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The hot sites of α‑synuclein 
in amyloid fibril formation
Anahita Khammari1, Seyed Shahriar Arab1* & Mohammad Reza Ejtehadi2,3*

The role of alpha‑synuclein (αS) amyloid fibrillation has been recognized in various neurological 
diseases including Parkinson’s Disease (PD). In early stages, fibrillation occurs by the structural 
transition from helix to extended states in monomeric αS followed by the formation of beta‑sheets. 
This alpha‑helix to beta‑sheet transition (αβT) speeds up the formation of amyloid fibrils through 
the formation of unstable and temporary configurations of the αS. In this study, the most important 
regions that act as initiating nuclei and make unstable the initial configuration were identified 
based on sequence and structural information. In this regard, a Targeted Molecular Dynamics (TMD) 
simulation was employed using explicit solvent models under physiological conditions. Identified 
regions are those that are in the early steps of structural opening. The trajectory was clustered the 
structures characterized the intermediate states. The findings of this study would help us to better 
understanding of the mechanism of amyloid fibril formation.

Aggregation of proteins into amyloid fibrils is associated with many neurological diseases such as Alzheimer’s 
disease (AD)1, Parkinson’s disease (PD)2, and Type-2 Diabetes (T2D)3. PD is identified as the second most com-
mon neurodegenerative disorder and about 7 million people over 60 years old are estimated to suffer from this 
 disorder4. Structural dysfunction of αS and self-assembly of αS into toxic oligomers and fibril species are the 
most important reasons for the development of  PD5. The αS is among Intrinsically Disordered Proteins (IDPs), 
which is abundant in the human brain encoded by an SNCA gene located on chromosome  46,7. Protein structure 
is divided into three parts: (i) Amphipathic N-terminal region (1–60 residues), (ii) Non-amyloid-β component 
(NAC), and iii) Acidic and proline-rich region having no regular structure (C-terminal segment). The αS pro-
pensity to aggregation and fibrils formation causes the conformational change from disordered monomers into 
dimers, oligomers and then protofibrils (premature fibrils)8.

Many therapeutic approaches of PD are based on the prevention of amyloid fibrillation or destabilization of 
pre-existing  fibrils9,10. Among them, the approaches which only have focused on stabilization of protein folding, 
binding blocking of neuron membrane or protein immunotherapy have not been clinically  successful4,11 and 
PD treatment has remained a challenging  topic12. Some emerging therapeutic methods are based on the design 
of peptides against different parts of αS, which have been reported to have more effective therapeutic results 
through inhibition of the oligomers (or fibril) formation and blocking of αS  aggregation13. Designed peptides 
are randomly selected from different parts of the protein and are tested for their efficiency. Finding efficient 
therapeutic peptides by random scanning method has been time-consuming over the last decades. In the rational 
procedure, the most important regions of protein that play a key role in protein deformation mechanism are 
identified and therapeutic agents are designed based on these regions.

The extreme compatibility of αS causes the protein to have different states whose molecular mechanism of 
evolution and their relationship are  unknown14. Different inherently  disordered15,16,  helical17, or a combination 
of the  two18 are described for α-syn. In a reversible binding to the membrane, αS can bind the membrane upon 
the structural transition from a random coil to α-helix. It should be noted, that the fibril formation process can 
be separately performed from helical and random coil structures in vivo19 but Meade et al. stated that because 
of the larger population of helix-rich structures in the presence of the membrane, the helical state can be pre-
sented as a functional state of the  protein20. Indeed, there are some evidence that helical αS monomers play 
important roles in both intracellular and extracellular fibrillation mechanisms through the formation β-sheet-
rich  structures14,21. To closely examine the structural deformation, we focus on protein monomer. At the early 
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stages of the αS fibrillation process, a conformational transition occurs from helical to extended structures fol-
lowed by the creation of beta-sheets, and eventually forming of amyloid  fibrils22. Multibiological events, either 
environmental or genetics can lead to the occurrence of this conformational transition consequently resulting 
in loss of normal function of the protein by disrupting the function of mitochondria and degradation of the 
 membrane23,24. Critical sites of αS influencing on β-formation at early stages can be identified by focusing on 
the α-β conformational transition (αβT).

Since many conformational transitions occur at time scales longer than a few microseconds, enhanced sam-
pling methods have been developed to explore the appropriate phase space to solve some of the problems in 
 proteins25. Targeted Molecular  Dynamics26 is an approach that depends on a target structure that can induce 
conformational changes to the known target structure using a time-dependent geometrical constraint at biologi-
cal temperature. This method is suitable for transitions of protein structure between two specified conforma-
tional states such as αβTs in amyloid fibrillation. In transitions, the system is independently enforced the height 
of energy barriers, while structural dynamics are only minimally influenced by the RMSD constraint and can 
explore configurational space for finding transition states. This helps us to find critical sites in αβT at biological 
temperatures. These regions will be identified as the most changeable sites in the transition from helix to extended 
structures in the αS single chain, and they are the main cores in the formation of the amyloid fibrils. Knowing 
about the structure and sequencing information of these regions can be useful to understand the mechanism of 
αβT of the αS and help us to design a better generation of amyloidogenic peptides against PD. Besides, this study 
can be a suitable model for the detection of β-forming regions in other aggregation-prone proteins.

Results and discussion
The hot sites of αS. To find the first opening regions of conformation transitions of αS, maps of structural 
features against the residual numbers in the TMD simulations. Figure 1a1 shows local deformations compared 
to the initial configuration of the protein in the simulations. Red color indicates high changes in conformations 
while stable parts are in dark blue. The change in local gyration radius ( �Rg ) and the number of Hydrogen Bonds 
( HB ) are also shown in Figs. 2a1 and 3a1, respectively. Figures 1, 2, and 3a1, all show similar patterns, indicating 
some regions that respond to deformations at initial stages. The end part of the protein (with residue numbers 
of after 90) having a very flexible coiled structure showed an irregular pattern, in contrast with structured parts 
of the protein. Figures 1, 2, and 3a1, several bands are shown in approximately the same positions as the thick 
colored lines on the left side of the figures showing most interchangeable regions along with structured parts of 
the protein. These band regions present the highest structural difference in every moment of the simulations. 
Longer bonds indicate the sites opened at early steps and formed the seeds for destroying the helical structure.  

During the simulations, mentioned sites were opened in the following order: (i) the regions of (35–43) and 
(47–55), (ii) the regions of (65–75), and (iii) the region of (83–90) as highlighted by red, yellow, and cyan colors, 
respectively. The first opening regions (the hot regions) in tertiary, secondary and primary structures of αS are 
shown in Fig. 4a–c, respectively. Figure 4d shows the snapshots related to one of the TMD simulations in every 
25 ns to better understand α–β conformational transition. There is a visible time priority of the opening regions 
(hot regions) in the protein dynamic along with the TMD simulation. The first opening sites are the regions in 
which significant structural changes occurred during αβT. The opening of these sites caused an increase in the 
local gyration radius and disappearance of the hydrogen bonds facilitating the transition of unstable conforma-
tions to the extended state. To investigate the thermodynamic stability of the results, all simulations were repeated 
for 300 K as reported in Fig. S1a1–a3 of the Supplementary Section. The RMSD, ( Rg ), and HB were compared 
with those in 310 K and the results have been presented in Fig. S1b1–b3 respectively. There is a small change of 
RMSD in the hot regions while no significant changes were observed in ( Rg ), and HB plots. However, the position 
and priority of the hot regions are conserved in both temperatures of 300 K and 310 K, indicating the results are 
thermally stable and are expected to be visible in in-vitro experiments.

To ensure the irreversibility of the protein conformational transition, TMD simulations were repeated in 
reversed direction as reported in Supplementary Section. The RMSD, ( Rg ), and HB are obtained which show 
irregular patterns in the reversed direction of αβT, and explain the different pathways in the forward and back-
ward directions (Fig. S2).

Properties of hot sites. According to Anfinsen’s experiments, the amino acid sequence specifies the ter-
tiary structure of  proteins28. Propensities or conformational potentials were obtained from statistical analysis of 
secondary structure proteins, as the ratio of fractional occurrence of the residue in the given type of secondary 
structure to the fractional occurrence in all structures. According to the Chou–Fasman  method29, the propensity 
of each residue in three types of secondary structures (Helix, extended, and coil) was calculated by Eq. (1).

where R and S are amino acids and secondary structures; and NS and N are total number of amino acids in con-
formation S and the total number of amino acids in all secondary structures, respectively. Also, F(R.S) indicates 
the number of occurrence of R in S , and P(R.S) is obtained as the propensity of R amino acid to be in S structure.

Based on this principle, Chou and Fasman described three classes of the residue propensities in three types 
of protein secondary structures for the first time. The dataset used by Chou–Fasman for computing propensi-
ties of the amino acids was only limited to 15 proteins and 2,473 amino  acids29. Over the years, the volume 
of datasets used to calculate the Chou–Fasmans ̓ parameters has increased and finally the last applied dataset 
included a number of 2,164  proteins30. Since today, a number of nearly 150,000 proteins have been identified 
in the Protein Data Bank (PDB) database; and we updated the propensity of each amino acid in three types of 

(1)P(R.S) =
F(R.S)/F(R)

Ns/N
,
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secondary structures in the protein dataset consisting of more than 3,500 unique protein chains. Table 1 shows 
the propensity of each amino acid in the three types of secondary structures.

Chameleonicity of hot sites. The chameleon site is defined as a distinct sequence that tends to be present in 
different secondary structure types of protein, meaning that these sites can adapted to different structures in 
response to their  environment31. There are two major conditions for chameleon sequences; sequence propensity 
value to the beta structure should be more than 1 ( Pβ > 1 ; and secondary structure of protein should be in 
helix or coil  conformations32. Therefore, αS helical regions that tend to have more than one beta value are good 
candidate of these regions.

To identify chameleonic sites, propensities to extended conformations were averaged over the sliding windows 
(Fig. 5a). The regions of (14–18), (35–42), (46–57), (61–80), and (90–94) were identified as chameleon sites with 
a high tendency for beta structure. These regions are the most likely to form the β-strands in αβT. A compari-
son of the hot regions (Fig. 5b) indicates the chameleonicity of these regions which help the protein to lose the 
helical configuration at the onest of the protein αβT. These sites are rich in valine and glycine residues, which 
together form a specific pattern called the G–V pattern (Fig. 5b). The G–V pattern gives high flexibility to hot 
regions that play key roles in conformational transition, which as described in “Role of G–V pattern in hot sites”.

Figure 1.  The RMSD of protein sections during the TMD simulations. The figures in left panels show 
kymographs of three sets of the TMD simulations, protein wild type in TIP3P water model (TIP3P-WT), 
mutated protein in TIP3P water model (TIP3P-MT) and protein wild type in TIP4PD water model 
(TIP4PD-WT). Color bar in the right side indicates the values and the locations of the hot sites are colored as 
red, yellow and cyan in the left side of the plots indicating the first, second and third priorities, respectively. 
B1 compares the average RMSD for valine and alanine residues in the hot sites (see text). B2 compares time 
averaged RMSD of the residues for the three sets of the simulations.
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Hydrophobicity of hot sites. Alternating polar and nonpolar residues create alternating hydrophobic and hydro-
philic faces in the protein and facilitate beta-strand  formation33. There are different alternating polar and nonpo-
lar ( N/P ) patterns in aggregation-prone  proteins34, which diversities in N/P pattern causing specific beta-sheet 
forms under different  conditions35,36. The αS sequence has alternating polar and nonpolar sites stimulate the 
protein to form aggregates and nonpolar sites usually have high hydrophobicity that results in the tendency to 
formation of amyloid  fibrils37. According to the Roseman’s hydropathy  scales38, Fig. 5c shows hydrophobicity 
values averaged over the sliding windows. The regions of (6–7), (16–17), (37–40), (49–53), (66–76), and (87–93) 
with values over 0 were identified as hydrophobic sites of αS. These hydrophobic regions are at the heart of hot 
sites and make them more potent for the formation of amyloid fibrils. In fact, these middle hydrophobic cores 
can act as a driving force for β-strand  formation39 leading to the initiation of αβT from these sites and subse-
quent sites. Figure S3 shows the relationship between hydrophobicity and propensity values. The values of 0.61 
and − 0.37 were obtained from the correlation between hydrophobicity and Pβ and Pα , respectively. This means 
that, hydrophobic sites tend to lose helical structures and convert them to extended structures. Although, both 
reported correlation values are not very high but they are significant at p-value of < 0.001.

Role of G–V pattern in hot sites. The valine is an aliphatic and hydrophobic amino acid with the highest 
propensity to the beta structure in comparison with the other amino  acids30. As the valine is small and has a 

Figure 2.  The difference between gyration radius ( �Rg ) of each frame configurations with the first frame 
during TMD trajectories. The figures in left panels show kymographs of three sets of the TMD simulations, 
protein wild type in TIP3P water model (TIP3P-WT), mutated protein in TIP3P water model (TIP3P-MT) and 
protein wild type in TIP4PD water model (TIP4PD-WT). Color bar in the right side indicates the values and 
the locations of the hot sites are colored as red, yellow and cyan in the left side of the plots indicating the first, 
second and third priorities, respectively. B1 compares the average �Rg for valine and alanine residues in the hot 
sites (see text) the black arrows point to the most different of �Rg between the valine and alanine residues. B2 
compares time averaged �Rg of the residues for the three sets of the simulations.
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non-reactive side chain, the valine-rich regions are less restricted in conformational changes of the  protein40,41. 
As it is more difficult to adopt valine-rich regions (hot regions) with the regular α-helical conformation these 
regions prefer to be in beta-sheet states. Absence of ring in the valine side-chain creates the main-chain amid 
hydrogens (NH), which have not been protected against solvent  hydrogens40 resulting in the smallest environ-
mental changes around these regions that make them to convert the helical state to an extended one. Therefore, 
the presence of valine in hot regions provides an intrinsic tendency to lose helical structure and make these 
regions highly susceptible to long-term conformational transition. It is noteworthy that, the glycine is placed 
next to the valine residues in the valine-rich sites. Figure 5b indicates location of valine residues (black bars) and 
V–G pairs (green bars) over the protein sequence. There is a concentration of black and green lines in the hot 
regions which indicates the role of G–V pattern in the formation of these sensitive sites. The G–V sites are ending 
part of repetitive sequence of KTKEGV known to be able to form helical structure upon binding of the protein 
to the mitochondrial  membrane42. It appears that the presence of the G–V sites acts as a key part of initiating 
conformational transition from helical to extended structures. The presence of glycine next to the valine results 
from intrinsic behavior of glycine in the ϕ/ψ space.

Intrinsic behavior of amino acids plays a major role in their conformational preferences in the ϕ/ψ  space43,44 
creating a set of dihedral angles to special values that form secondary structure  types45 and is identified in special 
regions of the Ramachandran  plot46. Intrinsic behavior of glycine allows its ϕ and ψ angle values to fall in wide 
 range47 and its presence next to the valine causes it to act as hinge donating that stimulates the G–V regions 
during the αβT.

Figure 3.  The internal hydrogen bond numbers ( HB ) along the TMD simulations. The figures in left panels 
show kymographs of three sets of the TMD simulations, protein wild type in TIP3P water model (TIP3P-WT), 
mutated protein in TIP3P water model (TIP3P-MT) and protein wild type in TIP4PD water model 
(TIP4PD-WT). Color bar in the right side indicates the values and the locations of the hot sites are colored as 
red, yellow and cyan in the left side of the plots indicating the first, second and third priorities, respectively. B1 
compares the average HB for valine and alanine residues in the hot sites (see text). B2 compares time averaged 
HB of the residues for the three sets of the simulations. 
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All the G–V regions of hot sites were identified and their behavior was investigated in the ϕ/ψ space. The 
pictures in Fig. 6 represent dihedral angle values of G–V regions in hot sites during the TMD simulations. Dis-
tributions of valine dihedral angle values were in helix and beta areas of the plot, while the glycine ones started 
from the helix region and continued in the other parts of Ramachandran plot during the TMD simulation. This 
means that the presence of the glycine alongside the valine residue gives a great deal of flexibility in hot sites and 
made conformational transition from helical to extended states more convenient than the other parts of protein.

As shown in Fig. 7a1 and a2, the ψ and ϕ angle values indicate a two-state structure for valine while the glycine 
ones are more fluctuating. To ensure the valine effect on the αβT, the valine residues of the G-V regions were 
mutated to the Alanine residues and TMD was performed on mutated protein.

The alanine scanning of G–V sites. The alanine  scanning48 is a useful technique used to determine the contri-
bution of valine residue to the guidance of helical structures towards extended structures. Since the alanine is a 

Figure 4.  Hot regions in tertiary (a), secondary (b) and primary (c) structures of αS. Red, yellow and cyan 
colors are indicated the first, second and third priorities of hot regions, respectively. The gray color corresponds 
to the disorder part of αS. (d) Snapshots of αS intervals of 25 ns. The first, second and third priorities of hot sites 
are indicated red, yellow and cyan, respectively. The significant changes for each region are identified by circles 
in 25, 75 and 325 ns, respectively. The gray color corresponds to the disorder part of αS. Each configuration 
provided by VMD version 1.9.327.
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non-bulky and chemical inert amino  acid30 with highest propensity to the helix structure (See Table 1), it was 
selected as the best candidate instead of valine. To understand role of the valine in hot regions, all the valine 
residues in the G–V sites were mutated to the alanine and TMD simulation was performed on the αS mutated 
structure. Plots for the RMSD , ( Rg ), and HB were obtained and the results have been presented in Figs. 1, 2, and 
3a2. As can be seen, valine mutation to the alanine residue decreased flexibility of hot sites and reduced color 
pattern of hot bands showing the αβT is less favorable compared to the wild type. The tendency of the protein to 
keep the helical structure reduced fluctuation of dihedral angles and αβT occurred much later for mutant protein 
(shadow regions in Fig. 7b1, b2). Therefore, the intrinsic propensity of each amino acid in a variety of secondary 
structures has a significant effect on conformational transition of the protein.

More precisely, the mean RMSD , ( Rg ), and HB of valine and alanine residues of the hot regions compared 
between the wild and mutant variants (Figs. 1, 2, 3b1). The RMSD values of mutant protein are smaller than in 
the wild type, indicating the mutate protein retains the helical structure more than the wild type. The difference 
of ( �Rg ) values between the wild and mutant types after 350 ns shows the tendency of the alanine residues to 
be in helical structure. Also, smaller values of wild type HB s indicate that the helical state in protein clears the 
protein faster than the mutant form. The mean time of the variables for each residues has also been plotted to 
compare the behavior of the protein (Figs. 1, 2, 3b2). In general, the mutate protein exhibits different behaviors 
across the RMSD , ( Rg ), and HB curves (Specially the hot regions) compare to the wild type.

Influence of TIP4PD water on protein αβT. To investigate the effect of the water model on the protein 
conformational transition, TMD simulations are repeated with TIP4PD water model for the protein wild type. 
The TIP4PD water model reproduced the most accurate conformational ensemble for intrinsically disordered 
proteins which is recommended for simulating of disordered  proteins49. The RMSD , ( Rg ), and HB plots were 
obtained and the results have been presented in Figs. 1, 2, and 3a3 respectively. Although, the TIP4P-D water 
model did not affect the location of hot regions but a moderate change was observed in the color pattern in 
Figs. 1, 2, and 3a3 compared to the simulations in TIP3P water model. For a better comparison, the Figs. 1, 2, and 
3b2, show the average values along the simulations. The smaller values of RMSD , ( Rg ), and HB in the hot regions 
indicate that the TIP4PD water model helps to preserve more the helical structure of these regions along the pro-
tein conformational transition and the TIP4PD water model has delayed the opening of the second region more 
than the other hot sites. However, the position and priority of the hot regions are conserved and the conclusion 
of the paper do not change. The low sensitivity of the hot regions indicates that the amino acid propensity to the 
secondary structure types plays a more dominant role than the water model in the conformational transition 
which shows TIP4PD water model effects on αβT process speed.

Conformational clusters in αβT pathway. The dPCA was applied to the TMD trajectories to character-
ize significant conformers during αβT. As shown in Fig. 8a, the eigenvalue contribution of dPC indicates that 
the first dPC is accounted for more than 70% of the overall variance and over 85% of motions are covered in 

Table 1.  The propensity of amino acids to be prefer in secondary structure types. The amino acid names are 
shown in 1-letter characters. The Pα , Pβ and PC are the propensity values of amino acids in helix, extended and 
coil structures, respectively.

Amino acid Pα Pβ PC

A 1.41 0.75 0.77

C 0.79 1.41 0.95

D 0.89 0.55 1.37

E 1.38 0.68 0.84

F 0.99 1.42 0.77

G 0.49 0.65 1.68

H 0.90 0.97 1.11

I 1.02 1.67 0.58

K 1.14 0.80 0.99

L 1.28 1.12 0.67

M 1.20 1.01 0.80

N 0.77 0.64 1.43

P 0.54 0.44 1.76

Q 1.25 0.79 0.89

R 1.19 0.88 0.89

S 0.80 0.89 1.25

T 0.76 1.25 1.08

V 0.85 1.87 0.62

W 1.06 1.34 0.74

Y 0.97 1.42 0.78
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the first three components. Therefore, the dPC space is defined by the first three dPC s and conformations are 
clustered into three clusters. The clustering was performed using the peak-picking algorithm to identify isolated 
peaks distributed in principal components of the configurations along the TMD trajectories, corresponding to 
discrete  clusters50. According to Fig. 8b, three clusters with the population of 18.34%, 47.20% and 13.40% are 
respectively shown in green, red, and cyan colors in dPC space. Green and cyan clusters contain the configura-
tions that are respectively close to helical (initial) and extended (target) states. A centroid point of each group 
was selected as representative conformation and their RMSD compared to initial and target configurations are 
reported in Table 2.

An accurate view of the RMSD values indicated the structural similarity between representatives. The rep-
resentative of the second cluster could be between the helical and extended states. This cluster with 47.20% of 
total population showing the most configurations during protein conformational transition. These configurations 
are related to the early stages in αβT and first and second priorities of hot sites are active in them. While the 
configurations of the first and third clusters are more similar to the helical and extended states, respectively. It 
can also be seen that the hot regions with the highest priority are active in the first cluster configurations while 
all the hot sites are involved in the third cluster configurations (see Fig. 8c).

Figure 5.  Sequence-dependent properties of hot sites over the sliding window. (a) Shows the propensity values 
of the residues to the extended structures. The light brown color bands correspond to the chameleonic regions. 
The hot regions of αS are shown in (b) panel. The black lines show the location of valine residues while the green 
lines are the G–V sites, respectively. (c) Shows the hydrophobicity values of αS residues. The purple bands are 
related to the high hydrophobic sites along αS.
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Conclusions
In this study, a comparison was found for monomeric αβT of αS in different conditions using TMD simulations. 
In the transition pathway, critical sites with a key role in the amyloid fibril formation were identified in three 
priorities (i) (35–43) and (47–55), (ii) (65–75), and (iii) (83–90), respectively. The regions with good overlap, as 
well as with aggregation-prone regions have been introduced by Pawar et al.51. All these sites are highly hydro-
phobic and tend to form extended conformation. Chameleonic properties were observed for these regions. In 
critical regions, the presence of G–V patterns donated high flexibility to facilitate the conformational transition 
between helical and extended states. Previous  studies42,52 also showed that, 5 missense mutations, namely A30P, 
E46K, H50Q, G51D, and A53T increase the fibrillation rate in the first priority region.

Experimental findings showed that the peptides designed on the central hydrophobic region (61–82 residues) 
have high efficiency in blocking of αS aggregation and  fibrillation51,53. In another study conducted by our group, 
it has been shown that therapeutic peptides designed on the regions of (46–53) and (70–75) were able to block αS 
aggregation and fibrillation and open toxic oligomers,  respectively53. Our new findings suggest that, in addition 
to the two studied regions, the region of (35–43) is a good candidate for designing efficient therapeutic peptides.

The increasing in the gyration radius and the decreasing the number of hydrogen bond in hot regions resulted 
in the formation of unstable and temporary conformations. The results indicated that G–V patterns play a major 

Figure 6.  The distributions of dihedral angle values of G–V sites during the simulation time in the ϕ/ψ space. 
The white regions are sterically disallowed for all amino acids except glycine. The blue regions correspond to the 
allowed regions namely the helix and extended conformations. The green areas show outer limit regions. The 
black points indicate the distribution of dihedral angle values of each residue during the simulation time.
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role in the high flexibility of the hot sites in protein conformational transition and the mutation of the valines 
to the alanine residues increased the tendency of the protein to keep helical structure. The TIP4PD water model 
does not affect the position and priority of hot regions and just delays their conformational transitions specially 
in the second region. The trajectory can be categorized into three structural clusters along the αβT. The repre-
sentative of each cluster was compared to the helical and extended structures through RMSD calculations and 
their active hot regions were observed. The results of this study highlight the mechanism of αβT in the αS and 
may be useful in designing a better generation of amyloidogenic peptides.

Methods
Selecting of starting and ending points in α–β transition. TMD simulations are needed to select two 
stable structures for starting and ending points. The helical state is structured as well as its full-length PDB file 
is available in the Protein Data Bank (determined using nuclear magnetic resonance (NMR) spectroscopy, pdb 
ID:  2KKW54). The structure of αS fibrils at atomic resolution (pdb ID:  2N0A55) was selected for the ending point 
of TMD simulations. This structure was determined using nuclear magnetic resonance (NMR) spectroscopy 
containing full-length protein chains in extended states. This selection represents a single chain that interacts 
with other amyloid fibrils chains. This helps TMD simulations to sample the helical transition to amyloid fibril 
structure. Since we are locally focused on only one chain of amyloid fibrils, polymorphic properties do not affect 
the results (See Supplementary Fig. S4).

TMD procedure. The αS structures in both helical and extended conformations were obtained from the 
Protein Data Bank (PDB) database. The first model of NMR structure with PDB ID of 2KKW and the first chain 
of NMR structure with PDB ID of 2N0A were selected as helical (folded) and extended (amyloid) structures, 
respectively.

In this study, 3  TMD26 simulations were performed to focus on the monomeric conformational transition 
of αS. The protein alpha–beta transition and reversed transition were investigated to find critical regions in the 
structural transitions and for understanding the conditions to create β-forming regions. In the αβT simulations, 
helical structure (based on PDB ID of 2KKW) was considered as initial conformation forced toward extended 
configuration, and in reversed transition, extended structure (based on PDB ID of 2N0A) was considered as 
initial structure.

Moreover, another set of simulations was performed on the αS mutated structure to prove that valine plays 
a key role in protein conformational transition. All the valine residues at the hot sites (see section “The alanine 
scanning of G–V sites”) of αS helical structure (based on PDB ID of 2KKW) mutated to the alanine were mod-
eled by MODELLER 9.2056 and energy was minimized in constructed 3D model.

TMD was performed in cubic box of 9,086 water molecules which was neutralized by the addition of 9  Na+ 
ions.  TIP3P57 was used to model water molecules and CHARMM27 force-field parameters were applied. In all 
simulations, 50,000 minimization steps of the conjugated gradient were done for frozen protein Cα atoms with 
a positional harmonic force of 10 kcal mol−1 Å2 and heating up to 310 K over 300 ps for NPT ensemble. The 
Langevin  thermostat58 and the Nose–Hoover  barostat59 were applied to keep temperature and pressure at 310 K 
and 1.01325 bar, respectively. A short-range cutoff of 10 Å was treated for non-bonded interactions, and long-
range electrostatic interactions were considered using the Particle Mesh Ewald (PME)  method60 combined with 
periodic boundary conditions. At initial stages of equilibration, a time step of 1 fs was done while, the SETTLE 

Figure 7.  Dihedral angle ( ψ and ϕ ) values of G–V sites for wild (a1, a2) and mutated (b1, b2) proteins during 
the simulations. The black and orange lines are dihedral angle values of valine and glycine, respectively. The 
shadowed part in each plot indicate the transition of from helix to extended conformations.
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 algorithm61 was used to keep hydrogen-heavy atom bond lengths frozen during simulation at subsequent steps 
thus, a time period 2 fs was adopted. After equilibration, all the restraints were gradually removed and TMD 
was carried out for 500 ns. During the TMD simulations, our NPT ensemble included an additional energy 
term based on the RMSD of protein residues that force the molecule concering a prescribed target structure. 
The time-dependent energy function was as follows.

Figure 8.  Principal components analysis. (a) The contributions of the eigenvalues of dPC s for the variance. (b) 
Presentation of the structures in the space defined by the first three dPC s. The conformational clusters from the 
first to third obtained by peak-picking method are colored by green, red and cyan, respectively. The black and 
dark blue stars indicate the helical (initial) and extended (target) structures, respectively. A centroid member of 
each clusters are shown in (c) the black arrows point to the active regions in the representative configurations. 
The gray line shows the trajectory (αβT).

Table 2.  The pairwise RMSD between helical and extended conformations with each of the clusters 
representatives.

Representative structure Helical structure Extended structure

Helical 0 24.22

Cluster 1 9.15 21.14

Cluster 2 17.19 18.98

Cluster 3 20.28 6.51

Extended 24.22 0
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where, N  represents the number of Cα atoms in protein backbone, K  is harmonic force constant set as 
200 kcal mol−1 Å−2, and R is the Root Mean Square Deviation (RMSD) between a conformation at time t  and 
target conformation. ρ(t) is reference RMSD value at time t  that linearly decreased from 24.22 to 0 Å within the 
TMD simulation time. The TMD forces were applied to the alpha carbons during the simulation. The center of 
mass and protein orientation was fixed during the simulation to prevent molecular rotation. The NAMD 2.13 
 program62 was utilized for the TMD simulations and all related analyses were done using the VMD 1.9.327.

To investigate the effect of water model on protein conformational transition, similar TMD simulations are 
performed using the TIP4PD water  model49. Since the updated version of CHARMM force field by Mackrell 
published in 2019, July (https ://macke rell.umary land.edu/charm m_ff.shtml ) didn’t have the parameters and 
topology files for TIP4PD water model, we applied the TIP4P-2005 files and modified the charge, energy ( ε ) 
and the minimum distance (Rmin) of the water atoms according to the parameters reported in the David Shaw’s 
 paper49. A small TIP4PD water box (100 Å per dimension) was fabricated using the PACKMOL  package63 and 
relaxed with a 2 ns regular MD simulation. This obtained box is applied to make the solvent box for the system. 
The previous standard TMD simulations protocol was performed. TMD simulations performance decreased by 
%10 due to the use of the TIP4PD water model.

Applying the sliding window to fragmental analysis. To consider the effect of neighbor residues, all 
the properties were statistically averaged over a sliding window of residues along the protein chain. The average 
value of every property was assigned to the middle residues of each sliding window in the αS sequence. The size 
of the sliding window can be between 3 and 10  residues64 but since, in biological concentration, the probability 
of amyloid formation is low for small protein fragments, larger sizes are more suitable for window  selection65. 
In this paper, number of 7 was selected as the size of the sliding window (See Supplementary Fig. S5). So, every 
feature was computed using the sliding window, and has been issued for the 4th to 137th residues of αS. The 
sliding window was used for fragmental averaging of the protein propensity, hydrophobicity, gyration radius, 
and the number of hydrogen bonds.

Analysis of TMD trajectories. To understand conformational changes during the protein αβT, several 
types of analyses were performed on the TMD trajectories. The radius of gyration ( Rg ) and RMSD values of the 
alpha carbons, Hydrogen bonds (the bonds with a bond length cutoff of 3.0 Å and an angle cutoff of 20°), and 
dihedral angles of key residues of critical sites for each frame of TMD trajectory were calculated over sliding 
windows using  VMD27.

Principal Component Analysis of backbone dihedral angles (dPCA ) of the TMD trajectory was performed in 
CARMA version 1.766. The clustering method was performed based on a peak-picking  algorithm67 embedded in 
the CARMA applied to three-dimensional distributions of principal components derived from the TMD trajec-
tory. The first three principle components (three largest dPC s) were considered to identify prominent molecular 
configurations for populated clusters in three-dimensional dPC space.
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