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Computational study 
of the unimolecular 
and bimolecular decomposition 
mechanisms of propylamine
Mansour H. Almatarneh1,2*, Rima Al Omari3, Reema A. Omeir1, Ahmad Al Khawaldeh1, 
Akef T. Afaneh4, Mutasem Sinnokrot5, Alaa Al Akhras1 & Ali Marashdeh4

A detailed computational study of the dehydrogenation reaction of trans-propylamine (trans-PA) in 
the gas phase has been performed using density functional method (DFT) and CBS-QB3 calculations. 
Different mechanistic pathways were studied for the reaction of n-propylamine. Both thermodynamic 
functions and activation parameters were calculated for all investigated pathways. Most of the 
dehydrogenation reaction mechanisms occur in a concerted step transition state as an exothermic 
process. The mechanisms for pathways A and B comprise two key-steps: H2 eliminated from PA 
leading to the formation of allylamine that undergoes an unimolecular dissociation in the second 
step of the mechanism. Among these pathways, the formation of ethyl cyanide and H2 is the most 
significant one (pathway B), both kinetically and thermodynamically, with an energy barrier of 
416 kJ mol−1. The individual mechanisms for the pathways from C to N involve the dehydrogenation 
reaction of PA via hydrogen ion, ammonia ion and methyl cation. The formation of α-propylamine 
cation and NH3 (pathway E) is the most favorable reaction with an activation barrier of 1 kJ mol−1. This 
pathway has the lowest activation energy calculated of all proposed pathways.

Propylamine is of significant importance in chemistry, as it constitutes a central structure block for aliphatic 
amines1. It is widely utilized as a solvent in organic synthesis, and as a finishing agent for drugs, rubber, fiber, 
paints, pesticides, textile and resin2,3, and in the generation of fungicides4–6. Furthermore, it may very well be 
used as a petroleum additive and preservative. The disintegration of protonated of propylamine has attracted a 
noteworthy arrangement of fascination in the previous decade7–10. This is mainly due to the way that the proton 
affinity and the structural difference in propylamine through protonation influences the separation items through 
the arrangement of protonated amines, methane, propene and hydrogen gas11,12. Additionally, this reaction 
prompts the generation of various poisonous synthetic substances such as, alkyl cyanide, propylene, ethylene, 
nitrogen and hydrogen gases13,14.

Protonation (B + H+  →  BH+) and deprotonation (dehydrogenation) (HA − H+  → A−) reactions assume a 
significant role in natural science and organic chemistry, where A and B are the acidic and the basic centers, 
respectively. They are considered as the first step in several fundamental chemical mechanisms elucidated in 
the cited reference15. The ability of an atom or molecule in the gas phase to accept or to lose a proton can be 
described by calculating the proton affinity (PA), deprotonation (dehydrogenation) enthalpy, and molecular gas-
phase basicity, which offer a profound understanding of the connections between the reactivity of the organic 
molecules, their molecular structures, and molecular stability16. The negative of the enthalpy change related to 
the gas-phase protonation reaction is referred to as proton affinity, while dehydrogenation energy is defined as 
the enthalpy change related to the gas-phase dehydrogenation reaction17.

To the best of our knowledge, the dehydrogenation of n-propylamine has not been investigated or reported 
anywhere in the literature. Therefore, our main goal in this work is to calculate the relative stabilities of the 
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possible tautomeric forms of PA in deprotonated cases in the gas-phase. Another goal is also to investigate the 
isomerization process resulting from the most stable species to the other tautomeric entities. Figures 1 and 2 
depict the studied proton transfer reactions for propylamine.

Figure 1.   The proposed unimolecular dissociation of n-PA.

Figure 2.   The proposed bimolecular reactions of trans-PA.
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Computational methods
Geometry optimizations were performed using the Gaussian-16 (G16) quantum chemistry package18. All the 
reactants (R), transition states (TS), intermediates (I), and products (P) were fully optimized with no constraints. 
In order to confirm that the resulting geometries correspond to minima or TS’s on the potential energy sur-
faces, vibrational frequencies were computed. Therefore, TS’s were confirmed with one imaginary frequency. 
Geometry optimizations were performed using Becke’s three-parameter hybrid method using the LYP correla-
tion functional (denoted B3LYP)19,20. Double-zeta and triple-zeta basis sets were used, namely, 6-31G(d), and 
6-311G++(3df,3pd)21. Thereafter, single-point energy calculations were performed using CBS-QB322. These 
levels of theory based on our previous studies of the decomposition pathways of different amines23–26. Relative 
energies of all stationary points were revised with zero-point vibrational energies (ZPE). Furthermore, transi-
tion states were evaluated using the intrinsic reaction coordinate (IRC) method using the B3LYP/6-31G(d) to 
connect a given transition state structures to local minima of the reactants and products/intermediates on the 
potential energy diagrams (PED’s)27. The potential energy diagram analysis aims to locate stationary structures 
of reaction mechanisms. To the extent that the whole species in the reaction pathways in this paper are volatile 
organic compounds, the geometry optimizations, frequencies, and IRCs for the gas-phase reactions were carried 
out at mentioned levels of theory.

Results and discussion
In this study, extensive quantum chemistry calculations for sixteen reaction pathways are proposed for gas-phase 
proton transfer pathways of propylamine. Pathways A and B include unimolecular dissociation of PA (Fig. 1). 
Whiles pathways C → N comprise the dehydrogenation reaction of PA with H+, −NH2, +CH3, and CN− as depicted 
in Fig. 2. In addition, the bimolecular reactions of PA with acetonitrile and methanimine have been investigated 
and are denoted as pathways O and P (Fig. 2). The kinetic parameters [activation energies (Ea) and Gibbs energies 
of activation (ΔG‡)] for the studied pathways were calculated at various levels of theory (Tables 1 → 5). The most 
plausible pathways were determined using the calculated kinetic energies; the ones with lower values are consid-
ered the most favorable. The stationary points are plotted on a potential energy diagram for related pathways to 
characterize the energies of the most favorable reactions. On the PED, the gradients of these structures are zero 
along all of the internal coordinates. The PED characterizes the energy of a molecular assembly and its value 
depends on the coordinates of all the atoms in the molecular system. We should point out that the energy values 
on the PED (Erel) are the internal energy with respect to the reactant. It will be noted that α-, β-, and γ-carbons 
of propylamine with respect to the nitrogen atom are shown in certain pathways.

Unimolecular dissociation of n‑PA.  There are two possible pathways for the unimolecular dissociation 
reaction of PA which have been outlined as pathways A and B (Fig.  3). The pathway A involves a two-step 
mechanism. The first step is a formation of an intermediate I1 as an initial pre-reactive complex through TS1. 
In the first transition state, H2 is eliminated from the terminal nitrogen atom of PA and from α-carbon to form 
an unsaturated bond. As shown in Fig. 3, I1A undergoes isomerization to form I2A where both intermediates 
have the same number of atoms. The I1A and I2A intermediates are considered tautomers. These intermediates 
have different connectivity and arrangement of atoms, where the nitrogen forms a new bond with the α-carbon 
and simultaneously a broken bond between the α- and β-carbons. In the second step of the mechanism, three-
membered-ring transition state (TS2A) is dominant, resulting in the formation of 2-methylaziridine, as shown 
in pathway A in Fig. 3.

In chemistry isomerization is the process by which one molecule is transformed into another molecule which 
has exactly the same atoms, these intermediates have a different arrangement of atoms.

The elimination of two H2 molecules and propionitrile formation are denoted in pathway B, Fig. 2. As the 
first step of the reaction is similar to pathway A, a tautomerization does not occur in an intermediate forma-
tion step. Therefore, another H2 molecule will be eliminated from I1B via TS2B, resulting in the formation of 
propionitrile as a product (Fig. 2).

In TS1A, a noticeable geometric change can be detected. For instance, the C–H and N–H bonds are elongated 
by about 0.904 Å. On the other hand, the H atoms approach each other, and the distance between them is shown 
to decrease by about 0.814 Å. The double bond has been formed with length of 1.375 Å. TS2A shows how the C–C 
and C–H bond lengths decreased to 1.881 Å and 1.938 Å, respectively. TS2B indicates that the C–H and N–H 

Figure 3.   Unimolecular dissociation mechanism of PA for pathways A and B.
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bond lengths increase to 1.545 Å and 1.369 Å, respectively, while the H–H bond length decreases to 1.127 Å. A 
triple bond is formed with length of 1.215 Å. The optimized structures for reactions coordinate (Pathways A and 
B) are plotted on potential energy diagrams at different levels of theory, and the reader is referred to Figs. 4 and 5.

In the first step for both pathways, the calculated activation energies are 407 and 403 kJ mol−1, at B3LYP/6-
311G++(3df,3pd) and CBS-QB3 levels of theory, respectively, see Table 1. The respective activation energies of 
the rate-determining step TS2A and TS2B at the CBS-QB3 are 469 and 416 kJ mol−1, respectively. Furthermore, 
the respective activation energies at the B3LYP/6-31G(d) level of theory are 477 and 478 kJ mol−1 for TS2A and 
TS2B, respectively. 

It is worth noting that all bond lengths in TS1, TS2A, and TS2B are in excellent agreement with the reported 
studies for the unimolecular dissociation reactions of propylamine and protonated propylamine28. The thermo-
dynamic properties of these pathways were found to be endothermic and endergonic with all levels employed. 
This indicates that the reaction is favorable in the reverse direction.

Bimolecular dissociation of n‑PA (protonation of n‑propylamine).  Reaction of PA with NH2 (path‑
ways C → F).  The dehydrogenation of PA via amino group (−NH2) prompts the formation of an ammonia 
(NH3) group, that is an important moiety for proton related reactions.

Figure 4.   The PED for the dissociation reaction of Propylamine (pathway A). Energies calculated at different 
levels of theory. Optimized structures at B3LYP/6-311++G(3df,3dp).

Figure 5.   The PED for the dissociation reaction of Propylamine (pathway B). Energies calculated at different 
levels of theory. Optimized structures at B3LYP/6-311++G(3df,3dp).
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Table 1.   Kinetic parameters (Ea and ΔG‡) for the unimolecular dissociation of trans-PA (in kJ mol−1) at 
298.15 K.

Transition States

B3LYP/6-
31G(d)

B3LYP/6-
311++G(3df,3pd) CBS-QB3

Ea ΔG‡ Ea ΔG‡ Ea ΔG‡

TS1 413 416 407 408 403 404

TS2A 477 463 471 457 469 451

TS2B 478 457 509 489 416 390

Figure 6.   Proposed reaction mechanisms for the dehydrogenation of n-PA (pathways C → F). Optimized 
structures at B3LYP/6-311++G(3df,3dp).

Table 2.   Kinetic parameters (Ea and ΔG‡) for the protonation of trans-PA (in kJ mol−1) at 298.15 K.

Transition states

B3LYP/6-31G(d)
B3LYP/6-
311++G(3df,3pd) CBS-QB3

Ea ΔG‡ Ea ΔG‡ Ea ΔG‡

TSC 34 52 27 55 24 38

TSD 37 48 66 48 13 37

TSE 3 18 1 15 1 13

TSF 11 20 11 32 8 19
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Figure 7.   The PED of the protonation reactions of n-PA, pathways C → F, calculated at B3LYP/6-
311G++(3df,3pd).

Figure 8.   Proposed reaction mechanisms for the dehydrogenation of n-PA (pathways G → J). Optimized 
structures at B3LYP/6-311++G(3df,3dp).
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The NH2 group is electron releasing at proton in α-, β-, or γ-carbons, which results in different kinetic, 
thermodynamic, and bond parameters. Pathway C shows the proton transfer from γ-carbon to NH2 with an 
increase of the bond length between γ-carbons and H atom to be 1.295 Å. The distance between N–H decreases 
to 1.310 Å via TSC (Fig. 6). The energy barriers are calculated to be 34, 27, and 24 kJ mol-1 at the B3LYP/6-
31G(d), B3LYP/6-311++G(3df,3pd), and CBS-QB3 levels of theory (Table 2), respectively. It is worth noting 
that for pathway C, the PED in Fig. 7 shows that the reaction is thermodynamically reversible with low products 
energies relative to the transition states.

In pathway D, the proton transfers from β-carbon to NH2 and the distance between β-carbons and H atom is 
1.322 Å. TSE indicates that the dehydrogenation occurs through abstracting the proton from α-carbon. Likewise, 
pathway F represents the formation of CH3CH2CH2NH and NH3 through TSF, with the proton abstracted from 
amine site, as shown in Fig. 6.

The activation energy of TSF at the B3LYP/6-31G(d) level of theory is in good agreement with B3LYP/6-
311G++(3df,3pd) with an energy value of 11 kJ mol−1. For the CBS-QB3, the value obtained is 8 kJ mol−1. 
According to Table 2, the lowest energy barrier has been calculated for TSE, with a value of 1 kJ mol−1 at CBS-
QB3. However, pathway E is considered to be the most plausible mechanism in dehydrogenation reactions via 
NH2 due to the lower barrier.

Reaction of PA with H+ (pathways G → J).  The propylamine acts as a week base because the nitrogen atom has 
a lone pair of electrons that can accept a proton. This section examines the formation of H2 and propylamine 
cation products through four separate pathways, designated as pathways G → J (Fig.  8). In pathway G, the 
hydrogen cation acts as Lewis acid (electron pair acceptor) and abstracts a proton from γ-carbon to form H2 and 
γ-propylamine cation. With the same mechanism through TSH and TSI, hydrogen is eliminated from α- and 
β-carbon, and H2 and α-and β-propylamine cation can be formed. Likewise, pathway J represents the formation 
of CH3CH2CH2NH+ and H2 (PJ) through TSJ with hydrogen being abstracted from the amine site, as shown in 
Fig. 8.

The calculated activation energies are displayed in Table 3 at different levels of theory. The activation energy 
of TSI is low compared to other pathways with a value of 5 kJ mol−1 at the B3LYP/6-311++G(3df,3pd) level of 
theory and a value of 7 kJ mol−1 at the CBS-QB3, see Table 3 and Fig. 9. The thermodynamic parameters indicate 
that the reaction is exothermic by 71 kJ mol−1 and exergonic by 72 kJ mol−1 at the B3LYP/6-311++G(3df,3pd).

Reaction of PA with CH3
+ (pathways K → M).  Three pathways are studied to understand the reaction mecha-

nisms of dehydrogenation process of PA with methyl cation, denoted as pathways K, L and M as shown in 
Fig. 10. All transition states are described by a proton removable from different sites in PA; α- and β-carbon in 
addition to N- atom in the amine group, to form methane and propylamine cation.

Table 3.   Kinetic parameters (Ea and ΔG‡) for the protonation of trans-PA (in kJ mol−1) at 298.15 K.

Transition states

B3LYP/6-
31G(d)

B3LYP/6-
311++G(3df,3pd) CBS-QB3

Ea ΔG‡ Ea ΔG‡ Ea ΔG‡

TSG 21 37 17 38 17 40

TSH 13 30 13 17 18 21

TSI 8 4 5 6 7 8

TSJ 7 14 11 23 8 15

Figure 9.   The PED of the protonation reactions of PA, pathways G → J, calculated at CBS-QB3.
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Figure 10.   Proposed reaction mechanisms for the dehydrogenation of n-PA (pathways K → M). Optimized 
structures at B3LYP/6-311++G(3df,3dp).

Table 4.   Kinetic parameters (Ea and ΔG‡) for the protonation of trans-PA (in kJ mol−1) at 298.15 K.

Transition states

B3LYP/6-
31G(d)

B3LYP/6-
311++G(3df,3pd) CBS-QB3

Ea ΔG‡ Ea ΔG‡ Ea ΔG‡

TSK 42 50 42 65 44 64

TSL 20 43 28 56 20 52

TSM 26 36 34 58 31 41

Figure 11.   The PED of the protonation reactions of n-PA, Pathways K → M, calculated at the CBS-QB3.
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Table 4 reports the activation energies and Gibbs energies of activation for pathways K → M. The highest 
activation energy of TSK is 44 kJ mol−1 at the CBS-QB3, differing by no more than 2 kJ mol−1 from other reported 
levels of theory, Fig. 11. Moreover, the activation energy of TSK at the B3LYP/6-311G++ (3df,3pd) level of theory 
is 42 kJ mol−1, which is the same as the results of the B3LYP/6-31G(d) level of theory. The most plausible reac-
tion mechanism is pathway L via TSL with an activation energy of 20 kJ mol−1 at the B3LYP/6-31G(d) level of 

Figure 12.   Proposed reaction mechanisms for the bimolecular reactions of n-PA (pathways N → P). Optimized 
structures at B3LYP/6-311++G(3df,3dp).

Table 5.   Kinetic parameters (Ea and ΔG‡) for the protonation of trans-PA (in kJ mol−1) at 298.15 K.

Transition states

B3LYP/6-
31G(d)

B3LYP/6-
311++G(3df,3pd) CBS-QB3

Ea ΔG‡ Ea ΔG‡ Ea ΔG‡

TSN 21 14 16 18 17 20

TSO 384 394 387 401 316 326

TSP 449 464 447 468 448 467
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theory. Moreover, adding polarization and diffuse functions increase the activation energies by 8 kJ mol−1. This 
is comparable with the values calculated at the CBS-QB3, with the barrier of 20 kJ mol−1. Thus, based on these 
results, the reaction is kinetically favored (lower barrier height) and is the most plausible pathway, forming 
methane and CH3CH2CHNH2 (PL).

Bimolecular reaction of n‑PA (pathways N → P).  Three primary possible pathways for the bimolecular reaction 
of n-propylamine with cyanide ion (CN−), acetonitrile (HCN) and methanimine (CH2NH) are explored and 
denoted as pathways N, O, and P, respectively. In pathway N, hydrogen cyanide is recovered by SN2 reaction 
of gas-phase PA with cyanide ion via transition state TSN. In Fig. 12, there are some noteworthy changes in the 
bond lengths and torsion angles. Particularly, the dehydrogenation of PA happens in a concerted step through 
the separation of the N–H bond. Hydrogen cyanide is essentially created, where the bond is elongated by 0.038 Å 
to become 1.049 Å, forming CH3CH2CH2NH. For pathway O, TSO shows that there is an elongation in bond 
length of the N–H in propylamine from 1.015 to 1.017 Å. The distance between carbon atom in cyanide atom 
and H in PA decreased around 0.957 Å. Likewise, butyl hydrazine formed through TSP by the addition of metha-
nimine to PA, the C–N bond in methanimine is elongated by 0.150 Å. On the other hand, the atoms in the C–C 
bond in PA and methanimine approach each other, and the distance between them is become 2.649 Å.

Table 5 shows that the energy values obtained for the three pathways using the B3LYP/6-311G++(3df,3pd) 
level of theory are 16, 387, and 447 kJ mol−1, respectively. In TSN, the overall activation energy of 21 kJ mol−1 at 
B3LYP/6-31G(d) level of theory is the highest, relative to the other levels of theory. The barrier was found to be 
16 kJ mol−1 at B3LYP/6-311++G(3df,3pd) which is in excellent agreement with CBS-QB3 value of 17 kJ mol−1. 
In TSO, the activation energy at the CBS-QB3 level of theory with a value of 316 kJ mol−1 is lower than the DFT 
energy values. It merits referencing that utilizing the diffuse and polarization functions on TSN, TSO, and TSP 
with the B3LYP method lead to a decrease in the energy barrier. By comparison, pathway N is the most favorable 
pathway with a value of 16 kJ mol−1.

The thermodynamic parameters of the dehydrogenation reaction of propylamine
The thermodynamic parameters (∆H and ∆G) for the dehydrogenation reaction of PA along with its proposed 
reactions are studied at all the levels of theory and reported in Table 6. The dehydrogenation reactions of PA 
are exceptionally exothermic and exergonic at all levels of theory. Nevertheless, the unimolecular dissociation 
reactions of PA (Pathways A and B), the bimolecular reactions of the propylamine with acetonitrile (Pathway O) 
and methanimine (Pathway P), are endothermic and endergonic, at all levels of theory. In view of the results, we 
infer that the pathway E has the lowest thermodynamic parameters values; therefore, they are more spontaneous 
and plausible reactions to occur in the atmosphere.

Conclusions
An elaborate computational study for the gas-phase dehydrogenation reaction of n-propylamine has been per-
formed in detail using quantum-chemical calculations. Two significant pathways for the unimolecular reaction 
of PA, eleven for the dehydrogenation reactions, and three for the bimolecular reactions with −CN, H3C2N, 
H2CNH were studied, with a total of 16 pathways. The enhanced geometries including the R’s, TS’s, I’s, and P’s 
were determined. Besides, the potential energy diagram (PED) was described using the DFT and CBS-QB3 

Table 6.   The thermodynamic parameters of the dissociation reaction of propylamine.

Pathway

B3LYP/6-
31G(d)

B3LYP/6-
311++G(3df,3pd) CBS-QB3

ΔH ΔG ΔH ΔG ΔH ΔG

A 152 138 158 141 157 144

B 116 71 76 85 164 120

C − 22 − 18 − 38 − 25 − 36 − 24

D − 20 − 22 − 22 − 20 − 51 − 40

E − 61 − 55 − 86 − 79 − 73 − 72

F − 44 − 48 − 44 − 40 − 46 − 51

G − 16 − 18 − 25 − 34 − 22 − 21

H − 33 − 40 − 37 − 52 − 34 − 44

I − 73 − 74 − 71 − 72 − 70 − 70

J − 44 − 53 − 34 − 41 − 37 − 44

K − 31 − 43 − 30 − 28 − 37 − 30

L − 69 − 63 − 69 − 64 − 69 − 64

M − 45 − 54 − 40 − 46 − 33 − 46

N − 71 − 80 − 67 − 69 − 70 − 70

O 43 57 51 66 48 60

P 24 42 31 55 32 54
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methods. For each proposed mechanism, thermodynamic and kinetic parameters were calculated using the DFT 
and CBS-QB3 methods. Among DFT functionals, the B3LYP/6-31G(d) level of theory is the most used one. 
However, it still has challenges to predict the accurate activation energies as it misses the dispersion effect and van 
der Waals interactions. The CBS-QB3 was used due to the accurate description of kinetics and energy barriers. 
It is worth noting that the B3LYP/6-311++G(3df,3pd) and CBS-QB3 methods produce comparable agreement 
in terms of energy values within no more than 10 kJ mol–1. This indicates that the B3LYP/6-311++G(3df,3pd) 
performs very well and can be used to study such systems. The IRC calculations were performed to investigate 
and approve the association of the TS’s with the proper minima (I’s, R’s, and P’s) for each proposed pathway. It is 
worth mentioning that all dissociation reactions mechanism occurs in a concerted step as an exothermic process, 
except in the case of the unimolecular decomposition and pathways O and P that are considered as endothermic. 
These findings are important for future research with acidic or alkaline catalysts.
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