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FKS1 mutation associated 
with decreased echinocandin 
susceptibility of Aspergillus 
fumigatus following anidulafungin 
exposure
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Invasive aspergillosis (IA) is a potentially lethal infection that affects mostly immunocompromised 
patients caused by Aspergillus fumigatus. Echinocandins are a second‑line therapy against IA, used 
as a salvage therapy as well as for empirical or prophylactic therapy. Although they cause lysis of 
growing hyphal tips, they are considered fungistatic against molds. In vivo echinocandins resistance 
is uncommon; however, its wide clinical use could shortly lead to the emergence of A. fumigatus 
resistance. The aims of the present work was to assess the development of reduced echinocandins 
susceptibility phenotype by a A. fumigatus strain and to unveil the molecular mechanism underlying 
such phenotype. We induced in vitro cross‑resistance to echinocandins following exposure of A. 
fumigatus to anidulafungin. Stability of the resistant phenotype was confirmed after removal of 
anidulafungin pressure. The FKS1 gene was partially sequenced and a E671Q mutation was found. A 
computational approach suggests that it can play an important role in echinocandin resistance. Given 
the emerging importance of this mechanism for clinical resistance in pathogenic fungi, it would be 
prudent to be alert to the potential evolution of this resistant mechanism in Aspergillus spp infecting 
patients under echinocandins therapeutics.

Invasive aspergillosis (IA) is a potentially lethal infection afflicting mostly immunocompromised patients, the 
majority of cases caused by Aspergillus fumigatus. Early appropriate therapy is critical for the successful man-
agement. Echinocandins are clinically used in salvage therapy of IA as well as for empirical or prophylactic 
 therapy1,2. Moreover, combination of voriconazole and anidulafungin (AFG) have been shown to be effective 
against azole-susceptible and azole-resistant A. fumigatus  isolates3. The mechanism of action of echinocandins 
involves noncompetitive inhibition of (1,3)-β-D-glucan synthase, an essential enzyme involved in fungal cell 
wall synthesis. Echinocandins has been shown to cause lysis of growing hyphal tips but are considered fungi-
static against  moulds4. Elevated echinocandin Minimal Inhibitory Concentration (MIC) values for a variety of 
Candida clinical isolates were linked with genetic mutations in the hot spot regions of FKS1 and FKS2  genes5,6. 
Echinocandin resistance mechanisms are not yet clearly elucidated for Aspergillus spp. as in case of Candida spp.7.

The aim of the present work was to assess the development of reduced echinocandin susceptibility by an A. 
fumigatus clinical isolate exposed repeatedly in vitro to AFG and unveil the underlying molecular mechanisms.
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Results and discussion
Dynamics of in vitro acquisition of resistance by A. fumigatus exposed to AFG is detailed in Table 1. After 30 days 
of exposure, resistance to AFG and cross-resistance to caspofungin (CAS) and micafungin (MFG) was devel-
oped. Exposure to AFG triggered macroscopic modification of morphology of A. fumigatus colonies, changing 
from the original green blue color to white (Fig. 1), becoming notably smaller. Microscopy showed absence of 
conidiation (data not shown).  AFR0 and  AFR1 showed the same macroscopic and microscopic phenotype. Simi-
lar changes have been reported in A. fumigatus exposed to antifungals during long  periods8–10. RAPD analysis 
exhibits high discriminatory power for analysis of A. fumigatus strains when using this set of  primers11. RAPD 
patterns obtained were 100% identical for the three strains (Fig. 2). A point mutation was found in  AFR0 cor-
responding to replacement of glutamine by glutamate at position 671 of Fks1p (E671Q); similar mutation was 
found in  AFR1. Since the resistant phenotype emerged abruptly, remaining stable following antifungal removal, 
it is highly plausible that this hot spot FKS1 mutation E671Q might be responsible for the reduced susceptibility 
of  AFR0 and  AFR1. A mutation in A. fumigatus FKS1 gene with potential to reduce echinocandin susceptibility is 
hereby described. Such mutation was never reported among Candida spp. An S678P amino acid change, equiva-
lent to a mutation found in a resistant Candida isolate was described in a laboratory mutant of A. fumigatus and 
associated with resistance to  CAS12,13. A mutation resulting in a F675S amino acid change was found in a chronic 
pulmonary aspergillosis isolate from a patient in whom micafungin treatment  failed10. Point mutations in FKS1 
genes are the main mechanism that is implicated in decreased echinocandin susceptibility, however, Arendrup 
and colleagues found no mutations in FKS1 gene in two clinical isolates of A. fumigatus with MIC > 32 µg/mL 
to  CAS14. Instead, an increased in FKS1 gene expression was  observed14. This mechanism may be implicated in 
tolerance to echinocandin therapy.

The E671Q mutation replaces an amino acid with a negatively charged side chain (glutamate) by an amino 
acid with a polar but uncharged side chain (glutamine). This position is conserved among several fungi (Fig. 3a). 
PROVEAN software considers an amino acid alteration at this position deleterious, suggesting that this region 
might have a relevant functional and/or structural  role15. According to the three-dimensional (3D) structure 
obtained, E671 establishes polar contacts with K668 and T677 amino acids. Substitution by a glutamine would 
disrupt two of the three contacts with T677, which could distort conformation of the protein (Fig. 3b), given 
the proximity to a transmembrane domain (amino acids 679–699 in S. cerevisiae). Therefore, E671 may be 

Table 1.  Echinocandin Minimal Effective Concentration (MEC) values anidulafungin (AFG), caspofungin 
(CAS) and micafungin (MFG) distribution during in vitro induction assay with AFG of an A. fumigatus 
clinical isolate.

Induction day

MEC value (µg/mL)

AFG CAS MFG

0 ≤ 0.015 ≤ 0.015 ≤ 0.015

5 ≤ 0.015 0.06 ≤ 0.015

10 ≤ 0.015 0.125 0.03

15 ≤ 0.015 0.125 0.06

20 ≤ 0.015 0.125 0.125

25 0.03 0.25 0.125

30 > 8 > 8 > 8

AF
S

AF
R0

Figure 1.  Photographs of YEPD agar plates showing A. fumigatus colony morphology following exposure to 
anidulafungin.  AFS, initial susceptible strain.  AFR0, resistant induced strain.
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necessary to maintain protein’s three-dimensional structure, supporting the assumption that such substitution 
could impair its function. Ultimately, two approaches might be taken: FKS1 gene deletion in resistant strain to 
determine whether reversion to the susceptible phenotype occurs and site-directed mutagenesis in wild-type 
strain to observe whether resistant phenotype arises. Nevertheless, other mechanisms might also be involved in 
the development of echinocandin resistance, such as remodeling of cell wall components namely chitin levels, 
production of reactive oxygen species, alteration of the composition of plasma membrane lipids or expression 
levels of echinocandin target enzyme  genes16,17.

Our results suggest that modification of Fks1p in A. fumigatus might confer echinocandins resistance. Given 
the emerging importance of clinical resistance among pathogenic fungi, it would be advisable to monitor the 
potential evolution of this mechanism in Aspergillus isolates from patients under echinocandin therapy.
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Figure 2.  Random amplification of polymorphic DNA patterns, using primers (a) OPAX and (b) R108, (c) 
Primer 2 and (d) OPQ6, of Aspergillus fumigatus strains  (AFS, initial susceptible strain,  AFR0, resistant induced 
strain, and  AFR1, resistant strain after 30 days without antifungal) obtained during in vitro induction assay.  AFC 
represents a distinct A. fumigatus clinical strain, with a different pattern. 100 bp DNA ladder.
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Material and methods
A suspension of 5 × 104 conidia/mL of A. fumigatus (clinical brochoalveolar lavage isolate) was prepared in YEPD 
broth (0,3% yeast extract, 1% peptone, 2% dextrose) supplemented with sub-Minimal Effective Concentration 
(sub-MEC) (0.06 µg/mL) of AFG (Pfizer, Inc.) and incubated overnight, at 35 °C, 180 rpm. One mL was daily 
transferred to fresh YEPD supplemented with AFG. In parallel, 1 mL aliquot of was frozen (− 80 °C) but also cul-
tured on YEPD agar at 35 °C for 72 h, to confirm viability and purity of culture. AFG concentration was increased 
to double whenever fungal growth was prominent, reaching a final concentration of 8 µg/mL. In vitro induction 
was carried out up to 30 days. Every 5 days, MEC values of the 3 echinocandin were determined according to 
 CLSI18. A MEC value ≥ 1 µg/mL was considered  resistance19. In order to assess the stability of echinocandin 
MEC values increments, the induced strain was daily sub-cultured for an additional 30 days in the absence of 
antifungal and MEC values re-determined. The resistant pattern remained stable. At the end of the assay, three 
strains were characterized: the initial susceptible strain  (AFS), the induced strain  (AFR0) and the strain obtained 
following additional 30 days without antifungal exposure  (AFR1).

Genotyping by random amplification of polymorphic DNA (RAPD) of strains  AFS,  AFR0,  AFR1 using prim-
ers R108 (5′-GTA TTG CCCT-3′), OPAX (5′-AGT GCA CACC-3′), OPQ6 (5′-GAG CGC CTTG-3′) and Primer 2 
(5′-GCT GGT GG-3′) was  performed11.

Following PCR with primers 5-GCT GAA GGA TGT CGT CTG GA and 5-CGG CAA GTG ATG GTC TCG TG, 
hot spot regions (between 1,875 and 4,318 bp) of FKS1 gene (GenBank accession no. AFU79728) from  AFS,  AFR0 
and  AFR1 strains were amplified and sequenced were sequenced by Sanger method. The sequences were analyzed 
using BLAST Sequence Analysis Tool of NCBI.

The three-dimensional model for the Fks1 protein structure was obtained by modeling using the I-TASSER 
online server as previously  described20,21. Structures were visualized in PYMOL v1.1r1.

Received: 6 February 2020; Accepted: 3 June 2020
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Figure 3.  Sequence and structure analysis of the E671Q substitution in Fks1p. (a) Multiple protein sequence 
alignment of fungal Fks1 orthologues. A potential structural and/or functional role is suggested by the 
conservation of E671 even in distantly related species. (b) In the predicted structural model for this domain of 
the Fks1 protein (amino acids 400–900), the E671Q substitution would result in the loss of polar contacts with 
T677, disrupting the contacts between α-helices.  AFS, the initial susceptible strain is shown in green, and  AFR0, 
the resistant induced strain is shown in blue.
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