposed26. The role of inflammation in FM pathogenesis, as least in certain subtypes, should 
be further studied.

In one large cross-sectional study, serum CRP, a proinflammatory systemic biomarker, was significantly 
elevated in patients with  FM27. In that study, notably, the mean level of CRP remained within normal reference 
values in patients with FM. This finding implies modest systemic inflammation in patients with FM. For the 
exploration of specific inflammatory responses involved in FM, many studies have reported altered cytokine 
patterns in the blood and CSF of patients with FM, but the results are varied and  inconsistent28–31. Inflamma-
tion is regulated through a complex network of interactions among proinflammatory and anti-inflammatory 
 pathways32. A dysregulated proinflammatory and anti-inflammatory response may be an underlying cause of 
 FM31,33. Increased release of IL-1 beta, TNF-α, IL-6, IL-8, and IL-10 from stimulated monocytes in FM was 
 reported34, although this remains  controversial29. Abnormal release of cytokines from peripheral immune cells 
may be associated with fatigue, hyperalgesia, and allodynia in  FM35. A meta-analysis concluded that patients 
with FM have elevated blood levels of IL-1 receptor antagonist (IL-1ra), IL-6, and IL-828. Studies have suggested 
that serum IL-6 is elevated in patients with FM and is correlated with disease  severity28,29. In contrast with 
present data, we observed decreased IL-6 upstream activation based on candidate proteins’ expression (Sup-
plementary Table S2). A few studies have reported elevated levels of proinflammatory cytokines, such as IL-8, 
monocyte chemoattractant protein-1, and IL-17A,36,37 but decreased levels of anti-inflammatory cytokines, such 
as IL-4 and IL-1338. These findings reflect the complexity and heterogeneity in the pathophysiology of FM. The 
discrepancy in results may be explained by variations in cytokine profiles in a brief time and in different disease 
statuses (acute vs. chronic) of  FM39. The inconsistency in results might also be due to the use of different types 
of body fluids and assays.

Neuroinflammation in CNS has been suggested to be involved in the FM pathogenesis. Evidence shows 
the potential linkage of coagulation and fibrinolysis at the neurovascular interface to neuroinflammation and 
 degeneration40. Fibrin, as a final product in the coagulation cascade appearing at the neurovascular interface, 
could be associated with further inflammatory responses, including immune cell migration to the brain. Dys-
regulation of the coagulation and fibrinolysis system has been observed in several CNS diseases, such as multi-
ple sclerosis and Alzheimer’s  disease41,42. In the present study, we found alterations in the regulation of several 
coagulation and fibrinolysis factors, including platelet glycoprotein Ib alpha chains, thrombospondin-1, platelet 
glycoprotein V, prothrombin, thrombospondin-2, fibrinogen alpha chains, and platelet glycoprotein Ib alpha 
chains, in patients with FM. Other studies have seldom mentioned the altered coagulation function in patients 
with FM. Future studies should explore the pathogenic effects of altered coagulation on symptoms or neuroin-
flammation in patients with FM.

Currently, the pharmacological approach for FM treatment focuses primarily on neuromodulation (anticon-
vulsants and antidepressants). Nonsteroidal anti-inflammatory drugs and steroids targeting anti-inflammation 
yielded inconsistent results in the treatment of  FM43,44. For clinical applications, more specific treatments target-
ing inflammation may be considered for FM management. We found that TNF-α may be a potential upstream 
activation molecule in patients with FM (Supplementary Table S2). TNF-α is a pleiotropic mediator of physiologi-
cal and neurological functions. In pathological brains, research showed that TNF-α exerted a neuroinflammatory 
and neurotoxic  effect45. One study showed that abnormal activation of microglia in FM was reportedly likely 
to exhibit hypersensitivity and overproduction of TNF-α in response to  stimulation46. Another study showed 
that obesity-induced TNF-α release may potentiate FM-associated pain in mouse  models47. We also found 
that inflammation-associated LXR–RXR involving the IL-1 to Nf-kb pathway was activated in patients with 
FM. Activation of the IL-1 beta pathway has been observed to be required for the development of mechanical 
allodynia in neuropathic  pain48. Since there is no efficient treatment for FM currently, treatments aim to these 
dysregulated pathways may be further explored.

The subtyping of FM into phenotypes according to pain, sleep, and psychological symptom profiles has 
been  suggested21,22. These FM subtypes may specifically involve different underlying biological pathways. Using 
this concept, we analyzed the correlation between serum protein expression patterns and symptom profiles in 
patients with FM. We found that the expression level of the Ig heavy chain V-I region HG3 was positively cor-
related with pain intensity in patients with FM. Growing evidence suggests that immunoglobulin therapy can 
be a potential treatment for chronic pain, including FM, complex regional pain syndrome, and pain associated 
with specific  autoantibodies49. The analgesic immunoglobulin G might be associated with the modulation of 
cytokine expression and  function50.
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The level of type II cytoskeletal 80 was negatively correlated with the depression level. The roles of these pro-
teins in the symptom profiles of FM are of potential interest to researchers. A dysfunctional hypothalamic–pitu-
itary–adrenal axis and dysautonomia are common in  FM51. The level of dysautonomia was correlated with 
symptom severity in patients with FM. In this study, we found the level of FGA, a subunit of fibrinogen, to be 
significantly correlated with altered sympathetic–parasympathetic balance in HRV. Fibrinogen expression can 
reportedly differentiate patients with FM from controls in a proteomics  study16. Fibrinogen is a protein involved 
in acute systemic responses to inflammation, stress, and coagulation. We suggest that fibrinogen levels can act 
as a surrogate marker to evaluate the level of dysautonomia in patients with FM. IL6 is also a primary regula-
tor of fibrinogen synthesis. Intervention to IL-6 associated pathway may be a candidate strategy in managing 
dysautonomia in patients with FM.

The serum is an easily accessible clinical specimen and thus is ideal for disease detection. However, identifica-
tion of potential protein biomarkers in serum by using MS-based proteomics analysis is extremely challenging 
because of the wide dynamic ranges of serum proteins and the masking effect of high-abundance proteins. To 
overcome these limitations, two-dimensional gel  electrophoresis16 and label-free-based17 shotgun proteomics 
strategies were applied in serum or plasma samples to screen FM-associated proteins, enabling the identification 
of 266 proteins. The present study utilized the TMT-based proteomics approach and extensive peptide fractiona-
tion by Hp-RP StageTip, identifying 890 serum proteins, which is the largest serum proteome result in FM to 
date. Distinct serum proteomics profiles can be found in patients with FM compared with controls. Compared 
with approaches used in other studies, the approach used in the present study enabled a wider range of proteomic 
profiles to be investigated in patients with FM.

Limitations of the present study should be addressed. First, the sample size of the present study is relatively 
small. A large study is required to confirm our results. Second, recruited patients with FM and controls were 
all Han Chinese. Our results should be revisited in patients with FM of other ethnicities. Third, a cross-sec-
tional study cannot identify the temporal relationship between symptoms and proteomics profiles. Interactions 
between proteins and biological pathways are complex, and primary and secondary pathophysiological changes 
in experimental participants cannot be differentiated in proteomics data. A longitudinal proteomics study in 
patients with FM may help clarify this. Fourth, because those affected by FM are predominantly women, the 
present study included only women to enhance the study population homogeneity. Finally, the symptomatic 
duration of patients with FM was not taken into account, because the syndrome onset time is often difficult to 
determine in patients with FM. Pathophysiological changes in FM have also been suggested to be associated 
with syndrome  duration25.

In conclusion, patients with FM have differential serum proteomics pattern compared with healthy pain-free 
controls. We suggest that upregulated inflammation plays a major role in the pathogenesis of FM, as observed 
from the serum proteomics analysis. Combining the levels of METTL18, IGLV3-25, IL1RAP, and IGHV1OR21-1 
can successfully differentiate FM patients from healthy pain-free controls. Differentially expressed proteins may 
serve as potential biomarkers for diagnosis and clinical evaluation of FM in the future.

Methods
Patient recruitment. Twenty women who fulfilled the American College of Rheumatology 2010 diag-
nostic criteria for FM were recruited from clinics in the university  hospital52. We included women with FM 
aged > 20 years. The WPI was used to access the range of pain involved area. The SSS was used, including categor-
ical scales for cognitive symptoms, unrefreshed sleep, fatigue, and a number of somatic symptoms. The diagnosis 
was established by a clinical specialist. Twenty healthy pain-free women were recruited as the control group. 
Each participant provided informed consent prior to inclusion. The study was approved by the Joint Institutional 
Review Board of Taipei Medical University (TMU-JIRB No.: N201702062). All methods herein were performed 
in accordance with relevant guidelines and regulations. The CONSORT flow diagram for participants’ recruit-
ment was shown in Supplementary Fig. S2. Patients with the following conditions were excluded from this study:

1. Major psychiatric disorders, such as schizophrenia or schizoaffective disorders
2. Substance or alcohol abuse
3. Known concurrent malignancy
4. Major rheumatic diseases such as systemic lupus erythematous, Sjogren’s syndrome, rheumatoid arthritis, 

and ankylosing spondylitis
5. Pregnancy

Questionnaire and measurements. For each patient with FM, measurements were taken by using the 
following scales:

1. Visual analog scale (VAS) of pain and pressure pain threshold (PPT)
2. Fibromyalgia impact questionnaire (FIQ)53

3. Pittsburgh sleep quality Index (PSQI)54, 55

4. Beck depression inventory version II (BDI-II)56, 57

5. Beck anxiety inventory (BAI)58, 59

6. Five-minute heart rate variability (HRV)

The details of these questionnaires and measurements are listed in Supplementary Information.
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Serum collection. To prevent interference from concurrent FM medications on proteomics analysis, 
patients with FM were asked to terminate use of medications for at least 2 weeks prior to serum collection. 
However, oral acetaminophen 3,000  mg/24  h was allowed for relief of pain when the patient was prevented 
from taking their usual pain medications during this period. Forty-milliliter blood samples from patients and 
controls were drawn in the early morning and after an overnight fast. The blood was disposed in ethylenediami-
netetraacetic acid–free tubes and left undisturbed at ambient temperature for 30 min to allow clotting. The clot 
was removed through centrifugation at 1,300g for 10 min. After centrifugation, the serum supernatants were 
collected, aliquoted, and stored at − 80 °C until use.

TMT‑based quantitative serum proteomics analysis. Figure 1A illustrates the experimental work-
flow in this study. A total of 750 μg of serum proteins was aliquoted for the depletion of the top 14 high-abun-
dance proteins by using a MARS Hu-14 column (Agilent Technologies, Waldbronn, Germany) according to the 
vendor’s protocol with several optimizations. After depletion, 50 μg of depleted serum proteins was subjected 
to gel-assisted digestion with trypsin  individually60 to collect peptides for subsequent 10-plex TMT labeling 
(Thermo Fisher Scientific, San Jose, USA). For each TMT experiment, peptides from four FM patients were indi-
vidually labeled with  TMT127N,  TMT128N,  TMT129N, and  TMT130N, while peptides from 4 controls were labeled 
with  TMT127C,  TMT128C,  TMT129C, and  TMT130C, respectively.  TMT126 were labeled with reference peptides from 
the pooling of 40 samples. Five batches of 10-plex TMT experiments were performed for 20 patients with FM 
and 20 healthy pain-free controls. In each batch, 9 TMT-labeled samples were combined for Hp-RP StageTip 
 fractionation61 to generate six reversed-phase fractions, followed by duplicate analysis using LTQ Orbitrap 
Fusion mass spectrometers equipped with the Dionex Ultimate 3000 nanoLC system and a NanoSpray interface 
(Thermo Fisher Scientific). Protein identification and quantification were performed using Proteome Discoverer 
2.1 (Thermo Fisher Scientific). The details of experiments, LC–MS/MS acquisition, and proteome identification 
or quantitation are included in Supplementary Information. The mass spectrometry proteomics data have been 
deposited in the jPOST  repository62 with the dataset identifier PXD013905.

Data processing, annotation, and statistical analysis. We used the Mann–Whitney U test to com-
pare differences in demographic data and clinical profiles between controls and patients with FM as well as to 
evaluate the significance of protein fold changes between patients with FM and healthy pain-free  controls63. The 
chi-squared test was used to determine the frequency difference in categorical variables between the two groups. 
PLS-DA64 was applied to visualize how efficiently significant candidates could distinguish patients from controls. 
The variable importance in the projection value of each protein in the PLS-DA model indicated its contribution 
to the classification of patients and controls. Eighty percent of patients with FM and healthy pain-free controls 
were randomly selected and used to train a decision tree by using the classification and regression tree  analysis65 
for distinguishing patients with FM from healthy pain-free controls and for developing decision rules for the 
diagnosis of FM. The remaining 20% of patients were used to validate decision rules.

The age and BMI of each patient were used as control variables to calculate the partial correlation between 
each significant protein fold change and the clinical data of patients with FM by using the R package “ppcor”66. 
All data processing and statistical analysis were performed using R (Version 3.5.1)67.

Functional analysis. The significant candidate proteins in patients with FM were submitted for IPA (Qia-
gen Bioinformatics)68 for the enrichment analysis of dysregulated cellular functions, disease annotations, net-
works, pathways, and upstream regulators.
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