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Contributions to the ‘noise floor’ 
in gene expression in a population 
of dividing cells
Jakub Jędrak* & Anna ochab‑Marcinek

Experiments with cells reveal the existence of a lower bound for protein noise, the noise floor, in 
highly expressed genes. its origins are still debated. We propose a minimal model of gene expression 
in a proliferating bacterial cell population. The model predicts the existence of a noise floor and 
it semi‑quantitatively reproduces the curved shape of the experimental noise vs. mean protein 
concentration plots. When the cell volume increases in a different manner than does the mean protein 
copy number, the noise floor level is determined by the cell population’s age structure and by the 
dependence of the mean protein concentration on cell age. Additionally, the noise floor level may 
depend on a biological limit for the mean number of bursts in the cell cycle. in that case, the noise 
floor level depends on the burst size distribution width but it is insensitive to the mean burst size. Our 
model quantifies the contributions of each of these mechanisms to gene expression noise.

Experimental data for  bacteria1–3 and  yeast4–7 show that, for proteins of low abundance, the coefficient of vari-
ation (variance divided by mean squared) of protein molecule copy number or concentration is a decreasing 
function of average protein copy number or concentration. However, for highly expressed genes, the coefficient 
of variation tends to a constant  level1–8. This lower bound for protein noise is called noise floor. There is a debate 
in the literature over the origin of the noise  floor9: It has been attributed to protein partitioning at cell  division7 
or to the existence of some limits to the frequencies of transcriptional and translational  bursting10. In Ref.1, the 
noise floor was introduced by heuristic addition of extrinsic noise as an overlay to the existing model.

Here, we introduce a model of gene expression combining the effects which, to date, have been studied sepa-
rately: cell volume  growth11,12, protein partitioning at cell  division12–16, age structure of the cell  population11–13,15,16, 
and dependence of protein production on cell  age17,18. These ingredients suffice to semi-quantitatively reproduce 
the ’boomerang’ shape of the experimental plots of noise vs protein concentration.

We show that, in a proliferating cell population, the noise floor is always present if the mean protein concen-
tration in cells depends on their cell cycle age τ , i.e., if the mean protein copy number increases in a different 
manner than the cell volume. This can be the case even if the transcription rate k is constant during the cell cycle: 
The mean protein copy number increases linearly in time but the cell volume may increase, e.g., exponentially. 
We also show that the dependence of k on τ can considerably increase the noise floor level.

Model
The model is based on a Master equation which describes the time evolution of the probability that there are x 
protein molecules present in a single cell at time t between cell divisions. This probability is given by the prob-
ability density function p(x, t). We assume that the protein copy number randomly increases due to translational 
bursts and it randomly decreases due to cell division. The random time intervals between bursts are drawn from 
a distribution dependent on the transcription rate k(t). Each burst has a random size u drawn from a distribution 
ν(u, t) . Even though we are unable to obtain the analytical solution for the probability density function p(x, t), 
we can get cumulants and moments of p(x, t) from its Laplace transform.

Next, we consider the effect of random protein partitioning at cell division, which is described by the prob-
ability density function η(q) : q is a fraction of protein molecules inherited by one of the daughter cells. We 
assume that cell divisions are instantaneous and occur periodically (cell cycle duration T is always the same). 
These ingredients are sufficient to describe a single cell lineage. In order to describe the whole proliferating 
population we average the quantities referring to a single cell line with the cell age distribution (the population 
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age structure). To be able to compare our model with the experimental results of Ref.1, we have to change the vari-
ables from protein copy number to protein concentration and, subsequently, from protein concentration to the 
effective protein copy number, being equal to the protein concentration multiplied by the average cell volume in 
cell population. For the growing and dividing cell that belongs to a proliferating cell population, the relationship 
between protein copy number and protein concentration is no longer trivial, and one must carefully distinguish 
between the corresponding quantities (see Table 1 for probability density functions and their moments).

protein production. Consider a single cell lineage with cell divisions at t = t1, t2, . . . , tn . p(x, t)dx is the 
probability that there are x protein molecules in the cell at time t. Here, x ∈ [0,∞) is a continuous approximation 
of the discrete protein copy number and not protein concentration. Between cell division events, time evolution 
of p(x, t) is given by the chemical master  equation19–21

Equation (1) describes a stochastic protein production in random bursts; k(t) is the transcription rate, u = x − x′ 
is the burst size, w(u, t) ≡ ν(u, t)− δ(u) , ν(u, t) is the burst size probability density function, and δ(u) is Dirac 
 delta19–21. We neglect protein degradation, because in bacteria like E. coli most proteins are stable. The Laplace 
transform ( L {. . .} ) of Eq. (1) reads

where G(s, t) = L [p(x, t)] ≡
∫∞
0 e−sxp(x, t)dx , ŵ(s, t) = ν̂(s, t)− 1 and ν̂(s, t) = L {ν(u, t)} ≡

∫∞
0 e−suν(u, t)du ; 

note that ln[G(−s, t)] =
∑∞

r=1 κr(t)s
r/r! is a cumulant generating function for p(x, t). Equation (2) will be used 

to obtain the time-evolution of cumulants κr(t) of p(x, t) during the cell cycle. Equation (2) can be easily solved, 
one gets

where G(s, t0) = L [p(x, t0)] . However, in most cases it is not possible to compute p(x, t) = L
−1[G(s, t)] 

analytically.

protein partitioning at cell division. At cell division (assumed to be instantaneous), the time evolu-
tion of p(x, t) given by Eqs. (1) or (2) is interrupted and protein molecules are partitioned between daughter 
cells: x → {qx, (1− q)x} . Here, 0 ≤ q ≤ 1 is a random number, drawn from the probability density function 
η(q) = η(1− q) . Protein partitioning implies the following  relations22:

Equation (5) links the Laplace transforms of the protein copy number probability density functions immediately 
after and before cell division, during which protein molecules are randomly partitioned between daughter cells.

From now on, we assume that cell division occurs periodically every time T12,13,15 and we denote by τ the 
age of a cell within a single cell cycle. We treat both k(t) and ŵ(s, t) as periodic functions of observation time t; 
k(t) = k(t + T) , ŵ(s, t) = ŵ(s, t + T) and assume that the number of cell divisions is large enough to neglect 

(1)∂tp(x, t) = k(t)

∫ x

0
w(x − x′, t)p(x′, t)dx′.

(2)∂tG(s, t) = k(t)ŵ(s, t)G(s, t),

(3)G(s, t) = G(s, t0) exp

(
∫ t

t0

k(t′)ŵ(s, t ′)dt′
)

,

(4)lim
δt→0

p(x, ti + δt) = lim
δt→0

∫ 1

0

η(q)

q
p

(

x

q
, ti − δt

)

dq,

(5)lim
δt→0

G(s, ti + δt) = lim
δt→0

∫ 1

0
η(q)G(qs, ti − δt)dq.

Table 1.  Notation.

Probability density function Describes the distribution of Variable Moments or averages Eqs.

p(x, t) Protein copy number x in a cell lineage at time t x ∈ [0,∞) µr (t) ≡
∫∞
0

xrp(x, t)dx

p(x|τ) Protein copy number x in a single cell of age τ x ∈ [0,∞) µr (τ ) ≡
∫∞
0

xrp(x|τ)dx (13)

ν(u, t) Protein burst size u in a cell lineage at time t u ∈ [0,∞) mr (t) ≡
∫∞
0

urν(u, t)dx

ν(u|τ) Protein burst size u in a single cell of age τ u ∈ [0,∞) mr (τ ) =
∫∞
0

urν(u|τ)du (9)

η(q) Protein partitioning ratio q q ∈ [0, 1] Mr ≡
∫ 1

0
qrη(q)dq (12)

φa(τ ) Cell age τ τ ∈ [0,T] �f (τ )�a ≡
∫ T
0
f (τ )φa(τ )dτ (21)

pa(x) ≡ �p(x|τ)�a Protein copy number x in cell population x ∈ [0,∞) µra ≡
∫∞
0

xrpa(x)dx

p̃(x̃|τ) Protein concentration x̃ in a single cell of age τ x̃ ∈ [0,∞) µ̃r (τ ) =
∫∞
0

x̃r p̃(x̃|τ)dx̃ (26)

p̃a(x̃) ≡ �p̃(x̃|τ)�a Protein concentration x̃ in cell population x̃ ∈ [0,∞) µ̃ra ≡
∫∞
0

x̃r p̃a(x̃)dx̃ (30)

p⋆a(x
⋆) Effective protein copy number x⋆ in cell population x⋆ ∈ [0,∞) µ⋆

ar =
∫∞
0

(x⋆)rp⋆a(x
⋆)dx⋆ (36)
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the influence of initial conditions at t = 0 . In consequence, p(x, t) = p(x, t + T) , G(s, t) = G(s, t + T) . Now we 
consider t ∈ (ti , ti + T) for some i and p(x, t) is interpreted as a conditional probability density function of finding 
x protein molecules in cell at the age τ = t − ti ∈ (0,T) . To stress this, we change the notation:

and analogously for other functions of t, which are now treated as functions of τ . For any function f (τ ) we define 
the notation of its values just after and just before cell division: f (0) ≡ limτ→0+ f (τ ) and f (T) ≡ limτ→T− f (τ ).

Cumulants of protein copy number distribution depend on moments of burst size distribu‑
tion. In this subsection, we show that the increase in the r-th cumulant κr(τ ) of the protein copy number 
probability density function p(x|τ) during the cell cycle depends solely on the time evolution of the r-th moment 
mr(τ ) of the burst size probability density function ν(u|τ) . From (6) it follows that if cell age τ and not the obser-
vation time t is used as the time variable, Eq. (2) reads

By dividing Eq. (7) by G(s|τ) one gets the time-evolution equation for ln[G(s|τ)] and hence the time-evolution 
equation obeyed by cumulants κr(τ ) of p(x|τ) (note that we have changed the interpretation of time variable 
t → τ and therefore the notation according to Eq. (6)):

where

is the r-th moment of the burst size probability density function ν(u|τ) . From Eq. (8) it follows that

Moments of protein copy number distribution depend on moments of protein partitioning 
distribution and burst size distribution. In this subsection, we link the time evolution of µ1(τ ) and 
µ2(τ ) (the first and second moments of the protein copy number probability density function p(x|τ) for a single 
cell) with the moments of ν(u|τ) and η(q) (the burst size and protein partitioning probability density functions).

First, we notice the relation between the r-th moments of p(x|τ) immediately after and before cell division 
with the r-th moment of η(q):

where

is the r-th moment of the protein partitioning probability density function η(q) and

is the r-th moment of the protein copy number probability distribution p(x|τ) . The relation (11) follows from 
the Eq. (4) or from the Eq. (5), which links the Laplace transform of p(x|τ) just after the cell division with 
the Laplace transform of p(x|τ) just before the division. Note that 2−r ≤ Mr ≤ 2−1 and M1 = 1/2 due to the 
assumed symmetry of η(q) : η(q) = η(1− q) . (On average, each daughter cell obtains half of the mother’s protein 
molecules of a given type.)

Now we want to link the moments µ1(τ ) and µ2(τ ) with M2 , m1(τ ) , and m2(τ ) . For this, we use the auxiliary 
functions,

as well as Eq. (11) and the definition of Jr(τ ) , given by the Eq. (10), with

The first two moments of p(x|τ) can be written as:

(6)t → τ , p(x, t) → p(x|τ), G(s, t) → G(s|τ), ν(u, t) → ν(u|τ), k(t) → k(τ ),

(7)∂τG(s|τ) = k(τ )ŵ(s|τ)G(s|τ).

(8)
dκr(τ )

dτ
− k(τ )mr(τ ) = 0,

(9)mr(τ ) =

∫ ∞

0
urν(u|τ)du

(10)κr(τ )− κr(0) =

∫ τ

0
k(τ ′)mr(τ

′)dτ ′ ≡ Jr(τ ).

(11)µr(0) = µr(T)Mr ,

(12)Mr ≡

∫ 1

0
qrη(q)dq

(13)µr(τ ) ≡

∫ ∞

0
xrp(x|τ)dx

(14)h1(M2) =
4M2 − 1

1−M2
, h2(M2) =

M2

1−M2
,

(15)Ir = Jr(T).

(16)
µ1(τ ) = I1 + J1(τ ),

µ2(τ ) =h2(M2)I2 + J2(τ )+ h1(M2)I
2
1 + µ2

1(τ ).
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Here, h1(M2) and h2(M2) depend on the second moment M2 of the protein partitioning probability density func-
tion η(q) , whereas I1 , J1(τ ) , I2 , J2(τ ) contain the dependence on the first and second moments m1(τ ) , m2(τ ) of 
the burst size probability density function ν(u|τ) . Note that µ1(τ ) and µ2(τ ) (16) obey the boundary conditions 
imposed by Eq. (11). In particular, we have

as the mean protein copy number doubles during the cell cycle.
The time evolution of µ1(τ ) and µ2(τ ) for a single cell, as given by Eq. (16), will be needed in the next subsec-

tions to obtain the quantities referring to the whole proliferating cell population.

emulating binomial protein partitioning distribution. Protein partitioning statistics η(q) used here 
does not depend on x(T), the number of protein molecules present in the cell immediately before cell  division22–24. 
Still, we can choose an arbitrary η(q) . We use this freedom to impose the following constraint on M2:

which holds for the binomial distribution describing protein partitioning in models that assume a discrete 
protein copy  number12,13,15. By enforcing the constraint given by Eq. (18) we emulate the behaviour of the first 
and second moments of the binomial distribution because only this information about the partitioning statistics 
is needed within our model to calculate the coefficients of variation of protein copy number or concentration.

Using (11), (16), and the constraint (18), we present the second moment M2 of the protein partitioning prob-
ability density function η(q) as dependent on the first two moments m1(τ ) , m2(τ ) of the burst size probability 
density function ν(u|τ) (through I1 and I2):

Equation (19) is valid as long as 1 ≤ 4M2(I1, I2) ≤ 2.
From (11) and (18) yet another property of the binomial partitioning follows for the coefficient of variation 

of the protein copy number: c2v(0)− c2v (T) = (2I1)
−1 = 1/µ1(T)

14, where

The relation (19), linking M2 , m1(τ ) , and m2(τ ) , will be later needed for the Eq. (32) which defines M2 for a 
particular choice of the burst size probability density function ν(u|τ) , which will further serve to derive the 
coefficient of variation of protein concentration for that case.

population averaging over the age structure. All the mathematical results obtained so far referred 
to a single cell or to a cell lineage. In order to obtain the protein copy number probability density function 
pa(x) for the proliferating cell population, we must average p(x|τ) or its moments µr(τ ) over the cell age prob-
ability density function (population age structure) φa(τ )11–13,15. We assume here that the environmental condi-
tions are constant, the population has reached the state of balanced growth and its age structure is stationary; 
φa(t, τ) = φa(τ ) . (The time independence of the population age structure φa(τ ) is neither guaranteed, nor obvi-
ous. Also, the convergence of φa(t, τ) to the stationary age distribution φa(τ ) may be  nontrivial25,26.)

For any function f (τ ) we introduce the following notation for the population average over the cell age prob-
ability density function:

The population average 〈f (τ )〉a (21) should not be confused with averages over sub-population of cells of the 
same age or with the time average of f (τ ) , f (τ ) ≡ 1

T

∫ T
0 f (τ )dτ over a single cell cycle. Only for the homogene-

ous age structure, φa(τ ) = 1/T , we have f (τ ) = �f (τ )�a.
For an exponentially growing population in the state of balanced growth, φa(τ ) is given  by11–13, 15,27

Note that in order to describe the gating procedure—the selection of cells with similar cell age or size—it is suf-
ficient within the present approach to consider an appropriately modified age structure for the whole population: 
The domain of φa(τ ) given by Eq. (22), i.e., the interval [0, T] has to be restricted to some narrower age range, 
τ ∈ (τA, τB) with 0 < τA < τB < T.

The averaging procedure defined by Eq. (21) is not the most general way to obtain the quantities referring 
to the whole cell population from those referring to a single cell line. A more general approach would involve 
other model parameters being random variables (e.g., cell volume, cell cycle length), so that the age structure 
φa(τ ) or the Master equation for protein levels would be derived ’from scratch’ from the time evolution of these 
 variables28–30.

(17)µ1(0) = I1, µ1(T) = 2I1,

(18)µ2(T)+ µ1(T) = 4µ2(0),

(19)M2(I1, I2) =
I2 + 3I21 + 2I1

4I2 + 12I21 + 2I1
.

(20)c2v (τ ) =
µ2(τ )− µ2

1(τ )

µ2
1(τ )

=
κ2(τ )

µ2
1(τ )

.

(21)�f (τ )�a ≡

∫ T

0
f (τ )φa(τ )dτ .

(22)φa(τ ) =
2 ln 2

T
exp

(

−
ln 2

T
τ

)

.
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Moments of the protein copy number distribution after integration over the age structure. In 
order to get the total variance of the protein copy number, i.e., the variance of pa(x) ≡ �p(x|τ)�a referring to the 
whole cell population, we need the moments of the protein copy number distribution p(x|τ) to be integrated 
over the age structure according to Eq. (21): µ1a = κ1a ≡ �µ1(τ )�a and µ2a ≡ �µ2(τ )�a . We obtain

where h1(M2) , h2(M2) are given by (14) and M2 is given by (19). The last term of (23), 
vara[µ1(τ )] = �µ2

1(τ )�a − �µ1(τ )�
2
a , is the variance of the mean protein copy number µ1(τ ) (16) computed 

with respect to φa(τ ) using (21). This follows from the law of total  variance15, with φa(τ ) playing the role of a 
mixing distribution and p(x|τ) being the conditional distribution. Note that, due to the boundary conditions 
(17), we have vara[µ1(τ )] > 0.

protein concentration. Until now, we have been considering cellular protein levels in terms of the mole-
cule copy number x. Here, we re-calculate the moments of the protein copy number probability density function 
p(x|τ) into the moments of the probability density function p̃(x̃|τ) for protein concentration x̃.

The growing and dividing cell changes its volume, which leads to the following relationship between the 
protein copy number x(τ ) and protein concentration x̃(τ ) during the cell cycle:

where V(τ ) denotes the volume of a cell of age τ ∈ (0,T) and we assume that V(T) = 2V(0).
We have p(x|τ)dx = p̃(x̃|τ)dx̃ , hence the probability density functions for protein copy number and protein 

concentration scale as

and analogously does the concentration burst size probability density function ν̃(ũ|τ) . The relationship between 
the moments of p(x|τ) and those of p̃(x̃|τ) reads

Mean protein concentration does not change during cell division,

yet individual cells of the same age τ differ with respect to the protein concentration x̃(τ ) . The variance of the 
protein concentration x̃ computed for the whole proliferating cell population reads

In the above, µ̃1a = �µ̃1(τ )�a and µ̃2a = �µ̃2(τ )�a are the first and second moments of p̃a(x̃) defined as

whereas vara[µ̃1(τ )] = �µ̃2
1(τ )�a − �µ̃1(τ )�

2
a . Clearly, µ̃1a and µ̃2a are also moments of p̃(x̃|τ) (25) averaged with 

population age structure φa(τ ) using Eq. (21),

Note that Eq. (28) follows from the law of total variance, as in the case of protein copy number and Eq. (23).
For protein concentration, vara[µ̃1(τ )] = 0 if µ̃1(τ ) = µ̃1a (i.e., if the mean protein copy number is propor-

tional to the cell volume). This is in contrast to the case of the protein copy number, where vara[µ1(τ )] = 0 is 
impossible due to the boundary conditions (17).

Distribution of burst sizes. Translational bursting was directly observed by the Xie group in production 
of reporter proteins under the control of a repressed lac promoter in E. coli. The distributions of protein burst 
sizes were  exponential31–33. In this subsection, we assume a more general form of the burst size probability den-
sity function, which also includes the exponential one: From now on, we consider the τ-independent burst size 
probability density function of the form

where b = m1 is the mean burst size and m2 = C2b
2 . (For the exponential probability density function, 

y(z) = exp(−z) and C2 = 2 .) Then, the Eq. (19), which links the moments of the probability density functions 
for protein partitioning and for the burst sizes, reads

(23)κ2a ≡µ2a − µ2
1a = �J2(τ )�a + h2(M2) I2 + h1(M2) I

2
1 + vara[µ1(τ )],

(24)x̃(τ ) ≡
x(τ )

V(τ )
,

(25)p̃(x̃|τ) = V(τ )p(V(τ )x̃|τ),

(26)µ̃r(τ ) ≡

∫ ∞

0
x̃r p̃(x̃|τ)dx̃ =

µr(τ )

[V(τ )]r
.

(27)µ̃1(0) =
µ1(0)

V(0)
=

I1

V(0)
=

2I1

2V(0)
=

µ1(T)

V(T)
= µ̃1(T),

(28)
κ̃2a ≡µ̃2a − µ̃2

1a = �J2(τ )[V(τ )]−2�a + h2(M2) I2�[V(τ )]−2�a + h1(M2) I
2
1 �[V(τ )]−2�a + vara[µ̃1(τ )].

(29)p̃a(x̃) ≡ �p̃(x̃|τ)�a ≡

∫ T

0
p̃(x̃|τ)φa(τ )dτ ,

(30)

µ̃ra ≡

∫ ∞

0
x̃r p̃a(x̃)dx̃ =

∫ ∞

0

∫ T

0
x̃r p̃(x̃|τ)φa(τ )dτdx̃ =

∫ T

0
µ̃r(τ )φa(τ )dτ = �µ̃r(τ )�a, r = 1, 2.

(31)ν(u) = y(u/b)/b,
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Note that M2 ≤ 1/2 as long as 2C2b+ 3µ1(T) ≥ 2 , which is the case for all but the very small b and µ1(T) , where 
the continuous approximation to the discrete protein copy number used here breaks down anyway.

The Eq. (32) will be needed for derivation of the coefficient of variation of protein concentration, under the 
assumption that the burst size probability density function has the form (31), compatible with the exponential 
probability density function but not limited to it.

cell volume growth. In accordance with the experimental  findings34,35 we assume that cell volume V grows 
exponentially:

where V0 = V(0) is the volume of a newborn cell and � is cell volume growth rate. We ignore the stochastic 
spread of T, � and V0

25,36, hence the cell volume exactly doubles during the cell cycle ( V(T) = 2V(0) = 2V0 and 
� = ln(2)/T ). However, even if probability distributions of V0 , V(T) and � are not very broad for  bacteria36–38, 
such an assumption is reasonable only as the first approximation.

Effective protein copy number. In Ref.1, the authors have shown how the coefficient of variation of gene 
expression in E. coli scales with the mean protein level. The abundance of a fluorescent protein fusion produced 
from a given gene in a single cell was normalized by the volume of each individual cell to get the protein concen-
tration. However, the final results have been presented in Ref.1 as the effective protein copy number, i.e., concen-
tration multiplied by the average volume of cells in the population:

where Va = �V(τ )�a is the population-averaged cell volume.
From (34) it follows that the probability density function for the effective protein copy number x⋆ in the cell 

population is given by

where p̃a(x̃) is given by (29). The moments µ⋆
ra of p⋆a(x⋆) (for the effective protein copy number) depend on the 

moments µ̃ra of p̃a(x̃) (for the protein concentration) in the following manner:

In consequence, the protein concentration noise c̃2va = κ̃2a/µ̃
2
1a is not affected by the change of variables x̃ → x⋆:

cell cycle dependent transcription rate. To show the dependence of protein noise on the timing of 
protein production, we consider transcription rate which is nonzero only during a fraction of the cell cycle:

and zero otherwise. Note that k(τ ) can be arbitrary. In fact, the abrupt change in protein production as given by 
(38) is not very realistic, but it allows us to study the influence of protein production variability during the cell 
cycle on the protein noise in an idealized and somewhat extreme case. For k(τ ) (38), the quantity Ir defined by 
Eq. (15) reads

The parameter � = ktT defined in the above equation is the mean number of protein bursts per cell cycle if 
α = 0 and β = 1 ; in a general case, the mean number of protein bursts per cell cycle is equal to (β − α)� but in 
what follows for simplicity we still refer to � as the ‘mean number of bursts per cycle’.

If k(τ ) is given by (38) then the mean effective protein copy number in the proliferating cell population, µ⋆
a1 

(36), reads

where

It is also convenient to define the following auxiliary functions, which will be used in the next section:

(32)M2 =
1

4
+

3

4[1+ 2C2b+ 3µ1(T)]
.

(33)V(τ ) = V0e
�τ ,

(34)x⋆ = x̃Va = x̃�V(τ )�a,

(35)p⋆a(x
⋆) =

1

Va
p̃a

(

x⋆

Va

)

,

(36)µ⋆
ra =

∫ ∞

0
(x⋆)rp⋆a(x

⋆)dx⋆ = Vr
a µ̃ra.

(37)c̃2va = κ̃2a/µ̃
2
1a = κ⋆2a/(µ

⋆
1a)

2 ≡ (c⋆va)
2.

(38)k(τ ) = kt �= 0; αT < τ ≤ βT , 0 ≤ α < β ≤ 1,

(39)Ir = ktmr(β − α)T = mr(β − α)�.

(40)µ⋆
1a =2 ln(2)(β − α)A1b�, � ≡ ktT ,

(41)A1 =A1(α,β) =
2−2α − 2−2β

2 ln(2)(β − α)
+

1

2
.
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Results
Using the model of stochastic gene expression in dividing cells described in the previous section, we calculate 
the coefficient of variation of protein concentration c̃2va = (c⋆va)

2 , which measures the protein noise (Eq. 37). We 
want to see how it depends on the mean protein abundance µ⋆

1a.
In order to compare the model predictions with the experimental data of Ref.1, it is convenient to consider 

the two extreme cases: Frequency modulation (FM) and amplitude modulation (AM). In FM, the mean size b 
of translational bursts is constant in Eq. (40) so that the mean protein level µ⋆

1a can be changed only by changing 
the mean burst frequency kt , or more generally by changing the mean number of bursts per cycle � = ktT . The 
corresponding expression for the protein noise will be given by �F(µ

⋆
1a, b) in Eq. (43) below. In contrast, for 

AM, the mean burst size b varies and the mean number of bursts per cycle � is constant. The expression for the 
protein noise in that case will be given by �A(µ

⋆
1a,�) in Eq. (46) below.

frequency modulation. Using (28) we obtain the protein concentration noise κ̃2a/µ̃2
1a ≡ c̃2va = �F(µ

⋆
1a, b) 

(37) expressed as a function of the effective mean protein copy number µ⋆
1a = Vaµ̃1a = 2 ln(2)V0µ̃1a (34) and 

the mean burst size b = m1:

where

Above, A1 , A2 and A3 are defined in Eqs. (41) and (42), h1(M2) is given by (14) whereas M2 is given by (32) with

The relationship (45) between µ⋆
1a and µ1(T) follows from Eqs. (10), (15), (16) and (40); note that now we have 

I1 = b(β − α)�.

Amplitude modulation. Using Eq. (40), we rewrite the protein concentration noise �F(µ
⋆
1a, b) (43) as a 

function of the effective mean protein copy number µ⋆
1a and � ≡ ktT being the product of the mean transla-

tional burst frequency kt and cell cycle length T, where (β − α)� is the mean number of bursts per cycle:

In the above equation, χA(µ⋆
1a,�) = h1(M2) = χF(µ

⋆
1a, b(µ

⋆
1a,�)) (44) with b(µ⋆

1a,�) given by (40). Note that 
the only dependence of �A(µ

⋆
1a,�) on µ⋆

1a comes from χA(µ⋆
1a, b).

protein noise as dependent on the mean number of bursts per cell cycle and mean burst 
size. The coefficient of variation of the protein concentration may be also written as explicitly dependent on 
both the mean number of bursts per cell cycle � and the mean burst size b but not on the effective mean protein 
copy number µ⋆

1a (Fig. 1):

Black lines in Fig. 1 mark the levels of a constant mean protein abundance (mean effective protein copy number) 
µ⋆
1a , given by Eq. (40). µ⋆

1a may be varied by moving across these levels along some path which needs to be found 
experimentally as a dependence between the mean burst size b and mean burst frequency � . The two simplest 
paths, b = const (FM) and � = const (AM) have been proposed in the subsections above.

Deterministic protein production. In order to quantify the contributions to protein noise it is desired to 
compare the predictions of the present model with the predictions of a similar model in which protein produc-
tion is deterministic. If the protein production is not treated as stochastic but it is described by the deterministic 
source with intensity σ(t) ≥ 0 , then, instead of Eq. (1), we have

(42)
A2 =A2(α,β) =

2−3α − 2−3β

3 ln(2)(β − α)
−

1

8
,

A3 =A3(α,β) =
4
(

2−3α − 2−3β
)

27 ln2(2)(β − α)2
+

4
(

2−3α − 21−3β
)

9 ln(2)(β − α)
+

1

3
.

(43)�F(µ
⋆
1a, b) =

7 ln(2)C2b

18

[

χF(µ
⋆
1a, b)+ 1

]

A1µ
⋆
1a

+
7

12

χF(µ
⋆
1a, b)

A2
1

+
4 ln(2)C2b

3

A2

A1µ
⋆
1a

+
A3

A2
1

− 1,

(44)χF(µ
⋆
1a, b) ≡ h1(M2) =

4

2C2b+ 3[ln(2)A1]−1µ⋆
1a

.

(45)µ1(T) = [ln(2)A1]
−1µ⋆

1a.

(46)�A(µ
⋆
1a,�) =

7C2

36

[

χA(µ
⋆
1a,�)+ 1

]

A2
1(β − α)�

+
7

12

χA(µ
⋆
1a,�)

A2
1

+
2C2

3

A2

A2
1(β − α)�

+
A3

A2
1

− 1.

(47)�(�, b) =
7

18(β − α)A2
1�b

+
C2

36

(24A2 + 7)

(β − α)A2
1�

+
A3

A2
1

− 1.

(48)∂tp(x, t) = −∂x
[

σ(t)p(x, t)
]

.



8

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:13533  | https://doi.org/10.1038/s41598-020-69217-2

www.nature.com/scientificreports/

Assuming p(0, t) = 0 , the Laplace transform of this equation reads ∂tG(s, t) = −σ(t)sG(s, t) and can be obtained 
from Eq. (2) by replacing k(t)[ν̂(s, t)− 1] with −σ(t)s . (After the change of the time variable from t to τ , this 
equation reads ∂τG(s|τ) = −σ(τ)sG(s|τ) , cf. (6) and (7).) Thus, all predictions of the model with deterministic 
protein production can be obtained from its stochastic counterpart by putting σ(τ) = k(τ )m1(τ ) and mr = 0 for 
r > 1 , hence J2(τ ) = I2 = 0 in (28) or C2 = 0 in (43) and (44). Note that now we have only a single function σ(τ) 
describing protein production instead of the two independent functions, k(τ ) and ν(u|τ) , for the stochastic case.

Due to the condition p(0, t) = 0 , the model with deterministic protein production is not sufficient to describe 
the system of interest if the protein abundance is low.

comparison with experimental results. In this subsection, we compare the values of the coefficient of 
variation of protein concentration predicted by our model with the experimental data of Ref.1, to see under what 
conditions our model reproduces the measured scaling relation of protein noise vs. mean protein abundance.

Both the extreme cases of the coefficient of variation in our model, �F(µ
⋆
1a, b) for FM (43) and �A(µ

⋆
1a,�) 

for AM (46), have the ’boomerang’ shape, in a qualitative agreement with the  data1, see Fig. 2. However, neither 
�F(µ

⋆
1a, b) (43) with b = const nor �A(µ

⋆
1a,�) (46) with � = const should be used for fitting to experimental 

data; these two functions are just cross-sections of �(�, b) (47) along a fixed value of b (or � ), where the value 
of the non-fixed parameter, � (or b), is expressed by µ⋆

1a according to the constraint (40). For unambiguous 
fitting, one would need to additionally introduce an experimentally-based dependence of b or � on µ⋆

1a , i.e., to 
define the cross-section path through �(�, b) (Fig. 1), as a function of � and b. For this reason, we say that the 
agreement of the model with the data of Ref.1 is semi-quantitative because one can always define a constraint 
b = b(µ⋆

1a) or � = �(µ⋆
1a) such that the resulting cross-section path will fit the data. One of such constraints 

may be � = const , as discussed below. In general, it seems reasonable that for small protein abundances (small 
µ⋆
1a ), when b cannot be too small, µ⋆

1a changes mainly due to varying � (FM). In Fig. 1, that would correspond 
to the increase in the mean protein abundance µ⋆

1a by moving down the coefficient of variation plot along the 
magenta line, b = const . We can also expect that, for highly expressed genes (large µ⋆

1a ), the values of � saturate 
(AM) due to some physical upper bound for � . That would correspond to the transition from the magenta line 
b = const to the green line � = const in Fig. 1 in order to further increase the mean protein abundance µ⋆

1a . 
In Ref.1, Fig. 5A therein, the experimental data were effectively divided into such two regimes. However, clear 
distinction between the FM and AM regimes when comparing our model to the data is possible only if the cell-
age dependence of the protein production is identical for all genes, which may be unrealistic: k(τ ) and ν(u|τ) 
should be ascribed individually for each gene.

And therefore, the apparent good agreement of the theoretical curves in Fig. 2B with the data of Ref.1 should 
be treated with caution. In the naive interpretation, the curves show that translational bursts from most genes 
have approximately the same mean number of several bursts per cell cycle and the gene expression levels vary 
only due to the variation of mean burst sizes (AM). However, as discussed above, this picture is too simple: 
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Figure 1.  Protein noise �(�, b) (47) as a function of the mean number of bursts per cell cycle � and mean 
burst size b. Black lines denote the levels of a constant mean protein abundance µ⋆

1a , given by Eq. (40). µ⋆
1a may 

be varied by moving across these levels along some path defined as a dependence between b and � . For example, 
the magenta line b = const (here, b = 1 ) denotes the increase in gene expression levels by increasing the mean 
burst frequency only (FM). Conversely, the green line � = const (here, � = 10 ) denotes the increase in gene 
expression levels by increasing the mean burst size only (AM).
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Firstly, the most interesting curved part of the noise vs. mean plot in Fig. 2B falls, at least partly, for the values of 
b < 1 and such small mean burst sizes seem to be unphysical. Secondly, k(τ ) is here assumed constant for each 
gene, which may not be true.

In the FM regime, the noise floor level F(α,β) is given by

F(α,β) = F(α,α + ǫ) depends strongly on ǫ = β − α (Fig. 2A). But if there exists an upper bound for � , in 
particular in the AM regime, where � = const , then there is an additional contribution to noise floor given by the 
2nd term of Eq. (47) and coming from 1st and 3rd terms in Eqs. (43) or (46), which may substantially enhance 
the noise floor level. This contribution, proportional to C2 , is due to the burst size distribution ν(u) (note that the 
squared coefficient of variation of ν(u) is equal C2 − 1 , and thus C2 tells about the burst size distribution’s width). 
Comparing the case of stochastic ( C2 > 0 ) and deterministic ( C2 = 0 ) protein production, we find the contri-
bution of the the burst size distribution’s width to the total protein noise. The noise floor level is an increasing 
function of C2 in the AM regime (Eq. 46). In the FM regime, the difference between stochastic and deterministic 
protein production is pronounced only for low and intermediate protein abundances but the noise floor does 
not depend on C2 nor on b (Fig. 2A, Eq. (43)).

The noise floor levels in the AM regime, where they depend most strongly on � , give an interesting infor-
mation about the lowest possible protein production rates kt for highly expressed genes: The noise floor level 
of �A(µ

⋆
1a,�) for � = 1 lies well above most of the data (Fig. 2B), and therefore the burst frequency of highly 

expressed genes should be at least several bursts per cell cycle (depending on cell cycle length T). This is equiva-
lent to the AM regime  in1, Fig. 5A therein. However, that bound should be even higher if the transcription is 
cell-cycle dependent, k(τ )  = const (Fig. 2B, blue line; we plotted only an example line for � = 5 and protein 

(49)F(α,β) ≡ lim
µ⋆
1a→∞

�F(µ
⋆
1a, b) =

A3(α,β)

A1(α,β)2
− 1.
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Figure 2.  Protein noise vs. effective mean protein copy number against the experimental data of Ref.1 (dots). 
(A) Mean burst size b = const (FM): �F(µ

⋆
1a, b) (43). Solid lines: stochastic protein production ( C2 = 2 ). 

Rainbow (color scale denotes the mean burst frequency values � ) and black: α = 0 , β = 1 ( ǫ = 1 ), blue: 
α = 0.2 , β = 0.8 ( ǫ = 0.6 ), green: α = 0.45 , β = 0.55 ( ǫ = 0.1 ). Dashed lines: deterministic protein production 
( C2 = 0 ) for α = 0 , β = 1 ( ǫ = 1 ). Arrows: Theoretical noise floor levels. (B) Mean burst number per cell cycle 
� = const (AM): �A(µ

⋆
1a,�) (46) with stochastic protein production ( C2 = 2 ). Rainbow (color scale denotes 

the mean burst size b) and black: α = 0 , β = 1 ( ǫ = 1 ), blue: α = 0.2 , β = 0.8 ( ǫ = 0.6 ) for � = 5 . Dashed 
lines: deterministic protein production ( C2 = 0 ) for α = 0 , β = 1 ( ǫ = 1 ). (C) �F(µ

⋆
1a, b) (43) with random 

protein partitioning (black) and half-by-half partitioning (yellow; close to black for b = 10 ). (D) �A(µ
⋆
1a,�) 

(46) with random protein partitioning (black) and half-by-half partitioning (yellow). C2 = 2 , α = 0 , β = 1 in 
(C,D).
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production during 0.6 of the cell cycle not to obscure the plot; the noise floor levels for � = 1 and � = 10 increase 
by a similar proportion), or if other extrinsic noise contributions (not included in our model) are present.

The noise floor level may be set by limiting the mean number of protein bursts per cell cycle � : At that limit, 
any further increase in gene expression is obtained by increasing the burst size b (Fig. 2B). If, however, � were 
unlimited, then the noise floor given by (49) would fall well below the level observed in the  experiment1, even 
for the extremely short period of gene expression, ǫ = 0.1 of the cell cycle (green line in Fig. 2A). Thus, in the 
FM regime, transcription during only a part of the cell cycle does not seem to realistically increase the noise floor 
up to the experimentally measured level (Fig. 2A). Note that the contribution from that effect is additive and the 
vertical scale for the coefficient of variation in the plots in Fig. 2 is logarithmic. The additive increase due to the 
limitation of gene expression to a part of the cell cycle is thus better visible for low noise but it becomes small for 
the experimentally measured noise levels. We can see this in the AM regime, where the noise floor is defined by 
a constant mean number of bursts per cell cycle � so that it can match the levels observed in experiment: The 
additional limitation of gene expression to ǫ = 0.6 of the cell cycle only slightly increases the noise floor level 
(Fig. 2B, blue line vs. rainbow line for � = 5 ). In our model, the minimal noise floor level is ∼ 3× 10−4 (Fig. 1A, 
FM): For α = 0 , β = 1 (protein production is constant during the entire cell cycle) we obtain the minimum of 
F(α,β) (49); F(0, 1) = 4

3W(ln 2)− 1 ≈ 0.00031 where W(ζ ) = (ζ 2 + ζ + 7
18 )/(ζ + 3

4 )
2 . The corresponding copy 

number noise floor is equal to 1− 2(ln 2)2 ≈ 0.0390115. The fact that protein concentration noise is one or two 
orders of magnitude smaller than the corresponding protein copy number noise was also pointed out in Ref.11.

Random protein partitioning at cell division is the cause of the ’boomerang’ shape of the noise vs. mean plot 
in the AM regime. For the deterministic ’half-by-half ’ partitioning with η(q) = δ(q− 1/2) and M2 = 1/4 , the 
plot in the AM regime is flat (Fig. 2D). In the FM regime, the plot has the ’boomerang’ shape even for the half-
by-half partitioning, and the contribution of random partitioning to noise is small (Fig. 2C). In both AM and 
FM regimes, the noise floor level is not affected by the random partitioning. This is because M2(µ

⋆
1a) → 1/4 and 

thus χA(µ⋆
1a,�) → h1(1/4) = 0 , χF(µ⋆

1a, b) → h1(1/4) = 0 when µ⋆
1a → ∞.

Discussion
We have proposed a model of gene expression in a population of dividing cells which reproduces in a semi-
quantitative manner the experimental data of Ref.1. In particular, our model predicts the existence of the noise 
floor, i.e., the absolute lower bound for protein noise. Within our model, there are three factors contributing to 
the noise floor: (i) cell volume and mean protein number may increase asynchronously, which leads to varia-
tion of mean protein concentration during cell cycle, (ii) transcription may take place during a fraction of cell 
cycle and (iii) a physical limitation may be imposed on the mean number of bursts per cell cycle. Although (ii) 
contributes to (i), we will discuss it separately.

Both cell volume growth and mean protein copy number growth are purely periodic and thus deterministic 
in our model, so is the mean protein concentration calculated with respect of the sub-population of cells of the 
same age. Consequently, the lack of synchronicity between time evolution of cell volume and mean protein copy 
number is also of purely deterministic character. This is evident if we note that an identical dependence of mean 
protein concentration, and thus the same contribution to noise floor, appears in the corresponding model with 
protein production being deterministic instead of stochastic. For that reason, the term ’noise’ may be slightly 
misleading in the case of (i). This is in analogy to the following situation: One can calculate the variance of a 
purely deterministic periodic, e.g., sinusoidal signal but the non-zero variance does not mean that the signal 
has any random component. The degree of randomness of such a signal can be measured by calculating its time 
correlation, if time-dependent data are available. Without the knowledge of time correlation, just looking at the 
squared coefficient of variation vs. mean plot of gene expression, one may see an apparent ’noise floor’ being the 
effect of an extrinsic periodic deterministic signal. More realistically, the effect of such a signal may occur as a 
contribution to the actual noise  floor11.

However, in order to obtain the protein noise floor for the whole cell population in our model, we have to 
calculate the variance of the mean protein concentration with respect to the population age structure (probability 
distribution of cell age or generation time). For that reason, the stochastic character of (i) is related to the stochas-
tic character of the population age structure. And therefore, (i) is a consequence of both the fact that not all cells 
are of the same age and that the mean protein concentration µ̃1(τ ) varies with cell age τ : The oscillations of the 
mean protein concentration in consecutive cell cycles occur when protein production does not keep up with or 
exceeds the cell volume growth. This is already possible for a constant transcription rate but when transcription 
is limited to a part of the cell cycle (ii), the noise floor level may increase even by 2 orders of magnitude (Fig. 2A).

Protein noise can be plotted as a function of mean protein abundance, µ⋆
1a , after defining how the mean 

burst size b or the mean number of bursts per cycle (β − α)� depends on µ⋆
1a , with the extreme cases being the 

frequency modulation (FM, Fig. 2A,C) and amplitude modulation (AM, Fig. 2B,D).
The curved shape of the noise vs. mean plot for low protein abundances (tending to ∼ 1/µ⋆

1a , Poissonian 
limit) in the FM regime is due to the burst-like protein production and it occurs even for the deterministic and 
equal protein partitioning at cell division; random partitioning contributes weakly to the noise for realistic b 
values. For AM, the Poissonian limit is due to the random protein partitioning between daughter cells at cell 
division and it disappears when partitioning is deterministic and equal. For AM, the noise floor level depends on 
� (mean number of bursts per cycle for the case of (β − α) = 1 , i.e., for the constant protein production taking 
place during the entire cell cycle) but it is also finite for � = ∞ (deterministic case). Since the experimentally 
observed noise floor level is ∼ 10−1 , the contribution to it coming solely from the age structure (i) and cell-cycle 
dependent gene expression (ii) seems to be very small compared to the contributions of the limitation on � (iii) 
(AM, Fig. 2A) or to the contributions of other possible sources of extrinsic noise not included in the model (e.g., 
generation time  variability28,29,36 or cell growth rate  variability36).
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Protein noise is often decomposed into extrinsic and intrinsic  contributions39,40. What is the character of each 
of the three noise sources (i–iii) considered here?

Within the present approach, cell volume growth and population age structure depend neither on the protein 
copy number nor on the kinetic parameters describing gene expression. Hence, the cell-cycle dependent varia-
tion of mean protein concentration due to asynchronous increases in cell volume and in mean protein number 
(i) are an extrinsic contribution to protein noise.

Now consider the effect of transcription during only a part of cell cycle in each cell generation (ii). Gene 
regulation, which leads to cell-cycle dependent gene expression, is extrinsic with respect to the gene of interest 
and deterministic in our model. But protein noise, which occurs when gene expression is enabled, is intrinsic. 
These notions are to be understood is in analogy those used in the classical works which disentangle extrinsic 
and intrinsic contributions to gene expression noise by means of the two-reporter  assay40, where the regulator 
noise is considered extrinsic.

However, note that there are no correlations assumed a priori between different genes within our model, 
although such correlations might be present in a cell when a group of cell-cycle-dependent genes is expressed 
during the same part of cell cycle because of a common cell-cycle-dependent regulator. Such correlations may 
also occur due to the competition for polymerases (ribosomes) between different genes (transcripts). But in 
our model we treat each gene (each data point in Fig. 2) as independent, and possibly independently regulated 
by cell-cycle-dependent factors: For each gene on the plot, the cell-age-dependent transcription rate and the 
cell-age-dependent burst size distribution may be different. Thus, if we plot a theoretical curve corresponding 
to gene expression during a fraction of cell cycle against the experimental data (Fig. 2), it does not mean that 
all data points falling on the curve are the genes expressed during that fraction of cell cycle. It is possible that 
many theoretical curves can be drawn across the same data point, as corresponding to gene expression during 
different fractions of cell cycle (or as corresponding to gene expression with different values of other parameters). 
This shows that our model cannot be used for fitting the data without additional information that would remove 
ambiguity. The necessary information includes: (a) Experimental dependence linking mean expression level with 
both mean size and mean frequency of protein bursts. (b) Dependence of transcription rate on cell-cycle age. (c) 
Dependence of the burst size distribution on cell-cycle age.

Note also that protein production limited to a fraction of the cell cycle (ii) enhances asynchrony between cell 
volume and mean protein copy number and therefore it contributes to (i).

Finally, consider any limitation imposed on the mean number of protein bursts per cell cycle (iii). If such 
limitation is due to the limitations imposed on transcription rate, this should be treated as an intrinsic contribu-
tion because it depends solely on the parameters describing the gene of interest. Obviously, the contribution (iii) 
does not appear in the corresponding model where gene expression is a deterministic process. In the determin-
istic approach, we have a single protein production rate parameter σ describing gene expression instead of two 
independent parameters (transcription rate kt and mean burst size b) for the stochastic approach. (For simplicity 
we refer to a situation when gene expression is time-independent). Without these two parameters it is impossible 
to fit the stochastic model to experimental data, even semi-quantitatively.

If the number of protein bursts per cycle is small, the contribution to noise (iii) is much larger than both (i) 
and (ii), but if bursts are small and frequent then (iii) either alone or with (i) and (ii) is too small to explain the 
observed noise floor level.

In summary, our model includes some of the factors contributing to protein noise in gene expression and to 
the noise floor in particular. Although the model is sufficient for obtaining the functional dependences between 
the mean protein abundance and noise which apparently fit the experimental data of Ref.1, it does not take into 
account some important contributions to protein noise like stochastic spread of cell volume at birth, cycle length 
or growth rate of individual cells. As these noise sources are of extrinsic character, the protein noise floor is likely 
to be of mostly extrinsic origin, too. Still, we show that the sources of protein noise included in our model suffice 
to obtain the noise floor, and we quantify their contributions to protein noise.
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