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phosphate‑dependent aggregation 
of  [KL]n peptides affects their 
membranolytic activity
erik Strandberg1, Fabian Schweigardt2, Parvesh Wadhwani1, Jochen Bürck1, 
Johannes Reichert1, Haroldo L. P. Cravo3, Luisa Burger2 & Anne S. Ulrich1,2*

In this study, we investigate how the length of amphiphilic β-sheet forming peptides affects their 
interaction with membranes. Four polycationic model peptides with lengths from 6 to 18 amino acids 
were constructed from simple Lys-Leu repeats, giving  [KL]n=3,5,7,9. We found that (1) they exhibit a 
pronounced antimicrobial activity with an intriguing length dependent maximum for  [KL]5 with 10 
amino acids; (2) their hemolytic effect, on the other hand, increases steadily with peptide length. CD 
analysis (3) and TEM (4) show that all peptides-except for the short  [KL]3‑aggregate into amyloid‑like 
fibrils in the presence of phosphate ions, which in turn has a critical effect on the results in (1) and 
(2). In fact, (5) vesicle leakage reveals an intrinsic membrane-perturbing activity (at constant peptide 
mass) of  [KL]5 > [KL]9 > [KL]7 in phosphate buffer, which changes to  [KL]5 ≈ [KL]7 ≈ [KL]9 in pipeS. A 
specific interaction with phosphate ions thus explains the subtle balance between two counteracting 
effects: phosphate-induced unproductive pre-aggregation in solution versus monomeric membrane 
binding and vigorous lipid perturbation due to self-assembly of the bound peptides within the bilayer. 
This knowledge can now be used to control and optimize the peptides in further applications.

Membrane-active antimicrobial peptides (AMPs) are found in almost all types of organisms, from bacteria to 
humans, as a host defense system against  microorganisms1,2. Over 12,000 AMPs are  known3. These peptides can 
be classified according to origin, activity and  structure1,4–6. Cationic amphipathic α-helices are the most common, 
but another important class consists of cationic amphipathic β-sheet forming  AMPs7–9.

Membrane activity is usually characterized in vivo using antimicrobial and hemolysis assays, and using bio-
physical studies in vitro, including vesicle leakage assays, as well as structural methods like circular dichroism 
and solid-state NMR. From these data, the mechanism of action can be elucidated, and it has been suggested 
that many amphipathic α-helices operate by forming pores in membranes. We have recently studied the length 
dependent membrane activity of α-helical AMPs using a series of model peptides with 14–28 amino acids, based 
on the underlying repeat unit [KIAGKIA]. These peptides were found to be active only when they are long enough 
to span a membrane, which enables them to flip upright within the lipid bilayer and form a transmembrane 
toroidal  pore10–13.

Besides the α-helical [KIAGKIA]-based peptides, we have also focused on the sequence  [KIGAKI]3, which 
has a similar composition but exhibits an underlying β-stranded amphiphilic pattern. The membrane-bound 
conformation of this AMP with 18 residues was characterized using solid-state  NMR14,15. At low concentrations 
it binds to the membrane as a flexible monomer (with an intrinsically disordered conformation within the 2D 
plane of the lipid bilayer), but beyond a threshold concentration the flexible strands were found to self-assemble 
into immobilized β-sheets14. By including a single D-amino acid in the sequence, the tendency to form β-sheets 
could be reduced, which also lowered the hemolytic and fusogenic activity of the peptide, but not its antimi-
crobial  effect14,16.

The effect of peptide length on the activity of amphiphilic β-stranded AMPs has already been described in 
several  reports9,17. When the length dependence of membrane binding and folding into β-sheets of KIGAKI 
peptides was  studied18, it was found that both binding and folding increases strongly with peptide length up to 
18 amino acids. Here, we investigate a series of β-sheet forming AMPs with a very simple repetitive sequence 
 [KL]n-NH2, using four peptides with 6, 10, 14 or 18 amino acids (n = 3, 5, 7, 9). We call them collectively KL 
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peptides and individual peptides are given names according to the number of amino acids, for example KL10 
for  [KL]5-NH2 (see Table 1).

It has long been known that KL peptides can form β-sheets in  solution19,20, and it has been shown that the 
amount of β-structures increases with peptide concentration, with salt  concentration19,21, and over  time22. The 
goal of the present study was to obtain systematic insights into the repertoire of peptide structures that may be 
encountered under different conditions, in order to eventually find the functionally active state and describe 
the peptide-lipid interactions at the very moment of membrane destabilization. Namely, in the mid-term we 
would like to find out whether or not the β-stranded peptides are able to form transmembrane β-barrel pores, 
in analogy to the toroidal wormholes formed from α-helical AMPs. For such structural investigations, a thor-
ough understanding of the relationship between membrane activity and β-sheet assembly is essential, and it is 
also necessary to establish the length dependence of the biological activity and the tendency to aggregate. Just 
like in our earlier study of α-helical KIAGKIA-based  peptides11–13, here we use biological assays to determine 
the membranolytic effect of the β-stranded KL peptides on bacteria and erythrocytes, supplemented by vesicle 
leakage assays to check for perturbation of synthetic lipid vesicles, besides circular dichroism spectroscopy (CD) 
to characterize the peptide secondary structure. In addition, we used time-resolved CD to study the speed of 
β-sheet formation, and transmission electron microscopy to visualize fibril formation.

Materials and methods
Materials. Peptide synthesis reagents and Fmoc-protected amino acids were purchased from Iris Biotech 
(Marktredwitz, Germany) or Merck Biosciences (Darmstadt, Germany). Chemicals for peptide synthesis were 
obtained from Merck (Darmstadt, Germany) or Biosolve (Valkenswaard, Netherlands), and solvents for HPLC 
purification were purchased from Fischer Scientific (Geel, Belgium). 4-Chloro-7-nitrobenzofurazan (NBD-Cl) 
was purchased from VWR (Bruchsal, Germany). The fluorescent probes 8-amino-naphtalene-1,3,6-trisulfonic 
acid sodium salt (ANTS) and p-xylene-bis-pyridinium bromide (DPX) were obtained from Invitrogen-Molec-
ular Probes (Karlsruhe, Germany). Fluorescently labelled 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-
N-(lissamine rhodamine B sulfonyl) (Rhod-PE) was obtained from Avanti Polar Lipids (Alabaster, AL, USA). 
The lipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-
3-phosphatidylglycerol (POPG), 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC), and 1,2-dimyris-
toyl-sn-glycero-3-phosphatidylglycerol (DMPG) were purchased from NOF (Grobbendonk, Belgium).

peptide synthesis. [KL]n–NH2 peptides were synthesized on an automated Syro II multiple peptide syn-
thesizer (MultiSynTech, Witten, Germany) using standard Fmoc solid phase peptide synthesis  protocols23,24. In 
addition to the normal unlabeled peptides, peptides were also synthesized with the fluorophore NBD attached to 
their N-terminus, in order to monitor vesicle binding using fluorescence spectroscopy. The crude peptides were 
purified on an HPLC system from JASCO (Groß-Umstadt, Germany) using a preparative Vydac C18 column 
with a water/acetonitrile gradient supplemented with 5 mM HCl. The purified peptides were characterized by 
analytical LC (Agilent, Waldbronn, Germany) coupled to an ESI mass spectrometer (µTOF Bruker, Bremen, 
Germany), and were found to be over 95% pure.

Circular dichroism spectroscopy (CD). Vesicle sample preparation. CD samples were prepared by co-
solubilizing DMPC and DMPG (4/1 mol/mol) or POPC and POPG (1/1 mol/mol) in chloroform/methanol 1/1 
(v/v). The organic solvent was evaporated with a gentle stream of nitrogen, and samples were then kept under 
vacuum for 3 h. The dried lipid film was dispersed in milliQ water and homogenized by 10 freeze–thaw cycles 
and vortexing. Small unilamellar vesicles (SUVs) for CD samples were generated by sonication for 16 min in a 
high-power ultrasonic bath with a beaker-shaped sonotrode (UTR 200, Hielscher, Germany).

Measurements. CD spectra were recorded on a J-815 spectropolarimeter (JASCO, Groß-Umstadt, Germany) 
between 260 and 185 nm at 0.1-nm intervals, using 1-mm quartz-glass cells (Suprasil; Hellma, Müllheim, Ger-
many) as reported  previously14. The peptides were measured at 25 °C in milliQ water and in 10 mM sodium phos-
phate buffer (PB, pH 7.0), and at 30 °C in the presence of lipid vesicles composed of DMPC/DMPG (4/1 mol/
mol) or POPC/POPG (1/1 mol/mol). The typical peptide concentration of the final samples in milliQ water, 
phosphate buffer, and in the vesicle samples was 0.1 mg/mL (40–170 µM depending on the peptide molecular 
weight). The peptide-to-lipid (P/L) molar ratio was 1/20 for the KL14 peptide, and was adapted for the other 
peptide-lipid mixtures to get the same constant mass ratio for peptides and lipids. From each sample spectrum 
an averaged baseline was subtracted of the pure solvent or lipid matrix, respectively. Finally, the spectra were 
converted to mean residue ellipticities by using the weighed-in amount of peptide and the volume of the sample 

Table 1.  Synthesized peptides used in this study.

Peptide Sequence Length (amino acids) Net charge Molecular weight (g/mol)

KL6 KLKLKL-NH2 6  + 4 741.0

KL10 KLKLKLKLKL-NH2 10  + 6 1,223.7

KL14 KLKLKLKLKLKLKL-NH2 14  + 8 1706.3

KL18 KLKLKLKLKLKLKLKLKL-NH2 18  + 10 2,189.0
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for calculating peptide concentration. A concentration measurement based on UV/VIS absorption spectroscopy 
of aromatic residues was not possible, because KL peptides do not contain any aromatic residues.

Deconvolution of CD data. A quantitative deconvolution of CD data to determine the relative contents of dif-
ferent secondary structure elements was performed exemplarily for the KL10 spectra in  H2O, pH ≈ 10 and in 
10 mM PB, pH = 7, where clear sample solutions without any spectral artifacts due to light scattering caused by 
aggregated particles had been observed (this is also valid for all the other KL peptide spectra shown in Fig. 1A–
C). For secondary structure estimation the on-line version of the Beta Structure Selection (BeStSel) method 
was applied that takes into account the twist of β-structures and can reliably distinguish parallel and antiparal-
lel β-sheets25,26. CD samples of KL peptides measured in lipid SUVs environment were always quite turbid, i.e. 
one cannot exclude significant differential scattering and absorption flattening artifacts, which did not permit a 
quantitative secondary structure estimation, due to the large errors encountered.

Time‑dependent measurements. Time-resolved measurements were performed to determine the speed of 
aggregation of KL peptides in solution, as a function of the concentration of phosphate ions and other salts, and 
as a function of peptide length. Measurements were performed at a fixed wavelength of 200 nm with a time reso-
lution of 1 s. Before starting a time scan, peptides were measured in MilliQ water in a cuvette with 10 mm optical 

Figure 1.  Circular dichroism spectra of KL peptides (compared at constant peptide mass). (A) In MilliQ water, 
pH ≈ 6. (B) In water, pH ≈ 10. (C) In 10 mM phosphate buffer, pH = 7.0. (D) In the presence of DMPC vesicles in 
water, pH ≈ 6. (E) In the presence of DMPC/DMPG (4/1) vesicles in water, pH ≈ 6. (F) In the presence of POPC/
POPG (1/1) vesicles in water, pH ≈ 6.
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path length, equipped with a magnetic stirrer (300 rpm), to get a starting point value for non-aggregated pep-
tides. Phosphate buffer or salt solution was added to the cuvette to adjust a specified concentration, and shortly 
afterwards the time course measurement of the CD signal was triggered. The first 5–10 s after addition could not 
be measured due to the delay time it took for complete mixing, but curves were fitted with this time delay taken 
into account, and the known starting point of peptides in MilliQ water, measured separately before, was taken 
as the zero time point. Data were re-calculated as folding percentage, setting the starting point to 0% and the 
final maximum signal as 100%. Data were then fitted according to the exponential function according to Eq. (1):

Here, t is the elapsed time from the addition of phosphate or salt, A(t) is the time-dependent proportion of 
β-sheet signal (with A(0) = 0), and τ is the time constant of β-sheet assembly.

Transmission electron microscopy (TEM). TEM images were obtained using a Philips CM120 and a 
Philips Tecnai F20 FEG electron microscope. The peptide solutions without phosphate buffer were aged 24 h 
before TEM sample preparation. Peptide solutions with PB (5 mM, pH = 7.0) were not allowed to age but always 
prepared freshly. For imaging, a 5 µL aliquot of the 2 mM peptide stock solution was applied on a copper grid 
with carbon film. After 1 min of adsorption, the sample was negatively stained with a 2% uranyl acetate solution 
in water. Excess staining solution was removed with moistened filter paper.

Nuclear magnetic resonance (NMR) spectroscopy. Solid-state 31P-NMR experiments were per-
formed on a Bruker Avance 500 MHz spectrometer (Bruker Biospin, Karlsruhe, Germany) at 308 K. A Hahn 
echo sequence was used with a phase  cycling27 using a 3.9 μs 90° pulse, a 30 µs echo time, a 1 s relaxation delay 
time, and 13 kHz proton decoupling with a SPINAL-64  sequence28. 256 scans were recorded and 20 Hz line 
broadening was applied to the spectra.

MIC (minimum inhibitory concentration) assay. Antimicrobial activity was measured by a standard 
minimal inhibitory concentration (MIC) assay, carried out with Gram-positive Bacillus subtilis subsp. spizizenii 
(DSM 374) and Staphylococcus xylosus (DSM 20267) and with Gram-negative Escherichia coli (DSM 1116) and 
Enterobacter helveticus (DSM 18390), as previously  reported14,29. Bacteria were grown in Müller-Hinton medium 
(MHM) at 37 °C overnight. Microtiter plates (96 wells of 100 μL) were filled with 50 µL MHM and peptide solu-
tion to obtain serial twofold dilution series of peptides. The two final columns of each plate remained without 
peptide, so that the penultimate data point served as the positive control (no peptide), and the final one as the 
negative control (not inoculated). 50 μL of bacterial suspension (OD = 0.2) was added to the wells (except for the 
final column of each plate) to give a final concentration of  106 CFU/mL. The plates were incubated at 37 °C for 
20 h, and cell viability was probed by addition of 20 µL 0.2 mg/mL resazurin and incubation at 37 °C for 2 h. The 
MIC value was determined visually as the lowest peptide concentration inhibiting bacterial growth.

Two versions of the MIC assay are examined here for comparison, using different ways to prepare the two-
fold peptide dilutions. Two different stock solutions of MHM were employed in version A and B, respectively. 
The regular MHM contained 3 g/L beef extract, 17.5 g/L acid hydrolysate of casein and 1.5 g/L starch, whilst the 
double concentrated MHM (from here on called 2 × MHM) contained 6 g/L beef extract, 35 g/L acid hydrolysate 
of casein and 3 g/L starch. In version A, the standard protocol used previously in our group, 50 µL MHM was 
added to each well, with a double concentration (2 × MHM) in the first well. To the first well, 50 µL peptide 
solution in MilliQ water was added and mixed. 50 µL of this was transferred to the second well, and 50 µL from 
the second well to the third well and so on. Some 50 µL from the last well were discarded. After all plates were 
prepared, 50 µL MHM with bacteria was added to each well, giving a total filled volume of 100 µL. In version B, 
50 µL of MilliQ water was first added to each well. To the first well 50 µL peptide solution in MilliQ water was 
added. After mixing, 50 µL of this was transferred to the second well, and so on. After all plates were prepared, 
50 µL 2 × MHM with bacteria was added to each well, giving again a total volume of 100 µL. The final composi-
tion of each well was the same in the two versions, but in version A the peptides were in contact with phosphate 
in the medium for at least 1 h before the bacteria were added, whereas in version B the peptides made contact 
with the phosphate ions and the bacteria simultaneously.

Hemolysis assay. Hemolytic activity was examined using a serial twofold dilution assay as previously 
 described13,30. Citrate phosphate dextrose-stabilized blood bags with erythrocyte suspensions of healthy donors 
were obtained from the blood bank of the local municipal hospital (Städtisches Klinikum, Karlsruhe, Germany). 
The erythrocytes were washed with Tris-HCl buffer with pH 7.6, and incubated with peptide solutions at 37 °C 
for 30 min with gentle shaking. The tubes were centrifuged at 13,000 rpm for 10 min to pellet the cells, and the 
absorbance at 540 nm was recorded against a negative control (cells without peptide, accounting for autohe-
molysis). The percentage of lysis was then calculated relative to 100% lysis induced by 1% Triton X-100. The 
absorbance measurements were repeated three times, and the averaged values were used.

Vesicle leakage assay. Preparation of large unilamellar vesicles. For the leakage  experiments31,32, the buff-
er in which the vesicles were prepared contained the fluorophore ANTS (12.5 mM), the quencher DPX (45 mM), 
50 mM NaCl, and either 10 mM phosphate (pH 7.0) or 10 mM PIPES buffer (pH 7.0). Liposomes were prepared 
by co-dissolving POPC/POPG (1/2 mol/mol) lipids in  CHCl3/MeOH (3/1 v/v), together with  10–2 mol% Rhod-
PE (used as a marker to quantify the loss of lipids during the extrusion and gel filtration steps required for vesicle 
preparation, see below). The lipid mixture was dried under  N2(g) and left to dry under vacuum overnight. The 

(1)A(t) = 1− exp(−t/τ)
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obtained thin film was then re-suspended in the buffer which contained the fluorophore and the quencher by 
vigorous vortexing, followed by 10 freeze–thaw  cycles33. Large unilamellar vesicles (LUV) were obtained by 41-
fold extrusion (Avanti Mini Extruder; Avanti Polar Lipids, Alabaster, AL) of the liposomes through a Nuclepore 
polycarbonate membrane (pore size 100 nm, Whatman-GE Healthcare Europe, Freiburg, Germany) at room 
temperature. Unencapsulated dye was removed by gel filtration using spin columns filled with Sephacryl 100-h 
(Sigma-Aldrich, Taufkirchen, Germany), and equilibrated with an elution buffer (150 mM NaCl, buffer agent, 
pH 7.5) which balances the internal vesicle osmolarity. Different buffer agents were used for the external buffer, 
and the order of mixing of peptides and vesicles was also varied, as described in the Results section.

Fluorescence dequenching assay. Leakage of entrapped ANTS was monitored by fluorescence dequenching of 
 ANTS34. Fluorescence measurements were performed in a thermostated cuvette with constant stirring at 30 °C 
in the same buffer as used for gel filtration on a FluoroMax2 spectrofluorimeter (HORIBA Jobin Yvon, Unter-
haching, Germany), by setting the ANTS emission to 510 nm (5 nm slit) and its excitation to 355 nm (5 nm 
slit). Large unilamellar vesicles (100 µM final lipid concentration) were either added to the cuvette containing 
a constant weight of 30 µg peptide (corresponding to a peptide-to-lipid molar ratio (P/L) of 1/10 for KL14), or 
peptides were added to the cuvette containing the vesicles. For comparison, another series of experiments was 
carried out in a more conventional way, using a constant molar concentration of peptide, i.e. 10 µM (correspond-
ing to a P/L of 1/10 for all peptides), which means increasing mass with increasing peptide length. The level of 
0% leakage corresponded to the fluorescence of the solution immediately after mixing peptides and vesicles, 
while 100% leakage was the fluorescence value obtained upon addition of 0.25 vol% Triton X-100 after 10 min.

Vesicle binding assay. The assay to study the binding of peptides to vesicles is described in the Supporting 
Information.

Results
peptide synthesis. KL peptides with the repetitive sequence [Lys-Leu]n-NH2 with 6, 10, 14 and 18 amino 
acids (n = 3, 5, 7, 9) were used in the study, as listed in Table 1. All peptides were successfully synthesized and 
purified with a purity of > 95% according to HPLC. Since the main topic of the study is the length dependent 
activity of KL peptides, we will use peptides names like KL10, to emphasize that this peptide contains 10 amino 
acids.

Circular dichroism. The secondary structure of the KL peptides was investigated with circular dichroism 
spectroscopy (CD), using always the same total amount (weight) of peptide for comparing the different lengths. 
In deionized water all peptides gave CD spectra with a minimum around 197 nm, indicating a random coil con-
formation (Fig. 1A). Since these aqueous solutions were somewhat acidic due to residual HCl from HPLC puri-
fication in the lyophilized peptides, the pH in this case was around 6. When a small aliquot of 0.1 M NaOH was 
added to the solution, resulting in an approximate pH ≈ 10, KL6 is still random coil, but the longer peptides all 
gave spectra with a maximum around 195 nm and a minimum around 215 nm, indicating β-sheeted structures 
(Fig. 1B). Also in 10 mM phosphate buffer at pH = 7.0, KL6 is random coil, but the other peptides gave spectra 
with a slightly red-shifted maximum around 200 nm and a minimum near 219 nm, indicating more pronounced 
β-sheet structures for KL10 to KL18 (Fig. 1C). The KL peptides are designed to form amphipathic β-sheets when 
bound to membranes, so CD spectra were also measured in the presence of small unilamellar lipid vesicles. In 
vesicles of zwitterionic DMPC in water at pH ≈ 6 (Fig. 1D), all KL peptides show random coil spectra, indicating 
that the peptides do not bind to these neutral membranes. In a slightly anionic lipid mixture of DMPC/DMPG 
(4/1) in water at pH ≈ 6 (Fig. 1E), the CD spectra are less intense due to strong turbidity and flocculation in 
the aqueous lipid suspension, leading to differential scattering and absorption flattening spectral artifacts. The 
spectra reveal a mixture of random coil and β-sheet signals, with more β-sheet for the longer peptides. In POPC/
POPG (1/1) vesicles with a high proportion of anionic lipids, in water at pH ≈ 6, KL10, KL14, and KL18 show 
once again β-sheets (Fig. 1F), similar to spectra in PB (Fig. 1C), while KL6 gives a different spectrum that can 
be interpreted as a superposition of random coil plus β-sheet signals. In these latter samples some turbidity was 
observed.

KL6 thus seems to be too short to form β-sheets in aqueous solution, but the longer peptides do so in water at 
pH ≈ 10. In the presence of phosphate buffer, peptides are also forming β-sheets but the line shapes are somewhat 
different, with maxima and minima red-shifted by ~ 5 nm compared to the aqueous solutions. The CD spectra of 
KL10 in these two cases were deconvoluted using the BeStSel  algorithm25,26 to get an estimate of the secondary 
structure elements present. In PB, 100% β-sheets were found (83% antiparallel and 17% parallel). In water at 
pH ≈ 10, there was only a 54% contribution from β-sheets (34% antiparallel and 20% parallel), while the rest was 
helical plus other conformations. This deconvolution indicates that KL10 in water at pH ≈ 10 only partly forms 
β-sheets, but in PB the β-sheet formation is essentially complete.

Binding to neutral DMPC membranes is very weak, so these spectra are similar to those in water at pH ≈ 6 
without lipid vesicles, where peptides are unstructured. In contrast, the polycationic peptides bind avidly to 
POPC/POPG (1/1) vesicles, giving similar CD spectra as in PB, which reflect complete β-sheet formation.

The longer KL peptides are clearly able to form β-sheet aggregates in PB without lipid vesicles present. To 
investigate the rate of aggregation, time-resolved CD experiments were performed. The CD intensity at 200 nm 
was measured for up to 900 s after adding different concentrations of phosphate. Phosphate solution was added 
to a stirred peptide solution in water (pH ≈ 6), and the aggregation could be followed, as the signal at 200 nm is 
highly sensitive to a change from random coil (with a close-by minimum) to β-sheet (with a maximum in this 
region). An initial full spectrum was measured before addition of phosphate. The first few seconds, following 
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the addition of peptides, could not be measured, but the time delay could be determined from a fit of the curve, 
which also gave the time constant of β-sheet formation. These time constants are listed in Table 2. KL6 did not 
show any change in CD signal over 600 s, even in 10 mM phosphate buffer (Fig. 2A). KL10 shows almost no fold-
ing up to 2.5 mM phosphate, but with 5 mM there is a distinct increase in signal with a time constant τ of 273 s, 
up to a maximum after around 600 s. At 10 mM, folding is faster with a time constant of 96 s. (Fig. 2B). After 

Table 2.  Time constants (in s) of random coil ↔ β-sheet transition for KL peptides in solution in the presence 
of phosphate. a For KL6 no folding was observed after 900 s; τ values could not be fitted properly but are 
essentially infinite.

Peptide

Phosphate concentration (mM)

1.0 2.5 5.0 10.0

KL6a ∞ ∞ ∞ ∞

KL10 23,500 12,900 273 96

KL14 248 44 15.5 7.0

KL18 158 39.5 16.5 7.0
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Figure 2.  Percentage of peptide folded into β-sheets, calculated from the CD intensity at 200 nm, as a function 
of time and phosphate concentration in solution. Black curves are experimental data, dotted red lines are fits 
to Eq. (1). The peptide concentration was always 0.01 mg/mL, i.e. the same weight was used for the different 
peptide lengths. (A) KL6 shows no time dependent effect and maintains its random coil conformation 
throughout, even at the highest tested phosphate concentration of 10 mM. (B) KL10 does not change up to 
2.5 mM phosphate, but at 5 and 10 mM phosphate is becomes assembled into β-sheets. In 10 mM phosphate, 
folding happens within 5 min. (C) KL14 folds already at a 1 mM concentration of phosphate, and at 10 mM 
folding is complete in less than a minute. (D) KL18 folds even faster than KL14.
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the maximum is reached, the signal starts to decrease again, indicating that peptide starts to fall out of solution 
whereupon the CD signal is lost for those precipitated molecules (data not shown). KL14 (Fig. 2C) starts to fold 
already at 1 mM phosphate, and in 10 mM phosphate buffer it has completely turned into β-sheets after just a 
few seconds, with a time constant of 7 s. KL18 shows a similar behavior as KL14, but with even faster kinetics 
(Fig. 2D). Clearly, aggregation into β-sheets is much faster for longer KL peptides and for higher concentrations 
of phosphate ions. Note that the absolute weight of the different KL peptides was the same in each sample. 

To investigate whether the dramatic influence of phosphate buffer was specific for this type of polyvalent 
anion, or rather a more general effect of salt concentration or pH, additional time series were measured. Instead 
of phosphate, KL10 was dissolved in water in the presence of NaF (with monovalent ions) or  K2SO4 (with divalent 
 SO4

2− ions). To get the same ionic strength as 5 mM phosphate at pH = 7, 8.8 mM NaF and 2.9 mM  K2SO4 were 
used, respectively. In both cases, no aggregation was observed over 900 s. These salts have no buffering capacity, 
and the pH of these solutions was around 6. Therefore, the salts were also added to 10 mM PB at pH 7.0. As seen 
in Fig. 3A, the addition of salt actually blocked the effect of the phosphate ions, and no aggregation was seen. 
Using instead of phosphate buffer a Tris buffer with pH = 7.5, also no aggregation was observed (Fig. 3B). Chang-
ing the pH of the Tris buffer to 8.0, or adding NaF or  K2SO4 to the Tris buffer, also gave no aggregation (data not 
shown). Thus, aggregation is dramatically enhanced specifically in the presence of phosphate ions, whereas the 
addition of other salts can block this effect, presumably by shielding off the underlying electrostatic interactions.

TEM. TEM images were recorded of KL10, KL14 and KL18 peptides in water. KL6 did not show any aggrega-
tion in CD experiments and was therefore not included in the TEM study. Peptides solutions were prepared in 
MilliQ water at pH ≈ 10, and samples were aged for 24 h before being deposited on the grid where images were 
taken. As seen in Fig.  4A, KL10 forms distinct fibrils in water at pH ≈ 10, with a thickness estimated to be 
20–30 nm. Also KL14 (Fig. 4B) and KL18 (Fig. 4C) form fibrils. When the KL10 sample was sonicated, broken 
fragments were observed (Fig. S1), showing that these thin fibrils are not very stable.

Another series of peptide samples was prepared in 10 mM phosphate buffer at pH = 7.0, and in this case 
samples were prepared freshly just before being deposited on the grid. Again, all three peptides formed fibrils, 
and these were found to be assembled further into twisted ribbons, as illustrated for KL14 and KL18 (Fig. 4D, 
E). An analysis of the high resolution image of KL14 (Fig. 4F) reveals that these ribbons consist of several 
parallel proto-fibrils with a spacing of around 30 Å. This is similar to the length of this peptide in an extended 
β-stranded conformation (14 amino acids × 3.5 Å ≈ 50 Å), possibly seen from an angle. These findings suggest 
that the aggregated KL peptides form amyloid-type cross-β-sheet fibrils.

Antimicrobial activity. As seen in Fig. 5 (and Table S1), the peptides show an unusual length dependence 
in their ability to inhibit bacterial growth. In all four tested strains, KL6 is completely inactive, while KL10 is the 
most active peptide with a MIC of 2–8 μg/mL against the four tested strains. KL14 and KL18 are less active than 
KL10, but more active than KL6. The peptides show a very similar pattern of activity against the four different 
types of bacteria, i.e. against Gram-negative (E. coli, E. helveticus) and Gram-positive (B. subtilis, S. xylosus) 
strains alike. However, peptide length does not seem to correlate with activity. Interestingly, we found that there 
are distinctive differences in the actual MIC values, depending on the way the assay is being performed. In the 
standard assay (assay A, white bars), which our group and many other labs have routinely used in numerous 
previous  studies11,13,35, the peptide is first mixed with the growth medium in the wells on a microtiter plate 
to form a two-fold dilution series, and then the bacteria in medium are added to each well. In this case, we 
pondered, the peptide might be exposed to phosphate ions in the growth medium and start to misbehave. We 
therefore conceived a different order of mixing in assay B (black bars), such that the two-fold dilution series is 
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prepared with peptides in MilliQ water (pH ≈ 6), and then bacteria are added to each well in doubly concen-
trated medium. More details are given in the Methods section. The main difference is that in assay A, peptides 
are in contact with the growth medium for at least an hour before the bacteria are added, whereas in assay B the 
peptides get into contact with the bacteria and medium at the same time. Since it was shown above that the KL 
peptides with at least 10 amino acids aggregate in the presence of phosphate (Fig. 1C), we needed to find out 
whether there is any phosphate in the commercial growth medium. The exact composition of the Müller-Hinton 
broth is neither declared nor easily determined, but we estimated the phosphate content of the solution using 
31P-NMR. Two samples were prepared, one with 10 mM phosphate buffer, and one with Müller-Hinton medium 
at twice the final concentration (i.e. the stock used in version B of the MIC assay). NMR spectra were recorded of 
the two samples using identical experimental conditions. From the 31P-NMR spectra (Fig. 6) it can be seen that 
the doubly concentrated medium gives a signal similar to that of the phosphate buffer, indicating a phosphate 
content of 8–10 mM. Part of this may be in the form of nucleic acids or other compounds, but large molecules 
would probably give broader lines. As the line width is similar to that of free phosphate, we assume that most 
of the signal comes from free phosphate ions in solution. Thus, in version A of the growth inhibition assays, the 
peptides are exposed to a phosphate concentration of 4–5 mM in the standard growth medium for over an hour 
before bacteria are added. 

When the results of assay A and assay B are compared, it is obvious that the longer KL peptides are much 
more active in assay B than in assay A (Fig. 5). For KL6, there is hardly any change and the peptide is completely 
inactive in both assays—which is not surprising in view of its general lack of folding. KL10 is more active in assay 
B by a factor 2–4, with the largest effect in B. subtilis (Fig. 5C). KL14 shows a dramatic difference, giving 16–32 
times lower MIC values (i.e. higher activity) in assay B. KL18 is also much more active in assay B, with 8–16 times 
lower MIC values. We may thus interpret assay A to be affected by phosphate-induced aggregation artefacts, 
leading to an effectively lower concentration of (non-aggregated) peptide that can bind to and permeabilize the 
bacterial membranes. Assay B, on the other hand, may be regarded as a measure of the genuine antimicrobial 
activity of the KL peptides. In this context it is interesting to note that KL10 is the most active molecule in assay 
B, yet the activities of the longer peptides are only moderately lower (around fourfold). In the artefact-ridden 
assay A, on the other hand, MIC of KL10 is typically 32 times smaller than for KL14, leading to a much more 
dramatic appearance of the differences.

Hemolysis. Amphiphilic antimicrobial peptides usually show membranolytic effects against not only bac-
teria, but they also tend to permeabilize eukaryotic cells such as erythrocytes. Hemolytic activities of the KL 
peptides are summarized in Fig. 7 (and in Supplementary Table S2), recorded for several different peptide con-
centrations. KL6 gives almost no hemolysis, even at the highest tested concentration. KL10 becomes moderately 
hemolytic with increasing concentration, giving 50% hemolysis at around 50 µg/mL. KL14 and KL18 are very 
hemolytic and give more than 80% hemolysis already at 2 µg/mL. This gives an order for  HC50 (the peptide 

Figure 4.  TEM images of aggregated KL peptides: (A) KL10, (B) KL14, (C) KL18, showing fibrils in water at 
pH ≈ 10 after aging 24 h. (D–F) TEM pictures of KL peptides from 2 mM peptide solutions in 5 mM PB, not 
aged. (D) KL14 in 5 mM PB, pH = 7.0. (E) KL18 in 5 mM PB pH = 7.0. (F) Enlargement of the twisted fibril in 
the marked area in (D), showing parallel lines with a regular spacing of about 3 nm.
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concentration giving 50% hemolysis) of KL6 (> 256 µg/mL) >> KL10 (≈ 50 µg/mL) > KL14 (≈1.3 µg/mL) > KL18 
(≈1 µg/mL). For these two longest peptides, hemolysis seems to become reduced again at higher concentrations, 
presumably because the peptides start to aggregate under those conditions and are no longer available for mem-
brane interactions—even in the absence of added phosphate buffer in this assay. Note that the hemolysis assay is 
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Figure 6.  31P-NMR spectra of the MH medium used in the MIC tests (black, full line) and of 10 mM phosphate 
buffer (red, dashed line).
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carried out in Tris-HCl buffer at pH 7.6 over 30 min, while standard MIC tests utilize 4–5 mM phosphate at pH 
7.3 and take overnight (20 h).

Vesicle leakage. In the MIC and hemolysis assays above with living cells, it is not possible to define or 
control the composition of the membrane lipids, and the lipid acyl chain lengths are highly heterogeneous. 
Therefore, we also performed complementary in vitro experiments by measuring the leakage of fluorescent dye 
from small unilamellar vesicles with a well-defined lipid composition. The mixture POPC/POPG (1/2 mol/mol) 
of zwitterionic phosphatidylcholine (PC) and anionic phosphatidylglycerol (PG) head groups was used, because 
a negative lipid charge is necessary to attract the water-soluble cationic peptides electrostatically to the vesicles, 
as seen in the CD experiments. Furthermore, anionic lipids are known to be the main components of bacterial 
membranes, which contain in many cases well over 50%  PG36. Leakage curves were measured over a period of 
10 min after mixing the vesicle suspension with the peptide solution. The experiments were performed under 
several different conditions in order to systematically investigate the aggregation behavior of peptides observed 
above.

Peptide stock solutions were always kept in MilliQ water (pH ≈ 6) to avoid aggregation. Vesicles were prepared 
in a dye-containing buffer (either phosphate or PIPES, pH 7) as multilamellar vesicles (MLVs), and then extruded 
to give large unilamellar vesicles (LUVs, diameter ~ 120 nm). Immediately before the leakage measurement, 
they were subjected to gel filtration in order to remove the dye from outside the vesicles. The filtered LUVs were 
diluted in the corresponding buffer to 100 μM concentration. Upon mixing the peptides and vesicles, fluorescence 
dequenching was monitored for 600 s to reflect leakage. Finally, detergent was added to micellize the vesicles 
and give a reference value corresponding to 100% leakage.

Leakage experiments were performed with a P/L of 1/10 for KL14 and the same mass ratio for the other 
peptides (in the 1,500 µL cuvette 30 µg of peptide and 115 µg of lipids were used). In panel A (Fig. 8A), gel filtra-
tion was done in phosphate buffer (PB), the peptide was added first to the cuvette containing PB, and after 100 s 
POPC/POPG (1/2) vesicles in PB were added. In this case, KL6 gave essentially no leakage, KL10 gave the highest 
leakage, whereas the longer peptides were less active. In panel B (Fig. 8B), gel filtration was done in PB, but now 
the lipid vesicles were first added to the cuvette containing PB, while the peptide was added after 100 s. In this 
case, KL6 gave no leakage, KL10 gave over 80% leakage, and the same activity was found for KL14 and KL18. 
In panel C (Fig. 8C), there were no phosphate ions present at all, as vesicle preparation and gel filtration were 
done in PIPES buffer, and lipid and peptide were also suspended in this buffer. In this phosphate-free set-up, the 
same leakage values were found as in panel B, where the peptide was not exposed to PB before having a chance 
to encounter the vesicles. Experiments were also performed with a constant P/L of 1/10 (Fig. 8D–F), which is 
commonly used to compare peptides. In these measurements, KL10 was less active and KL18 more active than 
in the constant mass series. Since the mass ratio in this case was lower for KL10 and higher for KL18, the results 
are compatible with the result using a constant peptide-to-lipid mass ratio. The results show that in absence of 
phosphate, all the peptides with 10 or more amino acids gave the same leakage, indicating a very similar intrinsic 
activity for the same number of [KL] units for all peptides. The unusual behavior of KL6 will be discussed below.
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Binding affinity of peptides to vesicles. Peptide binding to POPC/POPG (1/1) vesicles was measured 
using a fluorescence assay, which is based on the difference in fluorescence of NBD-labeled peptides when they 
are bound to the vesicles and when they are free in aqueous solution. Details are given in the Supporting Mate-
rial, and the results are presented in Table 3. It was found that all peptides bind strongly to the vesicles, with 
partitioning constants  Kp > 100,000 in all cases. KL6 has the weakest and KL18 the strongest binding; KL10 was 
found to have a stronger binding than KL14 (but note that the error bars are considerable).

Discussion
Antimicrobial peptides are often cationic and tend to have the ability to fold into amphipathic structures. These 
features enable them to bind avidly to negatively charged membranes of microorganisms as amphipathic α-helices 
or β-sheets, which can permeabilize the membrane and kill the cells. Much attention has been devoted to syn-
thetic model peptides with these properties (c.f. Introduction section), especially sequences with a regular pattern 
of cationic and hydrophobic residues. Here, we have prepared a series of KL peptides with different lengths, in 
order to systematically investigate the length dependent membranolytic activity of amphipathic β-strands. Similar 
peptides have been studied before in the literature, but usually either the peptides were studied in solution with-
out membranes, or only the biological activity was examined, whereas we here combine biological assays (MIC, 
hemolysis) with biophysical studies in lipid vesicles (CD, leakage) and TEM to get a deeper understanding of their 
activity and mechanism of action. It is important to note that we can compare the activities of all our peptides 
based on the same mass, rather than using a constant molar concentration. Therefore, any length-dependence 
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Figure 8.  Leakage of POPC/POPG (1/2) vesicles induced by KL peptides. Panels A, B, C, were performed with 
a constant weight of 30 µg peptide acting on 115 µg lipids in a 1,500 µL volume. Panels D, E, F were performed 
with a constant molar peptide concentration of 10 µM and 100 µM lipids. (A, D) Vesicles in phosphate buffer 
(PB) were added to peptides in PB. (B, E) Peptides in water were added to vesicles in PB. (C, F) No PB was used, 
as the peptides in water were added to vesicles in PIPES buffer.

Table 3.  Partitioning constants,  Kp, of KL peptides towards POPC/POPG (1/1) vesicles, calculated from the 
fluorescence binding curves of NBD-labeled peptides. Average values and standard deviations are given.

Peptide Kp

KL6 138,000 ± 12,000

KL10 365,000 ± 46,000

KL14 255,000 ± 23,000

KL18 503,000 ± 67,000



12

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:12300  | https://doi.org/10.1038/s41598-020-69162-0

www.nature.com/scientificreports/

observed here will reflect the intrinsic activity of the particular peptide molecule, and cannot be simply attributed 
to the increasing molecular weight or increasing charge of a peptide with increasing length.

The antimicrobial activity of KL-like peptides has already been explored in the literature, though not of 
the exact sequences used here. In an early study, KL18 (but acetylated at the N-terminus and amidated at the 
C-terminus, hence with less charge than our amidated KL18), was found to be inactive against  bacteria9. Later, 
KL9, KL11 and KL15 (sequences  [KL]4K,  [KL]5K, and  [KL]7K, all dansylated at the N-terminus) were studied, and 
KL9 turned out to be the most active, while KL11 and KL15 had lower but similar activities (based on constant 
molar concentration)17. Hemolysis of these three peptides, on the other hand, was reported to increase with 
peptide length (based on constant molar concentration)37. These peculiar observations fit with our results, and 
we can now explain why KL-type peptides with about 10 amino acids show the highest antimicrobial activity 
in standard MIC assays.

Using CD to monitor the generation of secondary structure from a random coil state in MilliQ water (pH ≈ 6), 
we found that KL6 is too short to form β-sheet structures under any conditions tested here. KL10 and longer pep-
tides are also unstructured in MilliQ water, but they form β-structures when the pH of the solution is increased 
to around 10, or in the presence of phosphate ions (10 mM PB, pH = 7), or in the presence of anionic phospho-
lipid vesicles (Fig. 1). Time-resolved CD analysis demonstrated that the longer KL peptides aggregate strongly 
in the presence of PB, and the speed of aggregation increases with peptide length and phosphate concentration 
(Fig. 2). On the other hand, peptides do not aggregate in Tris buffer, nor in the presence of NaF or  K2SO4 salts 
without buffer. This indicates that there must be some specific interaction with the polyvalent phosphate anions 
that leads to aggregation of the polycationic KL peptides. In the present study, relatively low salt concentrations 
(around 10 mM) were used, although previously it had been observed that KL peptides can form β-structures 
under high NaCl concentrations of 100 mM or  more19,21.

KL14 and KL18 aggregate almost completely to β-sheet structures in less than a minute in the presence of 
5 mM phosphate. This is the concentration at which the MIC assays is performed, and in the standard proce-
dure the peptides are actually in contact with the phosphate containing medium for over an hour before the 
bacteria are added. During this time, peptides will certainly aggregate and precipitate, hence it is not surprising 
that KL14 and KL18 do not show much activity against bacteria under these conditions. Only KL10, which 
aggregates more slowly, will still be present in solution to a fair extent and able to attack the bacteria. When the 
MIC assay is modified such that peptides are minimally exposed to phosphate ions before they encounter the 
bacteria, a much higher activity is found for KL14 and KL18 (Fig. 5). We can thus conclude that these peptides 
are able to attack the bacteria before they get sequestered by phosphate into inactive aggregates. KL10 is also 
more active in the modified MIC assay, so even this peptide must be getting partially deactivated by aggregation 
in the standard protocol.

We predict that the longer peptides would be even more active, if the antimicrobial tests could be done 
completely without phosphate. However, phosphate-free conditions cannot be tested, because the bacteria need 
phosphate for growth. As an alternative experiment, we therefore used vesicle leakage experiments in vitro as a 
simplified version of the MIC assay, testing only the permeabilization of the lipid bilayer. In these fluorescence 
leakage experiments, a similar response is seen in the presence of PB (Fig. 8A) as in the standard MIC assay 
(version A, which our group has used in many previous studies): KL6 is completely inactive, KL10 is most active, 
and the longer peptides show lower activity. However, when the leakage experiment is performed in the absence 
of phosphate ions, all peptides (except for KL6, as explained below) have a substantial and almost identical 
activity (Fig. 8C). The same result is obtained if peptides are exposed to vesicles and phosphate simultaneously 
(Fig. 8B), indicating that they can quickly bind to vesicles and induce leakage before they become aggregated due 
to phosphate. It can be noted that the leakage experiments are done in buffer containing 150 mM NaCl, which 
is similar to the conditions used in our biological assays. These results demonstrate that the longer peptides are 
intrinsically just as active against bacteria as the most promising candidate KL10, but in the conventional MIC 
assay the longer ones become sequestered due to their avid interaction with phosphate. In fact, in the hemolysis 
assay, where the peptides are not in contact with phosphate initially, the longer ones show an intrinsically higher 
activity than the shorter ones (Fig. 7). In the hemolysis assay, the red blood cells are suspended in a phosphate-
free solution, but when they start to leak, cell contents including phosphate will escape, so peptides may start to 
aggregate eventually. This is indeed in line with our observation that the activity of the longer peptides decreases 
again at higher concentration, most likely due to aggregation.

With the exception of KL6, all other peptides are seen by CD to fold into β-sheeted structures as a function 
of time, when incubated in (1) MilliQ water at pH 10, (2) in 10 mM phosphate buffer (pH 7), or (3) in the pres-
ence of anionic lipid vesicles (DMPC/DMPG 4/1, and POPC/POPG 1/1). Peptide aggregation induced by free 
phosphate ions thus constitutes the critical process that prevents our peptides from becoming active at the lipid 
membrane. KL10, KL14 and KL18 are all seen by TEM to form amyloid-like fibrils and ribbons, when incubated 
for 24 h in MilliQ water at pH 10, or after only short incubation in 5 mM phosphate buffer (Fig. 4). Such self-
assembly obviously takes place in the CD and MIC experiments in the presence of PB, and we can conclude that 
these fibrillar aggregates are inactive and do not permeabilize membranes. Literature data of similar peptides 
confirm the results reported  here9,17,37. It is likely that also the KL-type peptides used in those studies, and other 
similar peptides, aggregate in the presence of phosphate ions, but this was not discussed previously. It is thus 
crucial for the interpretation of experimental data to be aware of the specific effects of phosphate ions on these 
kinds of peptides and take them into account in the study design and data analysis.

Our CD analysis suggests that the β-sheet structures formed by the KL peptides in membranes are not identi-
cal to but may have a similar local fold as in the amyloid-like fibrils precipitated from aqueous solution. This is 
consistent with our earlier observation of another amphiphilic model peptide  [KIGAKI]3 14,16. Membrane bind-
ing is generally initiated by long-range electrostatic attraction and consolidated by hydrophobic interactions of 
the Leu side chains. In analogy to the KIGAKI system, the KL peptides will also bind initially as monomers, but 
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will become immobilized presumably by lateral self-assembly within the membrane above a certain concentra-
tion threshold. The actual membrane perturbation (in antimicrobial tests, hemolysis, and vesicle leakage) must 
therefore be attributed either to the insertion of the  [KL]n strands into the outer monolayer, and/or to further 
aggregation and immobilization of the membrane-bound peptides. To disentangle these steps from one another, 
we can learn a lot from the behavior of KL6. This peptide is always inactive, in every assay and under essentially 
all conditions tested, but according to our binding assay it nevertheless has a high affinity for anionic vesicles 
(Table 3). We can thus conclude that KL6 is not inactive because it does not bind to membranes. Instead, it is 
inactive because it is too short to self-assemble in the membrane, while as a monomer it is not disturbing the 
membrane enough to show activity.

Interestingly, membrane binding of KL-peptides may not be as closely related to vesicle leakage as it might 
have been expected. It had been previously shown for other types of cationic peptides that even those with very 
low membrane affinity were still able to induce considerable  leakage38. Here we find, on the other hand, that KL6 
binds well but induces no leakage. Furthermore, it has been observed that anionic membranes can accelerate the 
aggregation of amyloid  peptides39–41. Here, we see that KL peptides with at least 10 amino acids form β-sheets in 
the presence of membranes and also form fibrils in solution. Thus, these KL peptides can be assumed not to be 
monomeric in the membrane but rather to self-assemble into some kind of relatively immobile β-sheet aggregate. 
KL6, on the other hand, does not form β-sheets in the membrane, and thus seem to bind as a flexible monomer. 
This interpretation implies that peptide-aggregation is necessary for membrane activity (MIC, HC50, leakage). 
Given the high affinity of KL-peptides for phosphate groups, this may actually involve the phospholipids in the 
bilayer (besides the obvious hydrophobic interactions), and must certainly not occur beforehand in solution.

Conclusions
KL peptides with lengths between 6 and 18 amino acids have been investigated in solution as well as in the 
presence of model membranes and cells. KL6 binds to anionic lipid bilayers but is too short to form β-sheets 
and therefore has essentially no membranolytic activity. The results for KL peptides with 10–18 amino acids are 
summarized in Fig. 9 and in Table 4. In MilliQ water and common salt solutions, the peptides are unstructured, 
but in the presence of phosphate ions (or at high pH) they tend to self-assemble into amyloid-like β-sheet fibrils 
and ribbons. The speed of aggregation increases with peptide length and phosphate concentration. The resulting 
fibrils are no longer available to interact with membranes, thereby reducing the observed activity of that sample. 
The peptides also have a high affinity for lipids, and self-assembly within the bilayer will permeabilize vesicles 
and erythrocytes, and kill bacteria. In many assays, two competitive and opposing effects are found to operate 
in a subtle balance, leading to a peculiar order in the length dependent activity: phosphate-induced aggregation 
inactivates the peptides, while membrane binding and self-assembly in the bilayer leads to permeabilization. In 
the vesicle leakage assay without phosphate, peptides of length 10, 14 and 18 amino acids show the same activ-
ity, when a constant peptide mass is used, indicating a similar intrinsic activity of the peptides. In conventional 
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bacterial death,
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Figure 9.  Overview of the pathways taken by KL peptides. The peptides are largely unstructured in water, but 
they will bind to an anionic lipid bilayer as β-strands that self-assemble further (possibly into bilayer-embedded 
β-sheets), thereby permeabilizing the membrane. At a sufficiently high concentration, peptides induce leakage 
of vesicles and kill cells in this manner. However, the presence of phosphate ions or high pH leads to rapid 
aggregation into free amyloid-like cross-β-sheet fibrils, which are no longer membrane-active.
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antibiotic assays, KL10 shows the highest activity against bacteria, because it is on the one hand long enough to 
form extended β-sheets on a membrane, while on the other hand it is still short enough to not immediately be 
driven into inactive fibrils by phosphate ions in solution. With this explanation, the seemingly erratic behavior 
of the series of KL peptides has been attributed to simple physicochemical and structural factors. Now, it will 
be possible to better control their activities in different environments, and possibly to design further improved 
analogues for designated biotechnological or pharmacological applications. 
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