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convolutional neural networks 
improve fungal classification
Duong Vu*, Marizeth Groenewald & Gerard Verkley

Sequence classification plays an important role in metagenomics studies. We assess the deep neural 
network approach for fungal sequence classification as it has emerged as a successful paradigm for big 
data classification and clustering. Two deep learning-based classifiers, a convolutional neural network 
(CNN) and a deep belief network (DBN) were trained using our recently released barcode datasets. 
Experimental results show that CNN outperformed the traditional BLAST classification and the most 
accurate machine learning based Ribosomal Database Project (RDP) classifier on datasets that had 
many of the labels present in the training datasets. When classifying an independent dataset namely 
the “Top 50 Most Wanted Fungi”, CNN and DBN assigned less sequences than BLAST. However, they 
could assign much more sequences than the RDP classifier. In terms of efficiency, it took the machine 
learning classifiers up to two seconds to classify a test dataset while it was 53 s for BLAST. The result 
of the current study will enable us to speed up the taxonomic assignments for the fungal barcode 
sequences generated at our institute as ~ 70% of them still need to be validated for public release. In 
addition, it will help to quickly provide a taxonomic profile for metagenomics samples.

Microbes are essential for all life forms on Earth. It is crucial to understand these complex communities as they 
are key players in maintaining environmental stability. So far, the study of microbial communities has focused 
primarily on prokaryotes. However, fungi are eukaryotic microorganisms that play fundamental ecological 
roles as decomposers, symbionts, mutualists, and pathogens. Despite their enormous diversity and importance 
in ecosystems, we lack the knowledge about the general pattern of fungal diversity and their functional roles in 
the environment. The rapid development of sequencing technologies has enabled us to investigate microbes in 
their natural environments using a metagenomics approach. Environmental samples from natural communities 
are collected, and bulk DNA is extracted and sequenced using high throughput sequencing technologies. The 
metagenomics approach to study fungal communities targets specific genes, the so-called barcodes, to provide 
a taxonomic profile of diversity of the environmental  samples1–3. The Internal Transcribed Spacer (ITS) region 
was proposed as a universal barcode for  fungi4. The generated DNA sequences are clustered into Operational 
Taxonomic Units (OTUs) with a given threshold for species identification. Representative sequences of the OTUs 
are classified against reference sequences. The most common approach for sequence classification is based on 
 BLAST5, which assigns sequences to the group of their best match if the obtained similarity score is high enough.

There are a number of challenges in sequence classification. The first problem is the lack of reference 
sequences. Less than 1% of the estimated 3.8 million  species6 of fungi have ITS sequences available in GenBank 
and many of the sequences are often of poor  quality7,8. At the Westerdijk Fungal Biodiversity Institute, Utrecht, 
The Netherlands, more than 100,000 living fungal strains are preserved that were originally assigned to ca. 17,000 
species. When accessioned, each identified strain is assigned a taxon name from  MycoBank9, an online registra-
tion system for fungal species and higher level taxon names. Being one of the largest fungal culture collections 
in the world, we have generated more than 200,000 DNA barcode sequences for fungal identification in a DNA 
barcoding  project10. A large number (~ 30,000) of fungal barcodes, in which every sequence was manually vali-
dated by experts, has recently been released for public use  in8,11.

The second problem is that the current fungal taxonomic classification is imbalanced because of clade-specific 
evolutionary histories. In addition, the continuous development in fungal taxonomy results in an on-going stream 
of reclassifications and introduction of new names, making informed decisions about fungal taxonomic deline-
ation highly uncertain, compared to  bacteria12,13. In most fungal ecology studies, a threshold of 97% is given as 
default for species identification. This threshold is rather low for bacterial and fungal species  identification8,11,12 
using 16S and ITS sequences. We have recently proposed a method to predict an optimal threshold for taxonomic 
 delineation14. Based on our released barcode datasets, optimal thresholds predicted for yeast and filamentous 
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fungal (mold) identification at the species levels could achieve a high accuracy of ~ 80%8,11. However, at higher 
taxonomic levels, the obtained accuracy scores were still low.

Finally, the main bottleneck in sequence classification is the comparison of the representative sequences in 
metagenomics samples with reference sequences. Although BLAST has been shown to be efficient, aligning 
hundreds of thousands to millions of sequences to the reference sequences still poses a computational challenge 
as DNA sequence alignments are computationally  expensive15.

Machine learning has been proposed in metagenomics for rapid taxonomic assignments in  bacteria16–18. 
The Ribosomal Database Project (RDP) Bayesian  classifier18 was applied in many metagenomics  studies19–21 for 
bacteria. It was also adopted for fungal classification  in22 using 28S rRNA large subunit,  in23 using 18S rRNA 
small subunit, and recently  in24 using ITS sequences. The RDP classifier has been shown to be accurate for fungal 
classification as the accuracies of sequence assignment at the genus level were quite high, ranging from 80 to 
90%22–24. Deep learning has recently emerged as a successful paradigm for big data classification and  clustering25. 
Next to successful applications in image and natural language analysis, it has started offering data-driven solu-
tions to sequence-based problems in genomics sequence  analysis26,27. Deep learning has been applied for bacterial 
taxonomic classification on a dataset of simulated 16S DNA  sequences28. This approach seems promising as the 
results obtained using two different models, convolutional neural network (CNN)25 and deep belief network 
(DBN)29,30 outperformed the RDP Bayesian classifier.

In this paper, we apply CNN, DBN, RDP and BLAST to our recently released yeast and mold barcode 
 datasets8,11 to find the best method for fungal classification. We also reclassify a novel dataset, the “Top 50 Most 
Wanted Fungi”31 which was compared with the mold dataset  in11, using the yeast barcode dataset for the evalua-
tion. The result of the current study will enable us to speed up the taxonomic assignments for the fungal barcode 
sequences generated at our institute as ~ 70% of them still need to be validated for public release. In addition, it 
will help to provide quickly a taxonomic profile for metagenomics samples.

Results
Evaluation of the barcode datasets. This section evaluates the performance of CNN, DBN, RDP and 
BLAST on the yeast dataset. The evaluation of the classifiers on the mold dataset can be found in the Sup-
plementary File. The yeast dataset consisted of 3,784 ITS sequences representing 61% cultured yeasts that was 
used  in32 and released as a subset in (8, https ://www.ncbi.nlm.nih.gov/biopr oject /PRJNA 35177 8) in which taxa 
at all taxonomic levels were available and downloaded from  MycoBank9. In total, there were 1,035 species, 138 
genera, 45 families, 18 orders, and 9 classes. The performance of the CNN and DBN classifiers were evaluated 
with sequences being represented as k-mer frequency vectors with k = 4, 6, and 8. The dataset was split into two 
datasets, the training and test datasets, in a tenfold cross-validation procedure. The evaluation of the classifiers 
at a taxonomic level was performed on the same training and test datasets. On average, there are 3,406 (90%) 
sequences of 971 (94%) species, 135 (98%) genera, 45 (100%) families, 18 (100%) orders, and 9 (100%) classes 
for training and 378 sequences for testing of which 64 (1.7%), 3 (0.08%), 0, 0, and 0 sequences in the test dataset 
had no labels in the training dataset at the species, genus, family, order, and class level respectively.

The distribution of the barcodes. Initially, we studied the distribution of the yeast barcodes to evaluate clas-
sification results. Figure 1A shows the proportion of the barcodes at each taxonomic level. It can be seen that 
the sequences were not equally distributed. The largest group (Saccharomycetes) at the class, order, family and 
genus levels consisted of 64%, 64%, 54%, and 19% of the sequences of dataset, respectively. The median simi-
larity scores of sequences within a group at each level were also varied, specifically at higher taxonomic levels, 
as seen in Fig. 1B. To determine the reasonable similarity score for separating the sequences at different taxo-
nomic levels, we clustered the sequences to find the best match to the current taxonomic classification. Figure 1C 
shows the optimal thresholds and the associated best F-measures predicted for all the training datasets at all 
taxonomic levels. At the species, genus and class levels, the predicted thresholds were consistent, which were 
~ 99.4%, ~ 93%, and ~ 59.4%, respectively. At the family and order levels, the ranges of the predicted thresholds 
were large from ~ 60 to ~ 85%. We took the predicted results at the family (Fig. 1D) and order (Fig. 1E) levels for 
further investigation. Figure 1D,E show a bimodal distribution suggesting two optimal thresholds of ~ 60% and 
85% with the highest F-measures for yeast classification at the family and order levels. It is because these training 
datasets contained the largest yeast order Saccharomycetales and family Saccharomycetaceae in which the bar-
code sequences were highly variant and being split into two groups as can be seen in Fig. 1F. The largest genus, 
Candida (Fig. 1G, in red) within the order Saccharomycetales has been suggested for reclassification  in8. Except 
for the species level having a high clustering accuracy of 81%, the accuracies of predicting optimal thresholds to 
classify the sequences at the higher taxonomic levels were low, ~ 70%, 63%, 70% and 75% for the genus, family, 
order and class levels, respectively (see Fig. 1C). For the mold dataset, similar results were observed (see Sup-
plementary Section 2). Although our barcodes datasets were not complete, these results still indicated an imbal-
ance problem for fungal references. The thresholds predicted for sequence discrimination in this section were 
different from the thresholds predicted  in8,11.  In8,11, at the species level, the predicted threshold was 98.41% with 
a high F-measure of 90.67% for yeasts, and 99.61% with an F-measure of 84% for molds. It is because the species 
sharing the same ITS sequences (~ 6% for yeasts and 17% for molds) were excluded from these predictions. At 
the genus level, the predicted threshold was 96.31% with an F-measure of 61% for yeasts, and 94.31% with an 
F-measure of 64% for molds. At the higher taxonomic levels, no prediction was made for yeasts. For molds, the 
thresholds to discriminate families, orders, and classes were 88.51%, 81.21%, and 80.91% with low F-measures 
of less than 60%. Although the datasets used for the predictions  in8,11 were larger (with ~ 1,500 yeast and ~ 3,200 
mold species), the obtained low F-measures still revealed the need for a revision of fungal classification at higher 
taxonomic levels. This result illustrated a problem of uncertainty in making informed decisions about fungal 
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Figure 1.  (A) The proportion of yeast sequences at all taxonomic levels. The smallest ring represents the class 
level, followed by the order, family, genus and species levels. (B) The variation of the median similarity scores 
of the yeast groups at all taxonomic levels. (C) The optimal thresholds and the associated best F-measures 
predicted for all yeast training datasets at all taxonomic levels. (D) Predicting optimal thresholds for the yeast 
training datasets using a series of thresholds (between 0.5 and 0.9, with a step of 0.001) at the family level. (E) 
Predicting optimal thresholds for the yeast training datasets using a series of thresholds (between 0.5 and 0.9, 
with a step of 0.001) at the order level. (F) The distribution of the yeast dataset. The sequences were colored 
based on the order name. The sequences of the largest order Saccharomycetales (2,427) were in green, followed 
by Tremellales (559) in blue, Sporidiobolales (305) in cyan, Trichosporonales (159) in pink, Filobasidiales (122) 
in yellow, etc. The coordinators of the sequences were generated using  fMLC32. The sequences were visualized 
using the rgl package in R (https ://r-forge .r-proje ct.org/proje cts/rgl/). The numbers in brackets are the numbers 
of the sequences in the current group. (G) The sequences were colored as in (F) except that the sequences of the 
Candida genus (730) were colored in red.

https://r-forge.r-project.org/projects/rgl/
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Figure 2.  The MCCs obtained by different classifiers at different taxonomic levels for k = 4, 6, and 8.

taxonomic delineation as different groups of fungi, different datasets, and different alignment programs will 
produce different optimal thresholds for sequence discrimination.

The quality of the classifiers. To compare the qualities obtained by CNN, DBN, RDP and BLAST, we used 
the Matthews correlation coefficient (MCC)33 as a performance measure as it takes into account true and false 
positives which can be used even if the classes are of very different sizes. MCC was initially designed for binary 
classifications, and has been generalized to the multiclass  case34. Other performance merits such as accuracy, 
precision, recall, and confusion matrices can be found in the Supplementary File. Only the test sequences with 
a label in the training dataset were taken into account. Figure 2 and Table 1 show the range and average of the 
obtained MCCs at different taxonomic levels. It can be seen that the MCCs varied up to 5%, except for the DBN 
classifier at genus level when k = 4. On average, the MCCs of CNN and DBN increased slightly up to 1% at all 
taxonomic levels when k = 8 compared with when k = 6. When k = 4, the MCC obtained by DBN was low at the 
species level which were ~ 7% less than the one of CNN. 

The CNN classifier outperformed the other classifiers at most of the taxonomic levels. Although the DBN 
classifier produced a low accuracy score at the species level, at the higher taxonomic levels, it produced a similar 
MCC as the CNN classifier. The BLAST classification produced a slightly lower (less than 1%) MCC value than 
the CNN classifier, while RDP classifier produced the lowest MCCs at all taxonomic levels. At the genus and 
higher taxonomic levels, all the classifiers achieved a high MCC value of more than ~ 85%. For the mold dataset, 
again the CNN classifier outperformed the other classifiers (see Supplementary Fig. 7E). BLAST classification 
produced the lowest MCCs at all taxonomic levels as the optimal thresholds predicted for this dataset excluded all 
the sequences lying in the border of the groups. One of the reasons that the qualities of the species classification 
were low is that ~ 6% and ~ 17% of the yeast and mold species shared the same ITS  barcodes8,11.

The efficiency of the classifiers. Table  2 shows the average time required for the training and testing of the 
BLAST, RDP, CNN, and DBN classifiers. The training time for BLAST was the time needed for finding an opti-
mal threshold for classification. It can be seen that except for the BLAST classification, all the other classifiers 
were efficient in classifying, taking them less than two seconds to classify these datasets. The RDP trained faster 
than the other classifiers. The CNN and DBN classifiers were rather efficient when k was set to 4. When k was 
set to 6, it took the CNN (DBN) classifier 20 (9) minutes, while it took the BLAST classification 34 min to train 
each of the training datasets. The CNN and DBN classifiers were extremely slow when k was set to 8, requiring 
approximately five and one hours to train each of the training dataset, respectively.

Based on our comparisons on accuracy and efficiency, k = 6 is the best option for CNN and DBN as the clas-
sification quality scores reduced slightly but the run-time performance improved significantly when comparing 
with k = 8. Among the classifiers, the CNN classifier with k = 6 is best choice for fungal classification. Although, 
it was not the best in terms of efficiency, it took only 20 min to train and 0.52 s to classify the test datasets. In 
terms of quality, it improved up to 2% for yeast classification at all taxonomic levels, compared with the tradi-
tional BLAST classification.
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Classification results. To explore how the yeast taxa were handled by CNN, DBN, RDP and BLAST individu-
ally, we took the classified results when k = 6 for further investigation. Figure 3 shows the confusion matrices 
obtained by all classifiers at the class level. The confusion matrices and other metrics such as recall, precision and 
F-scores at the order and family levels are given in the Supplementary File. At the class, order and family levels, 
the yeast taxa were handled well by all the classifiers although their sizes were different. For CNN and DBN, the 
number of wrongly classified sequences at the class and order levels were insignificant. At the family level, the 
most sequences classified wrongly were classified as Saccharomycetaceae (81 by CNN and 50 by DBN). Saccharo-
mycetaceae had also the most sequences classified wrongly as other families (21 by CNN and 32 by DBN). This is 
reasonable as the sequences of Saccharomycetaceae were widely distributed as seen in Fig. 1F. For RDP, the most 
sequences wrongly classified were classified as Naemateliaceae at the family level, as Taphrinales at the order 
level, and as Taphrinomycetes at the class level. These taxa had the smallest number of sequences in the training 
dataset. For BLAST, the most sequences wrongly classified were classified as unidentified. This is because these 
sequences had a similarity score to its best match lower than the optimal threshold predicted for the associated 
group. Supplementary Fig.  4 shows that at the family and higher taxonomic levels, the recall, precision and 
F-scores obtained by all classifiers were about the same for large groups containing more than ten sequences. 
However, for small groups containing less than ten sequences, BLAST performed better than the machine learn-
ing based approaches. A similar result was also observed for the mold dataset (see Supplementary Fig. 8).

At the genus and species levels where the distribution of the sequence was more equal, the recall, precision, 
and F-scores obtained by all classifiers were about the same. To see which genera and species were not handled 
well by the classifiers, the average recall, precision, and F-scores together with the number of the sequences of 
the ten largest genera and species were studied (see Fig. 4). At the genus level, Candida and Pichia had the lowest 
recall, precision, and F-score of less than 90% by all the classifiers. It is because the anamorphs of some Pichia 
species are classified as Candida species, which were indistinguishable by ITS. In addition, the species in Pichia 
were reported to have extremely large variations in  length35 while the genus Candida has been suggested for 
reclassification  in8. At the species level, only two species Saccharomyces cerevisiae or paradoxus and Saccharomyces 
cerevisiae were not properly handled by CNN and DBN with a recall, precision, and F-score value of ~ 50%. Note 

Table 1.  The average MCCs obtained by different classifiers at different taxonomic levels with k = 4, 6, and 8. 
The highest average MCCs for each k at all taxonomic levels are highlighted in bold.

Level k CNN DBN RDP BLAST

Species

4 0.8093 0.7331 0.7146 0.8093

6 0.8284 0.8040 0.7145 0.8112

8 0.8394 0.8056 0.7185 0.8086

Genus

4 0.9007 0.8828 0.8588 0.8931

6 0.9157 0.9010 0.8555 0.8917

8 0.9249 0.9159 0.8550 0.8925

Family

4 0.9172 0.9176 0.8567 0.9387

6 0.9374 0.9343 0.8579 0.9360

8 0.9438 0.9446 0.8602 0.9350

Order

4 0.9672 0.9683 0.9466 0.9575

6 0.9716 0.9708 0.9497 0.9630

8 0.9757 0.9753 0.9460 0.9531

Class

4 0.9853 0.9889 0.9753 0.9801

6 0.9934 0.9889 0.9729 0.9792

8 0.9934 0.9934 0.9716 0.9811

Table 2.  Average run-time performance of all classifiers on each of the training dataset. The most efficient 
run-time performances for training and testing are highlighted in bold.

Classifier Training time (s) Classifying time (s)

DBN (k = 4) 289.25 0.18

DBN (k = 6) 558.55 0.23

DBN (k = 8) 3,788.01 0.99

CNN (k = 4) 190.25 0.27

CNN (k = 6) 1,196.72 0.52

CNN (k = 8) 19,399.33 5.10

RDP 1.58 1.40

BLAST 2057 53.67



6

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:12628  | https://doi.org/10.1038/s41598-020-69245-y

www.nature.com/scientificreports/

that the name Saccharomyces cerevisiae or paradoxus refers to strains that could not be identified up to species 
level accurately as S. cerevisiae or S. paradoxus at the time, and therefore, were named as Saccharomyces cerevisiae 
or paradoxus. These species belong to the Saccharomyces sensu stricto complex in which the different species 
can mate and generate viable hybrids, and were known to have extensive differences in genomic and phenotypic 
 variation36,37. For BLAST, next to the two Saccharomyces species, Debaryomyces hansenii was also poorly detected 
with a low F-score of 52%. For RDP, next to the three species mentioned above, Rhodotorula mucilaginosa, and 
Kluyveromyces marxianus were handled with an F-score of 0. For the mold dataset, the two genera Chaetomium 
and Acremonium and the four species Fusarium oxysporum, Chaetomium globosum, Colletotrichum gloeospori-
oides, and Penicillium chrysogenum were not detected well by all the classifiers (see Supplementary Section 2). 
It should be noted that these four species are known as species complexes, therefore, the discrepancies in clas-
sification are surely a result of ITS being insufficient for species delineation within these complexes. In addition, 
there could be issues with reference sequence identification, especially for strains that were not ex-types or were 
identified based solely on morphological characters.

Classification probability. To study the minimum probability needed for CNN and DBN to classify fungi, we 
took the probability scores produced by CNN and DBN with k = 6 on the first test dataset for the evaluation. 
For each interval [i/100, (i + 1)/100] with 95 ≤ i ≤ 100 , we calculated the number of true and false predic-
tions having a classification probability falling within this interval (Supplementary Fig. 5). The error rate of each 
interval was calculated as the fraction of false predictions in all predictions for the interval. At the genus and 
higher taxonomic levels, the number of false predictions were insignificant, compared with the number of true 
predictions. At the species level, there were several false predictions having a high probability of 0.99 or more. 
When the maximum error rate was set to 0.1, the minimum classification probability for fungal classification at 
the species, genus, family, order, class, and phylum levels for CNN and DBN were 0.99.

Relation between probability and BLAST similarity scores. To see if classification probabilities were sufficient 
to assign a sequence to a correct taxonomic group, the relation between classification probabilities and BLAST 
similarity scores was investigated. The optimal thresholds predicted to classify the current training dataset at the 
species, genus, family, order, and class levels were 99.3%, 92.2%, 83.2%, 59.4%, and 59.4%, respectively. Supple-
mentary Fig. 6 shows the classification probability and BLAST scores of this dataset obtained by the CNN and 
DBN classifiers at all taxonomic levels. Interestingly, all classification probability score curves drop after a value 
of 99%. The percentage of the predictions with a probability score greater or equal than 99% obtained by CNN 
(DBN) at the species, genus, family, order, and class levels were 64% (46%), 91% (85%), 91% (90%), 92% (97%), 
and 100% (98%) respectively. Among the predictions by CNN (DBN) having a classification probability of more 
than 0.99, the percentages of the predictions having a BLAST similarity score greater or equal than the predicted 

Figure 3.  The confusion matrices obtained by all the classifiers at the class level.
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threshold at the species, genus, family, order, and class levels were 92% (95%), 90% (90%), 95% (96%), 100% 
(100%), and 100% (100%) respectively. The percentages of the predictions by the CNN (DBN) classifier having 
a BLAST similarity score 10% lower than the predicted threshold at the species, genus, family, order, class, and 
phylum levels were 0.4% (0%), 0.8% (3.7%), 0% (0.57%), 0% (0%), and 0% (0%) for CNN (DBN) respectively. 
These results indicate that the CNN and DBN classifiers agreed with the BLAST classification in most of the 
cases (90–100%). However, at the species and genus levels, even with a high classification probability score of 
more than 99%, they might still assign the sequences to a taxonomic group with a low BLAST similarity score 
due to the lack of reference sequences in the training dataset.

Classifying the “Top 50 Most Wanted Fungi”. The datasets used for the evaluation in the previous sec-
tion were well curated, in which for each sequence of the test dataset there was always a sequence of the same or 
closely related taxonomic group in the training dataset. Therefore, the classification results were highly accurate 
by the machine learning classifiers. We investigated if these classifiers were capable of revealing unidentified 
sequences from the environmental samples that do not have many reference sequences for training. To this 
end, we reclassified 2024 most frequently sampled environmental ITS sequences of 1,493 undefined lineages of 
the “Top 50 Most Wanted Fungi”31,38 which were compared with the mold  dataset11, using the yeast dataset. We 
hoped to identify a number of yeast sequences from the “Top 50 Most Wanted Fungi”.

Figure 4.  The average recall, precision, and F-scores obtained by different classifiers of the ten species and 
genera that have the largest number of sequences in the training datasets (ranging from 62 to 657 at the genus 
level, and ranging from 39 to 95 at the species level) when k = 6.
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Figure 5 shows the distribution of the “Top 50 Most Wanted Fungi” sequences (in black) with the yeast 
sequences. It is interesting to see that the most wanted fungi form a new group lying in between two orders Sac-
charomycetales and Tremellales. To avoid the problem of over classifications, at the genus and higher taxonomic 
levels, the Candida sequences were removed from the training dataset as they were distributed widely. In addi-
tion, the classified sequences were compared with the barcode sequences of the predicted taxon name using 

Figure 5.  The distribution of the sequences of the yeast dataset together with 2,024 sequences (in black) of the 
“Top 50 Most Wanted Fungi”. The 730 sequences in red are the sequences of the Candida genus. The remaining 
sequences of the largest order Saccharomycetales (1,697) were in green, followed by Tremellales (559) in blue, 
Sporidiobolales (305) in cyan, Trichosporonales (159) in pink, Filobasidiales (122) in yellow, etc.

Table 3.  Number of sequences of the “Top 50 Most Wanted Fungi” assigned/classified (a/c) by BLAST, RDP, 
CNN, and DBN, and assigned by both BLAST and RDP, BLAST and CNN, BLAST and DBN with the same 
and different names. The highest numbers of sequences assigned by the classifiers at all taxonomic levels are 
highlighted in bold.

Level Species Genus Family Order Class

BLAST 1 17 207 295 337

RDP (assigned/classified) 0/93 3/630 9/500 13/1775 8/1806

Same assign. by RDP&BLAST 0 3 6 9 8

Diff. assign. by RDP&BLAST 0 0 3 4 0

RDP/BLAST 0 0 0 0 0

BLAST/RDP 1 14 198 282 329

CNN (assigned/classified) 1/281 4/440 87/1546 153/1775 224/1708

Same assign. by CNN&BLAST 1 4 51 121 187

Diff. assign. by CNN&BLAST 0 0 19 17 16

CNN/BLAST 0 0 17 15 21

BLAST/CNN 0 13 137 157 134

DBN (assigned/classified) 0/230 1/335 10/450 50/815 80/1,377

Same assign. by DBN&BLAST 0 1 6 43 68

Diff. assign. by DBN&BLAST 0 0 4 7 12

DBN/BLAST 0 0 0 0 0

BLAST/DBN 1 17 197 245 257
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BLAST. Only sequences with a BLAST coverage of at least 300 bp (the minimum length of ITS  sequences11) 
and a similarity score higher than or equal to the optimal threshold predicted for this dataset which was 99.4% 
for species, 93.2% for genus, 84.9% for family, 83.2% for order, and 60.1% for class classification, were assigned 
to the final group of the classification. For CNN and DBN, k was set to 6. We used a probability score of 0.9 for 
CNN and DBN and the default confidence of 0.8 for RDP to classify the sequences.

Table 3 shows the numbers of sequences of the “Top 50 Most Wanted Fungi” assigned/classified by the 
BLAST, RDP, CNN, and DBN classifiers at different taxonomic levels. The numbers of sequences assigned and 
not assigned by both BLAST and RDP, BLAST and CNN, BLAST and DBN with the same name and different 
names are also given. The CNN classifier classified most of the sequences to the largest group which was Sac-
charomyces cerevisiae or paradoxus (35%) at the species, Pichia (72%) at the genus, Saccharomycetaceae (90%) 
at the family, Saccharomycetales (92%) at the order, and Saccharomycetes (72%) at the class level. These groups 
were distributed widely as seen in “Evaluation of the barcode datasets”. The DBN classifier classified most of the 
sequences to a highly divergent group, which was Pichia fermentans (16%) at the species, Pichia (18%) at the 
genus, Dipodascaceae (35%) at the family, Saccharomycetales (65%) at the order, and Agaricostilbomycetes (71%) 
at the class level. In contrast with CNN, at a taxonomic level, RDP classified most of the sequences to the small-
est group, which were Candida carvajalis (78%), Martiniozyma (97%), Carcinomycetaceae (52%), Taphrinales 
(98%), and Taphrinomycetes (99%).

BLAST could assign the most sequences of the “Top 50 Most Wanted Fungi”. The numbers of assigned 
sequences by the machine learning classifiers were much less than the numbers of classified sequences, indicat-
ing an obvious problem of over classifications. None of the assigned sequences belonged to the most classified 
group at all taxonomic levels by RDP, and at species and genus levels by CNN and DBN. The CNN classifier had 
the highest numbers of assigned sequences, compared with DBN and RDP, which were 100% at the species level, 
24% at the genus, 42% at the family, 52% at the order, and 66% at the class level of the sequences assigned by 
BLAST. At the species level, only BLAST and CNN were able to assign one sequence of GenBank id JX974759 
to the species Rhodotorula sphaerocarpa with 100% BLAST identity and a coverage of 332 bp to the best match 
KY104896. At family and higher taxonomic levels, there were 17, 15 and 21 sequences assigned by CNN but not 
by BLAST. The sequences that were assigned by BLAST but not by CNN, were either belonging to a group that 
had a small number (less than ten) of reference sequences, or they were classified by CNN with a smaller prob-
ability score less than 90%, or they were classified by CNN with a high BLAST identity but a low BLAST coverage 
(< 200 bp). BLAST and CNN together could assign 1, 17, 224 (11%), 310 (15%), and 353 (17%) sequences of the 
“Top 50 Most Wanted Fungi” to the species, genus, family, order, and class level, respectively. The assignment 
of the sequences can be found in the supplementary file namely top50classified.xlsx. In conclusion, to classify a 
novel dataset that were unrepresented in the training dataset, BLAST classification was the best method, followed 
by the CNN, DBN, and RDP classifiers.

conclusion
This study compared different classification approaches namely CNN, DBN, RDP and BLAST for fungal clas-
sification, using two recently released barcode  datasets8,11. The deep learning neural networks CNN and DBN 
have been applied for fungal classification for the first time. The result showed that a k-mer size of 6 was optimal 
in terms of accuracy and efficiency for CNN and DBN. The CNN and DBN classifiers worked extremely well on 
the datasets that had many of the labels present in the training datasets. The CNN classifier outperformed the 
BLAST, DBN and RDP classifiers at all taxonomic levels in terms of accuracy. Specifically, at the family and higher 
taxonomic levels, it achieved an extremely high accuracy ranging from 90 to 99%. The DBN classifier did not 
classify the sequences accurately at the species level. However, at the higher taxonomic levels, it was comparable 
to the CNN classifier. As for efficiency, it took the machine learning approaches up to two seconds while it was 
about one minute for BLAST to classify a test dataset on the same computer.

Our study revealed that the fungal genera such as Candida, Pichia, Chaetomium, and Acremonium and spe-
cies such as Saccharomyces cerevisiae or paradoxus, Saccharomyces cerevisiae, Fusarium oxysporum, Chaetomium 
globosum, Colletotrichum gloeosporioides, and Penicillium chrysogenum were not handled well by all classifiers, 
suggesting that they are in need for reclassification; or there could be issues with reference sequence identifica-
tion, especially for strains that were not ex-types or were identified based solely on morphological characters; 
or ITS is not the best biomarker for their identification. These fungal species are known as species complexes, 
and therefore, ITS is likely insufficient for species delineating. To improve the prediction at the species level, it 
might be better to omit species complexes or closely-related species where ITS is insufficient for delineation, as 
seen  in8,11.

Although the CNN and DBN classifiers agreed with the BLAST classification in most of the cases, they might 
still assign the sequences to a wrong taxonomic group even with a high classification probability score due to 
the lack of reference sequences. The novel dataset “Top 50 Most Wanted Fungi” forming a distinct group lying 
in between the two orders Saccharomycetales and Tremellales that was not present at all in the training dataset, 
highlighted this problem of over classification. After filtering out the over classified sequences, CNN could assign 
the most sequences, compared with DBN and RDP. BLAST and CNN together could assign 1, 17, 224, 310, and 
353 sequences of the “Top 50 Most Wanted Fungi” to the species, genus, family, order, and class level respectively.

The result of the current study will enable us to speed up the taxonomic assignments for the fungal barcode 
sequences generated at our institute as ~ 70% of them still need to be validated for public release. In addition, it 
will help to quickly provide a taxonomic profile for metagenomics samples. It also highlights the necessity for 
publicly-available, authenticated reference sequences, which means supporting ongoing biodiversity sampling 
efforts. Without reference sequences the best classifier will always fall short.
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Methods
Predicting optimal thresholds to separate sequences. The optimal thresholds for sequence clas-
sification at different taxonomic were estimated using a training dataset. The sequences of the train dataset 
were compared with each other using  BLAST5. For each of the obtained local alignments of two sequences, a 
BLAST score was the percentage of identical matches s if the alignment length l was greater than 300 bp (the 
minimum length of ITS  sequences11). Otherwise it was recomputed as s × l/300 . The similarity score of two 
sequences was the maximum BLAST score of all the local alignments of the two sequences. The sequences were 
clustered with different thresholds ranging from 0.5 to 1 with a step of 0.001 using the algorithm finding con-
nected components in a graph as this algorithm was shown as one of the most accurate algorithms for DNA 
sequence  clustering14,32. The optimal threshold at a taxonomic level was the one producing the highest accuracy 
(F-measure) for  clustering14,39 compared with the taxonomic classification at the current level. This function is 
available at https ://githu b.com/vuthu yduon g/fungi class ifier s/model s/BLAST /train BLAST .py.

The classifiers. BLAST classification. The test sequences were aligned with the training sequences using 
BLAST. At a taxonomic level, if the obtained similarity score of a test sequence to its best match exceeded the 
optimal threshold of this level, the sequence was assigned to the corresponding taxon name of its best match. 
The implementation of this function can be found at https ://githu b.com/vuthu yduon g/fungi class ifier s/model s/
BLAST /class ifyBL AST.py in which BLAST version 2.6.0 was used.

The RDP classifier. The RDP  classifier18 is based on the naïve Bayesian model using a feature space consisting of 
all possible 8-mer words. For a word w and group G, a probability score is computed to decide if a member of G 
contains w. The probability that a sequence s belongs to G is computed based on the probabilities of all the words 
of s belonging to a member of G. The sequence s is assigned to the group giving the highest probability. The RDP 
classifier was downloaded from https ://githu b.com/rdpst aff/class ifier .

The CNN classifier. CNNs25 consist of two components: convolutional layers and fully connected layers. The 
convolutional layers are to extract useful features from the input. Each of them consists of convolutional kernels 
to filter the input, a pooling layer to reduce the number of parameters of the input tensor, and an activation func-
tion to determine if a node in the CNN should be activated or not. The fully connected layers in principle are 
the same as the multi-layer perceptron (MLP) consisting of hidden layers of nonlinearly-activating nodes which 
takes the output of the convolution layers as its input for classification. The CNN architecture used in this paper 
was the same as  in28 which was shown to produce high accuracy for classifying a dataset of simulated 16S DNA 
bacterial sequences. In particular, two convolutional layers were used with 5 and 10 kernels of size 5, respec-
tively, followed by a max pooling of size 2 and the Rectified Linear Unit (ReLU) activation function. The fully 
connected layer contained only one hidden layer of 500 nodes with the softmax activation function. Sequences 
were represented as input vectors of k-mer  frequencies40 of length 4, 6, and 8 to find best k-mer for classifica-
tion in terms of accuracy and run-time performance. The reason of not using higher values for k was to avoid 
computational expenses. As can be seen  in18,41, small values of k were sufficient for DNA barcode classification.

The DBN classifier. DBNs29,30 are probabilistic generative models, composed of unsupervised networks like 
Restricted Boltzmann Machines (RBM)42 (Hinton 2002) with gradient descent and backpropagation where each 
sub-network’s hidden layer serves as the visible input layer for the next. Each RBM learns a representation of 
the input in a lower dimensional space, and in a backward manner, it is possible to obtain an estimation of the 
probability distribution of the original input. Again, we used the same architecture of the DBN classifier used 
 in28 with two hidden layers of 256 units. We increased the number of iterations for backpropagation from 100 
to 500, and reduced the dropout rate from 0.2 to 0.1 to increase the accuracy of the DBN classifier on the DNA 
fungal barcode datasets. For the input of the DBN classifier, sequences were represented as input vectors of k-
mer  frequencies40, as for the CNN classifier. Furthermore, the min–max normalization was applied on the k-mer 
frequency vector to scale down the range of data between 0 and 1 to improve the accuracy of the DBN classifier.

Implementation and experiments. The training, classifying, and evaluation of the BLAST, RDP, CNN 
and DBN models were implemented in Python 2.7. We used the Keras library (https ://www.keras .io) with ten-
sorflow backend for CNN and the source code available at https ://githu b.com/alber tbup/deep-belie f-netwo rk 
for DBN as used  in28. The source code of the experiments and datasets are available at https ://githu b.com/vuthu 
yduon g/fungi class ifier s. The benchmark experiments were performed in a high-performance computing (HPC) 
cluster (64 bit Intel(R)-Xeon(R) Gold 6148 CPU and 16 GB RAM).

Data availability
The source code and data are available at https ://githu b.com/vuthu yduon g/fungi class ifier s.
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