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Gene mapping and functional 
annotation of GWAS of oral ulcers 
using fUMA software
Xiaoye Jin1,2, Yijie Wang2, Xingru Zhang1,2, Wenqing Zhang2, Hongdan Wang3* & 
Chuanliang Chen3*

Oral ulcers not only influence the physical health of patients, but they also interfere with their 
quality of life. However, the exact etiology of oral ulcers is not clear. To explore the roles of genetic 
factors in oral ulcers, a genome-wide association study of the condition in European individuals was 
re-evaluated by the FUMA v1.3.5e online tool. A total of 380 independent significant single nucleotide 
polymorphisms (SNPs) and 89 lead SNPs were identified in 34 genomic risk loci. Out of these identified 
genomic risk loci, 280 possible causal genes were pinpointed by positional mapping and expression 
quantitative trait locus mapping. Among these genes, 216 novel genes were identified. Furthermore, 
some genomic loci were mapped to a single gene. Functional annotation of these prioritized genes 
revealed that the immune response pathway was implicated in the onset of oral ulcers. Overall, our 
findings revealed novel possible causal genes and demonstrated that the immune response has a 
crucial role in the occurrence of oral ulcers.

The oral ulcer is an ulcer that occurs on the mucous membrane of the oral cavity. Nearly one-quarter of young 
adults and many children are affected by this  condition1,2. Recurrent aphthous stomatitis (RAS) refers to a chronic 
inflammatory, ulcerative condition of the oral cavity. RAS is characterized by the recurrent outbreak of ulcers 
and  erosions1. It is one of the most common causes of oral ulcers, and its prevalence in populations is 5–20%3. 
Even though several factors have been implicated in RAS (e.g., trauma, bacterial/viral infections, anaphylaxis, 
autoimmune diseases), the exact etiology of this condition is not clear. Dudding and colleagues stated that 
immune regulation exerts important influences on RAS  onset4. Besides, family-based studies have revealed that 
genetic factors also have pivotal roles in RAS  etiopathogenesis5–7.

Genome-wide association studies can be used to assess associations between SNPs and traits/diseases by 
detecting a multitude of genetic variants in individuals with different phenotypes. Also, it is beneficial to discern 
possible causal variants and the genetic architecture of the disease of interest. Dudding et al. re-analyzed data of 
GWAS of oral ulcers in the UK Biobank Project. They found some genetic variants associated with oral ulcers. 
Then, they replicated these variants in another novel cohort and assessed the effects of these variants in other 
 populations4. Overall, they revealed that 97 variants were related to RAS risk, and that T cell regulation was 
implicated in  RAS4. Even though GWAS can provide many disease-associated genetic loci, it may be difficult to 
determine possible causal mutations because identified genetic variants may be situated in non-coding  regions8, 
or be in complete linkage disequilibrium (LD) with unknown causal  variants9.

Recently, researchers have started to focus on roles of the non-coding regulatory regions in the etiopathogen-
esis of complex diseases. For example, by assessing mRNA expression data in zebrafish, Golzio et al. searched 
potential causal genes at genomic risk  loci10. Wu et al. conducted integration analyses of GWAS results and 
expression quantitative trait locus (eQTL) data for schizophrenia. They found that some pathways could provide 
novel insights into the genetic architecture of  schizophrenia11. Accordingly, integration of GWAS data and gene 
expression data can be used to identify the potential causal genes associated with complex disease or traits, which 
are good for carrying out functional experimentation in further research. However, it can be difficult to mine 
more valuable information from extant GWAS results by integrating functional annotation from Encyclope-
dia of DNA Elements (ENCODE)12, Genotype-Tissue Expression (GTEx)  program13 or chromatin interaction 
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 information14. Until now, some tools for bioinformatics analyses have been developed to aid identification of 
the causal variants associated with traits/diseases15–17. Nonetheless, some packages also have some defects when 
perform post-GWAS analysis. For example, DEPICT and INRICH tools do not take local LD into account, which 
might induce false-positive enrichment analysis. To provide a highly efficient, concise, and easy-to-use tool, 
Posthuma et al. developed an Internet-based program named FUMA v1.3.5e (https ://fuma.ctgla b.nl/) that can 
further explore GWAS data by utilizing multiple biological  databases18. Furthermore, FUMA can simultaneously 
carry out functional annotation of candidate SNPs, gene mapping, tissue-expression analysis of prioritized genes, 
gene set enrichment analysis (GSEA), and interactive visualization. Posthuma and colleagues re-analysed the 
GWAS results for Crohn’s disease, schizophrenia and body mass index by FUMA. They found that FUMA not 
only validated known candidate genes in these traits, it also identified some additional putative causal genes by 
eQTL mapping and chromatin interaction  mapping18. Taken together, FUMA could undertake robust and reli-
able post-GAWS analyses and provide valuable clues for understanding the genetic mechanism of traits/diseases.

We wished to further explore the genetic mechanism of oral ulcers. Previously reported GWAS summary 
data of oral  ulcers19 were integrated with the published database by  FUMA18. First, the most likely causal genes 
associated with oral ulcers were identified by a combination of positional mapping and eQTL mapping. Next, 
these prioritized genes were dissected to reveal their molecular function and implicated biological pathways in 
oral ulcers.

Methods
Summary statistics of GWAS for oral ulcers. The GWAS summary data of oral ulcers used in the pre-
sent study were downloaded from the GWAS ATLAS  database20. The detailed criteria of sample screening and 
quality control of SNPs have been presented  previously19. After quality control of data, 10,599,054 SNPs were 
used to carry out post-GWAS analyses of oral ulcers. All participants provided their written informed consent. 
Ethics approval involved in these participants was obtained from the North West Centre for Research Ethics 
Committee (11/NW/0.382)19. All methods used in this study were carried out in accordance with the declaration 
of Helsinki. The general information of oral ulcers GWAS used in this study was given in Supplementary Table 1.

Identification of genes and their roles in oral ulcers using FUMA. Definition of genomic risk loci 
based on oral ulcers GWAS. Independent significant SNPs for which P < 5 × 10−8 and r2 < 0.6 were identified from 
GWAS results. Lead SNPs were defined further from these independent significant SNPs if pairwise SNPs had 
r2 < 0.1. Genomic risk loci in which SNPs were in LD (r2 > 0.6) with independent significant SNPs were identi-
fied. The maximum distance between LD blocks to merge into a genomic locus was 250 kb. The genetic data 
of European populations in 1000G  phase321 were viewed as reference data to conduct LD analyses. Besides, 24 
SNPs reported by Dudding and  colleagues4 which reached GWA significant P-values and displayed the same 
effect directions in different independent populations were defined as lead SNPs, as shown in Supplementary 
Table 2.

Gene mapping. We used two methods to map SNPs to genes. First, CADD scores are deleterious scores of 
genetic variants obtained by 63 functional annotations. Kircher and colleagues proposed that 12.37 could be 
viewed as the threshold for a deleterious  score22. Therefore, SNPs were filtered based on a CADD score > 12.37 
when undertaking positional mapping. Then, genes in each genomic risk locus were determined by screened 
SNPs if the physical distance between a SNP and gene was < 10 kb. Second, for eQTL mapping, SNPs were mapped 
to a gene if these SNPs had significant effects on expression of the gene. eQTL data of 27 tissues (single-cell RNA 
 eQTL23, Database of Immune Cell Expression (DICE)24, Biobank-Based Integrative Omics Study (BIOS) QTL 
 browser25, and GTEx v8 Whole Blood and Minor Salivary  Gland26) were used for eQTL mapping. Only significant 
eQTL values (false discovery rate (FDR) < 0.05) were employed to map SNPs to genes.

Expression (transcripts per million) of prioritized genes in different tissues was estimated from GTEx  v826 
following winsorization at 50 and  log2 transformation with pseudocount 1.

GSEA by the GENE2FUN tool in FUMA. Using hypergeometric tests, the possible biological functions of 
the genes identified by positional mapping and eQTL mapping were explored further by comparing them with 
genes in the GWAS  catalog27, as well as gene sets in  WikiPathways28 and the Molecular Signatures Database 
(MsigDB) v7.129. Overall, there were 20,260 background genes which were applied to GSEA. Gene sets were 
reported if they met two criteria: (i) at least two prioritized genes belonged to the gene set; (ii) the adjusted P value 
of the gene set was < 0.05. The Benjamini–Hochberg  correction30 was used to assess the statistical significance 
of inputted gene sets. Next, genetic correlation analyses between oral ulcers and other available traits/diseases 
were undertaken by the LD  hub31.

Results
Summary results of GWAS of oral ulcers by FUMA. The summary statistics of GWAS for oral ulcers 
were explored further by FUMA (Table 1). A total of 380 independent significant SNPs and 89 lead SNPs were 
identified from GWAS of oral ulcers by FUMA (Supplementary Tables 3, 4). For these 89 lead SNPs, we found 
one stop gained variant, one splice region variant, one non-coding transcript exon variant, three missense vari-
ants, five untranslated region variants, 14 regulatory region variants, 24 intergenic variants, and 40 intron vari-
ants (Supplementary Table 4). Dudding et al. conducted GWAS of oral ulcers based on the UK Biobank Project, 
and found 97 independent lead  variants4. There were 37 lead SNPs which we also found in comparison with the 
97 variants discovered by Dudding et al. (Supplementary Table 4). Furthermore, these 89 lead SNPs could be 
classified into 34 genomic risk loci (Table 2 and Supplementary Table 5). Compared with the 33 risk loci iden-
tified in the original study by Bycroft and  colleagues19, two novel genomic loci (genomic loci 16 and 18) were 
identified in the present study. We also plotted the results of these 34 genomic risk loci (Fig. 1). Results revealed 

https://fuma.ctglab.nl/


3

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:12205  | https://doi.org/10.1038/s41598-020-68976-2

www.nature.com/scientificreports/

that most SNPs and genes were mapped in chromosome 6, followed by chromosome 3 and chromosome 17. Fur-
thermore, 280 prioritized genes that may be involved in the biological mechanism of oral ulcers were recognized 
by FUMA (Supplementary Table 6). Among these genes of interest, 183 genes and 81 genes were located inside 
and outside genomic risk loci, respectively.  

Table 1.  Summary results of genome-wide analysis of oral ulcers based on FUMA software v1.3.5e. # The 
number of unique genes mapped by one of the positional and eQTL mappings.

Index Number

Independent significant SNPs 380

Lead SNPs 89

Risk loci 34

Positional mapping 143

eQTL mapping 262

Total# 280

Genes located outside the risk loci 81

Loci contain prioritized genes 183

Table 2.  Genomic risk loci of interest from oral ulcers GWAS.

Genomic Loci Start (hg19) End (hg19) Rs number Chromosome Position (hg19) P value

1 92,315,896 92,925,654 rs141094656 1 92,753,336 2.15E−09

2 150,534,368 150,960,350 rs11204668 1 150,543,686 1.34E−08

3 206,829,903 207,040,614 rs1800871 1 206,946,634 2.57E−66

4 247,561,515 247,572,169 rs72771985 1 247,570,566 4.92E−08

5 144,949,378 145,122,864 rs74966768 2 145,024,540 5.71E−11

6 192,009,455 192,030,391 rs7574070 2 192,010,488 4.91E−19

7 45,882,792 46,592,726 rs4683205 3 46,334,670 8.78E−52

8 158,547,026 160,401,080 rs76830965 3 159,637,678 1.21E−185

9 160,899,714 161,811,200 rs150383292 3 161,279,822 1.31E−11

10 59,506,581 59,569,008 rs9291686 5 59,558,313 1.73E−11

11 29,733,390 33,127,757 rs3135461 6 32,680,122 2.91E−22

12 106,321,688 106,322,875 rs9480610 6 106,321,844 4.42E−08

13 137,513,744 137,541,075 rs4896244 6 137,529,772 1.75E−14

14 137,959,235 138,006,504 rs17264332 6 138,005,515 3.69E−08

15 50,259,274 50,361,683 rs10263046 7 50,309,615 1.21E−18

16 92,061,364 92,218,899 rs112629741 7 92,076,793 2.68E−07

17 128,573,967 128,711,874 rs11761199 7 128,581,835 7.25E−10

18 150,208,971 150,355,449 rs62491812 7 150,327,424 8.14E−07

19 90,656,140 90,936,369 rs11989430 8 90,818,615 8.48E−15

20 126,274,338 126,398,091 rs2385100 8 126,391,143 1.00E−12

21 144,643,169 144,649,650 rs1545536 8 144,643,169 3.92E−09

22 117,547,772 117,654,990 rs10817678 9 117,579,457 1.89E−09

23 121,982,643 122,023,523 rs536991 11 122,008,872 8.26E−09

24 69,612,262 69,766,606 rs1800973 12 69,744,014 3.50E−16

25 50,456,996 50,790,158 rs2066844 16 50,745,926 1.06E−12

26 85,917,823 86,021,505 rs11649485 16 86,014,455 3.85E−18

27 37,902,887 38,089,717 rs12232497 17 38,040,119 4.59E−09

28 43,463,493 44,865,498 rs7210219 17 44,018,519 4.35E−13

29 4,813,663 4,821,612 rs10411970 19 4,814,648 7.03E−12

30 6,536,926 6,549,921 rs28552734 19 6,546,524 1.58E−08

31 18,170,384 18,204,200 rs2305742 19 18,191,441 2.15E−12

32 18,575,193 18,589,943 rs11670056 19 18,589,943 2.45E−09

33 46,847,901 46,907,186 rs3764613 19 46,896,217 2.04E−21

34 48,937,467 48,977,740 rs913678 20 48,955,424 2.69E−14
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Gene prioritization. We pinpointed 280 possible causal genes involved in the genetic etiology of oral ulcers 
by positional mapping and eQTL mapping (Supplementary Table 6). Even though FUMA provides a chromatin-
interaction method to map SNPs to genes, chromatin-interaction data related to oral ulcers in FUMA are absent. 
Therefore, we did not conduct chromatin interaction mapping. For positional mapping, there were 143 genes in 
20 genomic risk loci identified by deleterious SNPs. Besides, 262 genes in 28 genomic regions were pinpointed by 
eQTL mapping. Among these prioritized genes, 125 genes were identified by both deleterious SNPs and eQTL. 
Out of 34 genomic loci, there were four loci in which no genes were identified; the remaining loci were mapped 
to at least one candidate gene; nearly half of candidate genes were located in genomic locus 11 (Supplementary 
Table 6). Compared with findings by Dudding and  colleagues4, we pinpointed 216 novel genes. Furthermore, we 
found that six genomic loci were mapped to a single gene (GTDC1 in genomic locus 5, NDUFAF2 in genomic 
locus 10, IFNGR1 in genomic locus 13, NSMCE2 in genomic locus 20, BLID in genomic locus 23, and CEBPB 
in genomic locus 34), implying that associations between these loci and oral ulcers were likely attributed to 
these genes. Furthermore, NDUFAF2, CEBPB and BLID were genes identified for the first time in the present 
study. NDUFAF2 encodes a complex I assembly factor, which facilitates the translocation of protons from across 
to inside the mitochondrial membrane. NDUFAF2 was pinpointed by eQTLs in naïve CD8 T cells, indicating 
that an SNP may affect NDUFAF2 expression in CD8 T cells, which further alters the functions of CD8 T cells. 
CEBPB, which was identified by eQTLs in whole blood cells, encodes transcription factors that include a basic 
leucine zipper domain; CEBPB is involved mainly in the regulation of genes related to immune and inflam-
matory responses. Therefore, abnormal expression of CEBPB might lead to dysregulation of the immune and 
inflammatory response, and then increase the risk of contracting an oral ulcer. BLID, which was identified by a 
deleterious SNP, encodes the BH3-like motif acting on cell death. Therefore, BLID may affect the risk of contract-
ing an oral ulcer by regulating cell death. More importantly, we found that GTDC1 in genomic locus 5 was recog-
nized by both deleterious SNPs and eQTL mapping. Therefore, a regional plot of genomic locus 5 was carried out 
(Fig. 2). Results revealed that GTDC1 was prioritized. In the study by Dudding and colleagues, GTDC1 was also 
identified by DEPICT software, indicating that GTDC1 might be implicated in the genetic basis of oral  ulcers4.

Figure 1.  Summary of genomic risk loci based on GWAS of oral ulcers. Genomic risk loci are displayed by 
the ‘chromosome:start position-end position’ on the Y axis. Histograms from left to right depict the size of 
the genomic locus, number of candidate SNPs in the genomic locus, number of mapped genes by positional 
mapping and eQTL mapping in the genomic locus, and the number of genes known to be located within the 
genomic loci, respectively.
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We also estimated the expression patterns of identified genes in different tissues (Supplementary Table 7). 
Most genes showed consistent expression in these 30 tissues. Moreover, 155 genes showed relatively high expres-
sion (> 2.84) in salivary-gland tissues.

GSEA. GSEA was undertaken to test the possible biological mechanisms of 280 candidate genes implicated 
in oral ulcers (Supplementary Table 8). A total of 793 gene sets with an adjusted P < 0.05 were identified against 
20,260 background genes. Among these gene sets, the most significant gene set was the gene set involved in 
the autism spectrum disorder or schizophrenia (adjusted P value = 5.5392E-112), followed by other gene sets 
involved in other diseases. Furthermore, we found that the pinpointed 280 genes showed strong enrichment sig-
nals in gene sets related to the immune response and cytokine regulation, for example: GO_POSITIVE_REGU-
LATION_OF_IMMUNE_RESPONSE (adjusted P values = 1.9320E-18), GO_INNATE_IMMUNE_RESPONSE 
(adjusted P values = 6.3002E-18), GO_CYTOKINE_MEDIATED_SIGNALING_PATHWAY (adjusted P val-
ues = 6.4010E-18), GO_PEPTIDE_ANTIGEN_BINDING (adjusted P values = 2.1694E-20), and GO_ANTI-
GEN_BINDING (adjusted P values = 2.7157E-13). Dudding et al. conducted GSEA of identified genes against 
14,461 pre-computed gene sets using DEPICT, and found 895 gene sets with a FDR < 0.014. Compared with those 
895 gene sets, we identified 693 novel gene sets (Supplementary Table 8). Even so, strong enrichment signals in 
some T-cell regulatory gene sets were observed in our study and in the study by Dudding and  colleagues4.

To assess further the genetic associations of oral ulcers and other traits, genetic correlation analyses between 
oral ulcers and these traits were conducted (Fig. 3 and Supplementary Table 9). We found significant positive 
correlations between oral ulcers and neuroticism, allergic disease (asthma, hay fever or eczema), depression, 
monocyte percentage of white cells, and asthma (adult onset). We observed significant negative correlations 
between oral ulcers and height, moderate to vigorous physical activity, white blood cell count, and granulocyte 

Figure 2.  Regional plot of locus 2q22.3 of GWASs of oral ulcers. A, GWAS P-values of SNPs in 2q22.3. Genes 
identified by FUMA v1.3.5e are shown in red. Non-GWAS-tagged SNPs are shown as rectangles because they 
do not have the P-value from GWAS of oral ulcers, but they are in LD with the lead SNP. B, CADD score, 
RequlomeDB score, and eQTL P-value of SNPs in 2q22.3. eQTLs are plotted based on GTDC1.
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percentage of myeloid cells (P < 0.05). However, there were no significant associations between oral ulcers and 
asthma (adult onset), height or moderate to vigorous physical activity after using the Bonferroni correction.

Discussion
The factors implicated in RAS are incompletely understood. Possible risk factors are genetic susceptibility, stress, 
immune-related diseases, as well as a lack of vitamins and  minerals1. Lake and colleagues assessed the etiology 
of RAS. They collected incidence information of RAS in twins and their parents. They found that genetic fac-
tors contributed to > 60% of variations in RAS  onset32, implying that genetic factors had pivotal roles in RAS. 
Using the UK Biobank Project, Bycroft and colleagues collected the phenotypic data of 500,000 individuals and 
evaluated associations between genetic data and several phenotypes. For RAS, they found that many genetic 
variations were involved in the risk of suffering from an oral  ulcer19. In the present study, to further explore the 
genetic architecture of oral ulcers, post-GWAS analyses of oral ulcers were carried out to pinpoint possible causal 
variants and genes using FUMA.

Using FUMA, we pinpointed 34 genomic risk loci, including 89 lead SNPs and 380 independent significant 
SNPs, from GWAS of oral ulcers. Next, these 280 prioritized genes were identified from these 34 genomic risk 
loci by positional mapping and eQTL mapping. When comparing our results with those of other  scholars4,19, we 
not only validated some previous findings, we also obtained novel insights into the genetic architecture of oral 
ulcers. For instance, 216 out of 280 prioritized genes were not reported in the study by Dudding and  colleagues4. 
For these novel identified genes, we found that most genes were located in the human leukocyte region (HLA) 
region. Genes in the HLA regions might be in strong LD due to complicated LD structure of HLA regions. 
Thus, most novel genes were found in the HLA region. Moreover, we identified 83 novel genes in other regions. 
Among these novel prioritized genes, 121 had relatively high expression (> 2.84) in salivary gland tissues, which 
implied that these genes might have important roles in the onset of oral ulcers. Furthermore, six single genes 
were found in six genomic regions, respectively. Four genes (NDUFAF2, IFNGR1, NSMCE2 and CEBPB) showed 
high expression in most tissues. GTDC1 showed intermediate expression in these tissues, whereas BLID showed 
low expression in all tissues. Therefore, BLID might exert little influence on the onset of oral ulcers given its low 

Figure 3.  Genetic correlation analyses between oral ulcers and other traits by the LD Hub. Bar chart indicates 
genetic correlation between two traits and the error bar represents the standard error of the genetic correlation.



7

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:12205  | https://doi.org/10.1038/s41598-020-68976-2

www.nature.com/scientificreports/

expression in these tissues. Further functional validations of these novel genes must be conducted to unveil the 
effect of these genes in oral ulcers.

GSEA of pinpointed genes revealed that most gene sets implicated in immune-related biological processes 
had been identified (Supplementary Table 8). Scholars have pointed out that Th1 type immunologic response is 
closely related to RAS development, and that RAS patients showed higher secretion of Th1 cytokines than that in 
healthy  controls33–35. Dudding et al. explored the enrichment patterns of genetic variants related to oral ulcers in 
regulatory motifs using GARFIELD software. They found that these variants were enriched significantly in DNA-
sel hypersensitive sites in many T cells, and concluded that identified genes showed tissue-specific  expression4. 
We identified GO_T_CELL_ACTIVATION, GO_T_CELL_PROLIFERATION, GO_REGULATION_OF_T_
CELL_ACTIVATION and other T cell-related biological processes, implying that T cells have a crucial role in 
RAS onset. Furthermore, changes in the microbiome community within the oral cavity have also been viewed as 
risk factors for oral  ulcers36,37. Dudding and colleagues pointed out that genetic loci associated with oral ulcers 
might induce oral ulcers by affecting host microbiome compositions; also, the susceptibility of non-infective fac-
tors for oral ulcers was influenced by these genetic  loci4. Therefore, we inferred that genetic variants in genomic 
risk loci might interfere with the function of immune-related genes, which increases the risk of contracting oral 
ulcers by eliciting immune response disorders or affecting other risk factors.

Here, we noted genetic correlations between oral ulcers and other traits, especially oral ulcers and neuroticism 
and depression. Dudding et al. also found significant positive associations between oral ulcers and neuroticism 
and depression. Furthermore, they conducted local genetic-correlation analyses between oral ulcers and these 
two traits by the rho-HESS method, and their results revealed that genetic correlations among these traits was 
scattered evenly in the whole  genome4. We inferred that there might be a shared genetic architecture among 
oral ulcers, neuroticism and depression that contributed to these diseases. Besides, the pleiotropy of complex 
diseases/traits might also lead to their genetic  correlations20.

In this study, we identified some novel causal genes and gene sets by conducting post-GWAS of oral ulcers 
based on FUMA. Our data could provide novel insights into the genetic mechanisms of oral ulcers. Nevertheless, 
our study had three main limitations. First, patients with an oral ulcer were selected by reviewing questionnaire 
data. This method may have resulted in the misclassification of recruited individuals. Given the short duration 
of oral ulcers, some affected individuals might not manifest visible symptoms. Therefore, the misclassification 
of recruited individuals could not be avoided in our study. Besides, RAS and other types of oral ulcers could not 
be distinguished from each other based on these investigation data. Even so, genetic factors might show slight 
effects on other types of oral ulcers. More importantly, Dudding and colleagues proposed that the phenomena 
mentioned-above could elicit small effects on the GWAS of oral  ulcers4. Second, GWAS of oral ulcers were 
undertaken in individuals with European ancestries, which revealed the genetic mechanism of the disease in 
European populations. However, geographic, ethnic, and dietary differences also exert effects on the genetic 
background of oral  ulcers1. Consequently, further research on the genetic architecture of oral ulcers in East 
Asian (especially Chinese) populations should be carried out. Third, the genetic mechanisms of oral ulcers were 
explored by bioinformatics analysis only. Further validation by cell or tissue experiments for these identified 
genes was not undertaken. Some genes may show false-positive correlations with oral ulcers if they are located 
in a LD block which includes causal genes. Taken together, the gene sets presented in our study (especially those 
for novel genes) require further functional analyses.

conclusion
We re-processed the GWAS data of oral ulcers using FUMA, and pinpointed some novel genes associated with 
oral ulcers. Further functional annotations of prioritized genes revealed that immune regulation pathways were 
implicated in the risk of contracting oral ulcers. Our results can aid clarification of the genetic architecture of 
oral ulcers.
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