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improving prediction 
of rare species’ distribution 
from community data
chongliang Zhang1, Yong chen2, Binduo Xu1, Ying Xue1 & Yiping Ren1,3,4*

Species distribution models (SDMs) have been increasingly used to predict the geographic distribution 
of a wide range of organisms; however, relatively fewer research efforts have concentrated on rare 
species despite their critical roles in biological conservation. the present study tested whether 
community data may improve modelling rare species by sharing information among common and 
rare ones. We chose six SDMs that treat community data in different ways, including two traditional 
single-species models (random forest and artificial neural network) and four joint species distribution 
models that incorporate species associations implicitly (multivariate random forest and multi-
response artificial neural network) or explicitly (hierarchical modelling of species communities and 
generalized joint attribute model). In addition, we evaluated two approaches of data arrangement, 
species filtering and conditional prediction, to enhance the selected models. The model predictions 
were tested using cross validation based on empirical data collected from marine fisheries surveys, 
and the effects of community data were evaluated by comparing models for six selected rare 
species. the results demonstrated that the community data improved the predictions of rare 
species’ distributions to certain extent but might also be unhelpful in some cases. the rare species 
could be appropriately predicted in terms of occurrence, whereas their abundance tended to be 
underestimated by most models. Species filtering and conditional predictions substantially benefited 
the predictive performances of multiple- and single-species models, respectively. We conclude that 
both the modelling algorithms and community data need to be carefully selected in order to deliver 
improvement in modelling rare species. the study highlights the opportunity and challenges to 
improve prediction of rare species’ distribution by making the most of community data.

Species distribution model (SDMs) have been widely used to evaluate ecological niches and to predict geographic 
distribution of organisms across terrestrial, freshwater, and marine  habitats1–6. A majority of SDMs have been 
developed for common and economically important species because of practical incentives, while predictive 
models are more challengeable for rare species due to methodological  difficulties7–9. As most species are rare in 
natural biological  communities10,11, modeling common species cannot depict the full picture of biodiversity. In 
addition, rare species, characterized by low occurrence, are particularly vulnerable to environmental changes 
and human impacts thus deserve special concerns in biological  conservation8,12. As such, there is a pressing 
need to predict the distribution of rare species for successful conservation in the practices of designing marine 
protected areas (MPAs) and identifying priorities for monitoring  programs13.

Accurate prediction of rare species is not easy. The difficulties come largely from the limits of data, as the 
observations of rare species are typically sparse in terms of spatial location and temporal  frequency14–16. The 
sparse data imply that the number of presence observations is often small compared to the number of influential 
predictors, resulting in a critical problem of over-fitting in  modelling8,16,17. Besides, occurrence or abundance 
of rare species are often vulnerable to sampling errors, which may lead to model misspecification, making it 
unfeasible to characterize species’ niche  space18. There are a few studies aiming to address the issue of rarity, e.g., 
by developing a large number of simple models averaged in an  ensemble8,9, and generating pseudo-absence from 
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a habitat suitability  map19–21. In spite of the progress, many issues remain, such as species’ nonlinear responses 
to environmental  variables2,22, unobserved/unknown driving  forces23, imperfect  detection16,24, among other 
outstanding  difficulties25.

With the development of modern statistics, technical advances provide powerful tools to estimate and predict 
species distributions, for example, machine learning methods and Bayesian hierarchical models are highly flex-
ible to handle complex ecological responses and are promising for data-limited  situations26–28. Some predictive 
methods have emerged to account for community information, leading to a new modelling approach known 
as community-level  models29 or joint species distribution models (JSDMs)30–33.This modelling approach may 
benefit the prediction of rare species by borrowing strengths from community  data29,34–36, which include rich 
information of species correlations resulting from biological interactions or shared environmental  gradients30,37,38. 
These factors have essential influences on species distributions thus may improve the predictive powers of species 
distribution models. That is, models that integrate community data may contribute to solving the ‘rare-species 
modelling paradox’.

It should be acknowledged that this idea of community modelling is not quite  new39,40, and some studies have 
compared the performances between single- and multi-species  models41–43. However, JSDMs remain underu-
tilized to  date29,44,45, and there are limited understanding of their advantages and limitations. Although many 
studies suggest JSDMs may outperform single-SDMs (SSDMs), the advantage is not  guaranteed29, and JSDMs 
may lead to biased parameters if some species have responses to the environment very different from others. 
Therefore, the gains of adopting JSDMs need to be carefully considered.

This study tested the predictive performances of rare species distribution models, focusing on the hypothesis 
that community data may improve model prediction. We chose a range of SDMs that treat community data in 
different  ways29 and compared their performances using cross validation with survey data collected in the coastal 
water of Yellow sea, China. Both species occurrence and abundance were considered in the evaluation, as studies 
have concentrated on occurrence data but abundance data are better indicators of extinction  risk42,46. In addition 
to comparing modelling algorithms, we evaluated two approaches of data arrangement, species filtering and 
conditional prediction, to enhance the predictive performances of the chosen models. These approaches were 
considered from a pragmatic viewpoint, i.e., available data and modelling techniques are often fixed and can be 
hardly improved in time, and improving model prediction, even to a limited extent, may be the only solution 
to account for the rare-species challenge. The goal of this study is to improve our ability to predict the spatial 
distribution of rare species for biological conservation.

Results
Variations in predictability. The tested SSDMs and JSDMs had substantially different predictive abili-
ties. Considering the results of Japanese seahorse (Hippocampus mohnikei, Sp4), AUCs (the area under curve of 
receiver operating characteristic) around 0.9 showed that occurrence of this species could be properly predicted 
by most models, except artificial neural network (ANN) (Fig. 1). The Cohen’s κ coefficient indicated a similar 
pattern, whereas hierarchical modelling of species communities (HMSC) and generalized joint attribute model 
(GJAM) performed worse than those machine learning methods. The results of RMSE (root mean square error) 
were consistent with AUC, and ANN yielded RMSE larger than that simply assuming the absence of this species 
over survey areas (dash line). All the models had negative partial relative bias (PRB) on average, implying the 
tendency of underestimating abundance. The results of other five species showed a similar pattern but the values 
of performance metrics varied substantially (Supplementary Figure S5). In general, multivariate random forest 
(MRF) and random forest (RF) showed the best predictive powers for this species, followed by multi-response 
artificial neural network (MANN).

The divergences in the model performances were compared for other species. In terms of occurrences, MRF 
provided the best predictions of Sp1 (Brown croaker, Miichthys miiuy) and Sp3 (Blackhead seabream, Acanthopa-
grus schlegelii), and RF was optimal for Sp5 (Black scraper, Erisphex pottii). HMSC and MANN provided better 
predictions of Sp2 (Ocellate spot skate, Raja porosa) and Sp6 (Bartail flathead, Platycephalus indicus) in some 
measurements (Table 1). The cases of RMSE were complicated, i.e., HMSC and GJAM was the best for Sp1 and 
Sp2, respectively, RF best for Sp3 and Sp5, and MRF for Sp4 and Sp6. It should be noted that the discrepancies 
among models were relatively small in terms of the performance metrics, especially between RF and MRF. The 
predictions of abundance were poor for very rare species, and no model made better predictions than assum-
ing all-zeros for Sp2. In addition, relative performances of the models were not consistent among species. Sp3, 
Sp4 and Sp6 were more readily predicted than the other species (Table 1). The occurrence of the rarest species 
in this study, Sp1, could be properly predicted, whereas Sp2 and Sp5 were less well predicted in terms of both 
occurrence and abundance.

Species filtering. The increasing thresholds of species selection (filtering) led to less but strongly correlated 
species, which imposed different effects on the four JSDMs (Fig. 2). Among them, MRF tended to be less respon-
sive to the changes of species selection, and the corresponding RMSE increased slightly only for Sp2 and Sp6 in 
LV3 (levels of species filtering, and LV3 denoted a small set of species selected). On the contrary, the predictions 
of MANN were substantially improved by reducing the number of species with decreasing RMSE, except for 
Sp6. HMSC was barely influenced in the cases of Sp1, Sp2 and Sp3 but benefited from specie selection for other 
species. GJAM also showed less responses to species selection for Sp1, 2, 3, but its performances decreased in 
terms of the other species. At LV3, MANN and HMSC tended to outperform the other models.

conditional predictions. Comparing to single-species RF, the predictive accuracy of conditional-RF 
(using ancillary species as predictive variables) was substantially improved for most species, indicated by the 
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decreases in RMSE (ΔRMSE in Fig. 3). Predictions conditioning on observation data of ancillary species (RF-
OBS) showed the most gains of accuracy; meanwhile, comparable improvement could be obtained with the help 
of JSDMs, i.e., conditional-RF based on JSDMs (using the outputs of JSDMs as predictors) could substantially 
improve RF, which performed better than MRF in many cases.

Conditional predictions also remarkably improved ANN to the performance similar to or better than MANN 
(Fig. 3). The degrees of improvement showed small differences between observation-based and model-based 
conditioning. However, the effects substantially differed among species, largest for Sp5 and Sp6 and least for Sp3.

Discussion
Given the global awareness of biodiversity loss with climate changes and anthropogenic pressures, it is not 
surprising that SDMs have been increasingly used in recent years. It is therefore of great concern how reliable 
the models are in their utility of predicting species  distribution47–49. Here in this study, we examined the per-
formances of a representative selection of modelling methods for rare species using a typical dataset available 
in marine fisheries surveys. Our results were generally mixed, that is, most species could be appropriately pre-
dicted in terms of occurrence, whereas non-zero abundance tended to be underestimated. Nevertheless, given 
the rather limited occurrence (mostly less than 10%), such performances were acceptable for rare species in a 
context of biological conservation. Although the conclusions may depend on specific objectives of studies and 
characteristics of targeted ecosystems, we highlight the opportunities of community data to address the ‘rare-
species modelling paradox’30,35.

It is worth noting that this study covers a limited scope of SDMs in a continuous spectrum of complexity, and 
the potential of existing models may not be fully reflected. In particular, literature have concluded that the predic-
tive abilities of SDMs may vary in different circumstances, depending on the type of organisms, their life-history 
trait, behavior, prevalence, data quality, spatial resolution and extent, and the impacts of human  activities17,25,50,51. 
The target species in this study by no means represent the high diversity of marine organisms. In particular, the 
so-called ‘rare species’ may also diverge in definition, characterized by geographic range, habitat specificity and 
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Figure 1.  Predictive performances of models on the distribution of Japanese seahorse (Hippocampus mohnikei). 
The prediction of occurrence was evaluated by the area under the curve of receiver operating characteristic (auc) 
and Cohen’s coefficient (κ), and prediction of abundance was evaluated by partial relative bias of non-zero data 
(PRB) and root mean square error (RMSE). The dash line in the last plot denotes a baseline of RMSE derived 
from all-zero predictions.
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Table 1.  A summary of model predictive performances for target rare species. Each cell denotes the average 
values of the performance measures for a combination of species and models, respectively. Large values of 
AUC and κ represented high predictive accuracy of species occurrence and small values of RMSE represent 
high predictive accuracy of species abundance. The row of “Zero” denotes a baseline of RMSE when all 
predicted values are zeros.

Measures Models Sp1 Sp2 Sp3 Sp4 Sp5 Sp6

AUC 

RF 0.875 0.644 0.949 0.959 0.800 0.911

ANN 0.711 0.572 0.628 0.634 0.582 0.633

MRF 0.893 0.618 0.956 0.962 0.784 0.926

MANN 0.722 0.576 0.929 0.935 0.751 0.929

HMSC 0.802 0.670 0.941 0.901 0.765 0.908

GJAM 0.724 0.640 0.932 0.860 0.688 0.896

κ

RF 0.208 − 0.046 0.486 0.562 0.289 0.616

ANN 0.134 0.030 0.358 0.353 0.102 0.320

MRF 0.243 0.163 0.601 0.528 0.205 0.644

MANN 0.088 0.030 0.486 0.532 0.243 0.634

HMSC 0.041 − 0.034 0.493 0.248 0.126 0.541

GJAM 0.046 − 0.034 0.408 0.142 0.069 0.497

RMSE

RF 0.299 0.419 0.377 0.652 0.569 0.588

ANN 0.652 0.797 0.533 1.259 1.402 1.195

MRF 0.300 0.416 0.414 0.648 0.577 0.559

MANN 0.337 0.453 0.389 0.729 0.612 0.587

HMSC 0.297 0.414 0.384 0.732 0.569 0.611

GJAM 0.300 0.409 0.393 0.760 0.582 0.628

Zero 0.300 0.397 0.418 0.838 0.601 0.776
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Figure 2.  The influences of species filtering on the predictive performance of JSDMs. The levels in the X-axis 
denoted different thresholds of species correlation for selecting ancillary species (LV1 denoted a large set of 
species selected and LV3 denoted a small set. Three species are illustrated as examples and the full results are 
shown in Supplementary Information).
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local density, and different types of “rarity” may influence predictive models in different  ways16,52,53. In general, 
substantial challenges still lie ahead on the road to predicting rare species.

In our evaluation, the six models had divergent performances when evaluated with different objectives, meas-
ures and target species. In general, the models using RF algorithms had better predictive ability than ANN- and 
regression-based models for both occurrence and abundance. The advantage could be largely attributed to the 
successful control of overfitting by model ensembles and internal cross-validation54. On the other hand, ANN 
easily led to overfitting under the circumstance of sampling errors and environmental  noise55. Nevertheless, the 
predictive power was substantially improved in MANN and conditional ANN, implying that the overfitting issue 
was effectively alleviated by borrowing information from common species. On the other hand, the regression 
algorithm adopted by HMSC and GJAM implied that they were less flexible to non-linear  relationships30 and 
at the same time less vulnerable to  overfitting56. Whereas, the regression-based JSDMs tended to be ‘conserva-
tive” for rare species in terms of PRB. We highlight that model ensemble and internal cross-validation should 
be considered in the future development of SDMs, and particularly the capacity to account for non-linearity 
and overfitting for  JSDMs57.

Considering the overall performances of the SDMs, our evaluations generally find better predictive powers 
in the category of machine-learning JSDMs and conditional SSDMs, suggesting that community information 
are useful for the prediction of rare  species36, although the extent of improvement depends on the statistical 
algorithms adopted. It is well established that such gains could be attributed to the covariations in species 
distribution, as a result of (dis)similar environmental requirements, biotic interactions such as competition 
and predation, human impact such as fishing, and other stochastic processes such as observation/sampling 
 errors29,30,32. Our results are consistent with this conclusion, i.e., species less correlated with the others (Sp2) tend 
to be poorly predicted while the well predicted one (Sp3, Sp4 and Sp6) show relative high correlations in the raw 
data (Supplementary Fig. S2). Meanwhile, it should be noted that SSDMs, specifically RF, may outperform the 
community models when predicting rare species, implying that community information are not helpful in cer-
tain circumstances. This is because the underlying driving forces may be idiosyncratic for the target species and 
 others29,58. In this case, the distributional patterns of rare species reflected by the limited data may be concealed 
by the relatively large amount of data of common species, and increasing species number may make the situation 
worse for model fitting. Such a result was evident in the species selection processes in MANN and HMSC, both of 
which tended to have improved predictive powers when the number of species was reduced. On the other hand, 
MRF showed less responses to species selection because the RF algorithm could effectively suppress predictor 
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Figure 3.  The effects of conditional prediction on improving predictive performances. The ΔRMSE indicates 
the decreases of RMSE in conditional models compared to that of single-species RF and ANN, respectively. 
RF-OBS and ANN-OBS denote the predictions conditioning on real observations (survey data), and others are 
conditioning on the prediction of JSDMs (Three species are illustrated as examples and the full results are shown 
in Supplementary Information).
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species with loose  correlations54. The declining performance of GJAM might also be attributed to the predict-
ing algorithm, which generated latent variables randomly from a multivariate normal distribution according to 
species covariance  matrices59. In this case, a strong correlation matrix might lead to larger prediction of latent 
variables and increased RMSE for rare species. Our results highlight the critical role of species selection in the 
implementation of JSDMs especially MANN and HMSC.

This study provides suggestions for the application of SDMs for rare species. First, MRF, conditional RF and 
HMSC are recommended provided the models properly tuned in structure and input variables. Conditional 
RF should be most powerful for modelling rare species when the distribution of common species are known in 
the locations of interest (RF-OBS). These results may contribute to extending the scope of species that can be 
statistically modelled and facilitating studies of similar backgrounds in the cases of rare species or limited data. 
In future studies, in addition to the improvement of data quality and quantity, algorithmic development is still 
in need to address the multiple issues raised by rarity. As no models is likely to be superior in all circumstances, 
diverse types of SSDMs and JSDMs with different features should be combined to address different situations 
of biological characteristics, rarity and available data, for which better understanding of potential and short-
coming of the existing models are required. Finally, regarding the challenges far from solved, we highlight the 
need of research efforts in the field of modelling rare species to deliver successful ecosystem management and 
biodiversity conservation.

Methods
Study area and data. A marine fisheries survey was conducted in the north Yellow Sea, China to collect 
data. A modified systematic survey design was implemented with a total of 118 sampling stations in 2017 (Sup-
porting information, Supplementary Fig. S1). In each station, an otter trawl which has the net width of 15 m and 
cod-end mesh size of 20 mm was towed for around 1 h at a speed of nearly 3 knots. Catch data were standardized 
to the same sampling efforts (trawling speed *time) for modelling. The survey and analysis methods were carried 
out in accordance with the ethics and guideline of the China law and the experimental protocol is approved by 
Ethical committee of Ocean University of China.

A total of 145 fish, shrimp and cephalopod species, in addition to benthos, were identified in the survey. 
As this study concentrated on rare species, only species occurring in less than 15% of the survey stations were 
selected as target species. As a result, six species with the occurrence frequency ranging from 3 to 12% were 
selected, including Brown croaker (Miichthys miiuy, Sp1, 3.5%), Ocellate spot skate (Raja porosa, Sp2, 4.3%), 
Blackhead seabream (Acanthopagrus schlegelii, Sp3, 6.1%), Japanese seahorse (Hippocampus mohnikei, Sp4, 8.8%), 
Black scraper (Erisphex pottii, Sp5, 9.6%), and Bartail flathead (Platycephalus indicus, Sp6, 12.3%) (Supplemen-
tary Table S1 in Supporting Information). In addition, 31 most prevalent species with occurrence frequency 
ranging from 23 to 87% were used as ancillary species (Supplementary Fig. S2) to help the prediction of target 
species. Commonly available hydrological variables in marine surveys were measured, including bottom water 
temperature, salinity, and depth (details are shown in Supplementary Table S2; Supplementary Fig. S3), using a 
CTD system (XR-420) in the same sampling stations after hauling.

predictive models. We selected six SDMs following three approaches in terms of how species associations 
are utilized. The first modelling approach is single-species distribution models (SSDM), which refer to the tradi-
tional methods that exclude community data. Two commonly used models, random forest (RF)60 and artificial 
neural network (ANN)61 are adopted. The two models are selected because they are powerful and can automati-
cally deal with non-linear relationships that are prevalent in ecological  studies62,63. The two models are used as 
references to evaluate how community information may improve the prediction of rare species distribution.

The second approach includes multivariate random forest (MRF) and multi-response artificial neural network 
(MANN), which are extensions of RF and ANN to account for multiple response variables, respectively. The 
former is analog to RF in term of bootstrap resampling but the split function is modified to minimize species 
compositional similarity within  groups64,65. The latter MANN shares the same algorithm with ANN whereas its 
output layer has multiple  neurons66. The connection coefficients between input and hidden layers affect all spe-
cies collectively in MANN. Although both MRF and MANN are designed for modelling community data, their 
algorithms account for the information of species associations implicitly (c.f. the following category).

The third approach accounts for species associations explicitly, including two JSDMs that adopt the Bayesian 
hierarchical framework. The first is a versatile statistical framework of hierarchical modelling of species com-
munities (HMSC)32, which uses latent variables to incorporate information of species  associations32,67. The other 
is generalized joint attribute model (GJAM), designed to accommodate multifarious data types flexibly, such as 
presence-absence, ordinal, continuous, discrete, composition and censored  data59,68. The model represents spe-
cies responses using a latent continuous variable, which can be censored to the discrete space of observations.

All the models were implemented on the R platform (version 3.5.1), using packages “randomForest”, “nnet”, 
“MultivariateRandomForest”, “HMSC”, and “gjam”, respectively. A summary of the models was provided in 
Table 2, and additional technical details were shown in Supporting Information.

prediction improvement. We tested two approaches to improving predictions of JSDMs and SSDMs, 
using species filtering and conditional prediction, respectively. It should be noted that the “improved” models 
used the same algorithms as above, whereas the variables used for model fitting varied. The first approach fol-
lowed the concern that community models might not benefit predictions when the response variables were 
poorly  correlated29. To avoid the undue influences, we selected ancillary species from the 31 common ones 
according to their correlations with target species. Three levels of species filtering were considered, level-1 (LV1) 
included all 31 common species, level-2 (LV2) included two-third species of the highest correlations, and level-3 
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(LV3) with the first third of the highest correlations. The process of species selection was conducted for each 
target species, and JSDMs were fitted with target species and their corresponding ancillary species at different 
levels of thresholds (LV), respectively.

The second approach, conditional prediction, was designed to improve the SSDMs using ancillary species 
directly as predictive  variables69. The ancillary species were considered in two scenarios, one that ancillary spe-
cies were observed in all sampling sites, and the other that they were predicted from JSDMs. Obtained from 
either way, the information of ancillary species were used in SSDMs as predictive variables. To suppress noise 
and reduce the number of predictive variables, principal component analyses (PCA) were conducted on ancillary 
species data prior to model fitting, and only PCs with eigenvalues above one were included in the conditional 
 models70.

evaluation procedures. A four-fold cross validation procedure was used to evaluate models’ predictive 
performances. The total data were split into four equal sized subsamples, in which 75% were used for model 
training and the remaining 25% for testing, iteratively. To avoid potential failures with all-zero training/testing 
dataset, the nonzero data of rare species were randomly assigned to the four subsamples to ensure that each had 
equal number of occurrence of target species. Specifically, data splitting was conducted separately for samples 
with and without target species, and a permutation process was used to assign the survey data to four subsam-
ples.

The predictive performances for species abundance were measured by root mean square error (RMSE) 

between observations and model predictions, RMSE = 
√

∑N
i (Pi − Oi)

2/N  , where Pi and Oi were the predic-
tion and observation of abundance in sampling site i, respectively (RMSE thus has the same unit as abundance 
and the unit is omitted in the texts). In addition, we concerned the models’ predictive power for non-zero obser-
vations and used partial relative bias (PRB) to measure predictive accuracy in the sampling sites where target 
species were present, i.e., PRB = (Pp − Op)/Op , where  Op was non-zero observations and  Pp was the prediction 
in the corresponding sampling site.

Performances on predicting species occurrence were measured by the area under curve (AUC) of receiver 
operating characteristic and Cohen’s κ  coefficient17. The former has been commonly used for model evaluation 
of presence-absence, and the latter is used to indicate the chance-corrected agreement between predictions 
and  observations71. A random guess of occurrence leads to 0.5 and zero in AUC and Cohen’s κ, respectively. 
Additionally, True Skill  Statistics72 were calculated and shown in the Supporting Information. Given that low 
detectability of rare species might lead to zero observations, a species-specific threshold, mean abundance in the 
whole area, was used to determine species occurrence from predicted abundance. Data splitting, model fitting, 
prediction, and evaluation were conducted for each of the target species, and the processes of cross-validation 
were repeated 500 times.

Data availability
Data and R codes may be available from the Dryad Digital Repository.
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