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Experimental demonstration 
of broadband solar absorption 
beyond the lambertian limit 
in certain thin silicon photonic 
crystals
Mei‑Li Hsieh1,2, Alex Kaiser1, Sayak Bhattacharya3,4, Sajeev John3 & Shawn‑Yu Lin1,2*

The tantalizing possibility of 31% solar-to-electric power conversion efficiency in thin film crystalline 
silicon solar cell architectures relies essentially on solar absorption well beyond the Lambertian 
light trapping limit (Bhattacharya and  John in Nat Sci Rep 9:12482, 2019). Up to now, no solar cell 
architecture has exhibited above-Lambertian solar absorption, integrated over the broad solar 
spectrum. In this work, we experimentally demonstrate two types of photonic crystal (PhC) solar 
cells architectures that exceed Lambertian light absorption, integrated over the entire 300–1,200 nm 
wavelength band. These measurements confirm theoretically predicted wave-interference-based 
optical resonances associated with long lifetime, slow-light modes and parallel-to-interface refraction. 
These phenomena are beyond the realm of ray optics. Using two types of 10-μm thick PhC’s, first an 
Inverted Pyramid PhC with lattice constant a = 2,500 nm and second a Teepee PhC with a = 1,200 nm, 
we observe solar absorption well beyond the Lambertian limit over λ = 950–1,200 nm. Our absorption 
measurements correspond to the maximum-achievable-photocurrent-density (MAPD), under AM1.5G 
illumination at 4-degree incident angle, 41.29 and 41.52 mA/cm2 for the Inverted Pyramid and Teepee 
PhC, respectively, in agreement with wave-optics, numerical simulations. Both of these values exceed 
the MAPD (= 39.63 mA/cm2) corresponding to the Lambertian limit for a 10-μm thick silicon for solar 
absorption over the 300–1,200 nm band.

The efficiency and cost of photovoltaics has steadily improved in recent years in the effort to create a competitive 
renewable energy resource. Silicon solar cells have been the dominant driving force in photovoltaics due to the 
abundance and environmentally friendly nature of silicon. The maximum possible power conversion efficiency of 
a single junction, crystalline silicon (c-Si) solar cell under one sun illumination at room temperature is 32.33%2. 
The highest efficiency real-world n-type silicon solar cell to date, by Kaneka Corp3,4, exhibits 26.7% conversion 
efficiency, followed closely by the p-type silicon solar cell, by the Institute for Solar Energy Research Hamelin 
(ISFH), Germany with 26.1% efficiency5,6. An analysis of the Kaneka, 165 μm thick, c-Si cell shows that in the 
absence of any extrinsic loss mechanism, the limiting efficiency of such a cell is 29.1%3. The competing fac-
tors responsible for this limit of the conversion efficiency are ray-optics light trapping7,8 and intrinsic loss due 
to Auger charge-carrier recombination. Essentially, the thicker the cell, the more light is absorbed. However, 
this is accompanied by increased bulk non-radiative recombination loss of charge carriers. In the case of ideal 
Lambertian light-trapping and a state-of-the-art Auger recombination model9, the optimal silicon thickness is 
reduced to 110 μm and a theoretical limit to conversion efficiency (assuming no surface recombination losses) 
is increased to 29.43%8. In traditional ray-optics based light trapping structures, the Lambertian limit is not 
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achieved, the optimum solar cell thickness is much greater than 110 μm and the power conversion efficiency is 
not expected to go beyond 28%.

The wave nature of light offers an alternative paradigm for solar energy capture in silicon. This is evident in 
certain sub-wavelength scale waveguides10–13 and photonic crystals14,15. While traditional 2D photonic crystals 
guide light in the 2D plane16, our new type of 2D photonic crystal deflects sunlight from the z-direction and 
couples it into the x–y plane17,18. In contrast to 165 μm-thick Kaneka cell and 110 μm-thick Lambertian cell, the 
PhC cells are 10–15 μm thick and have conversion efficiencies exceeding 30%1,19,20. The key mechanisms enabling 
the 30% cell using just 10–15 μm thick silicon are the existence of slow-light resonances and parallel-to-interface 
refraction (PIR)21. Particularly, using an inverted nano-pyramid thin silicon photonic crystal, light trapping 
toward the Lambertian limit has been reported22,23. Additionally, in a separate metal-oxide PhC system, PIR 
effect was experimentally demonstrated to yield two order-of-magnitude enhancement of optical absorption24. 
Light waves in PhCs exhibit behavior beyond the realm of ray-optics and have the potential to bridge the gap 
between the thermodynamic efficiency limit and ray-optics based limits.

In this paper, we constructed square-lattice PhC solar cell structures that support PIR modes and exhibit 
solar absorption well beyond the Lambertian limit. We realized two types of 10-μm thick simple-cubic PhC, 
the inverted pyramid PhC with lattice constant a = 2,500 nm and the Teepee PhC with a = 1,200 nm. Despite 
the fact that these structures are not fully optimized19,20 for solar light trapping, we observe that both PhC 
structures exhibit solar absorption well beyond the Lambertian limit in the weakly absorbing near-infrared 
regime, λ = 950–1,200 nm. Furthermore, we found the maximum-achievable-photocurrent-density (MAPD) 
under AM1.5G illumination at 4-degree incident angle to be 41.29 and 41.52 mA/cm2 for the inverted pyramid 
and the Teepee PhC, respectively. These values exceed the MAPD (= 39.63 mA/cm2) corresponding to the Lam-
bertian limit for a 10-μm thick silicon.

Sample design and fabrication
Our devices were fabricated on SOI (silicon-on-insulator) wafers using standard micro-electronic lithographic 
and etching processes. The Inverted Pyramid and Teepee PhC were fabricated at Australia’s Melbourne Centre for 
Nanofabrication Facility (MCN)25 and at Cornell’s Center for Nano-Fabrication (CNF)26, respectively. Figure 1a 
shows a schematic design of the thin PhC silicon solar cell architecture. The dimension shown is not to scale. The 
buried SiO2 layer is 250 nm thick and the handling silicon substrate is 500 μm thick. The front-side surface texture 
consists of a two-dimensional PhC with square lattice symmetry. Each cell is one square centimeter in area. It 
is defined using lithography and isolated from each other by etching away the surrounding silicon. Figure 1b 
shows a magnified schematic of the sample coated with a front-side antireflection (ARC) layer and a back-side 
metallic reflector. In this PhC design, the incident sunlight at long wavelengths is refracted into the thin silicon 
layer and propagates through resonant modes nearly parallel-to-the-interface. Figure 1c shows a photo of the 
front-side of the fabricated SOI wafer. Cell-A and –B have an identical PhC structure. Cell-C is the reference 
cell and has no surface texture. The backside wafer is produced using wet chemical etching in a KOH solution. 
Figure 1d shows a photo of the etched silicon side-wall. The etch sidewall is well-defined, leaving behind a 10-μm 
thick silicon and 250 nm buried SiO2 layers.

Both the Inverted Pyramid and Teepee PhCs were theoretically optimized19,20 and the fabricated structures 
are not far from the optimal geometries. Figure 1e,f shows a schematic design and SEM (scanning electron 
micrograph) image of the IP structure, respectively. The IP structure has a square-lattice symmetry as indicated 
by the red square and a lattice constant a = 2.5 μm. It is produced by patterning the front-side of the wafer 
and, subsequently, etching the pyramid shape mesa using KOH chemical solution. The silicon etch is orienta-
tion selective and stops at the (111) crystal plane, leaving behind a well-defined surface facet with a tilt angle 
of ~ 54° (indicated by the black arrow). The resulting PhC has an etched height h = 1.7 μm and an aspect ratio 
h/(a/2) = 1.36. The mesa width between adjacent pyramids is 25–100 nm. Figure 1g,h shows a schematic design 
and SEM image of the fabricated Teepee PhC structure, respectively. It also possesses square-lattice symmetry, 
but has a curved surface profile like a Teepee-shape. This particular surface profile is achieved by first patterning 
the front-side of the wafer, followed by a one-step RIE etching process in crystalline silicon. The bottom of the 
trenches are sharp, with sidewall angles of ~ 70°. The resulting PhC has a lattice constant a = 1,200 nm, an etched 
height h = 1.4 μm and an aspect ratio h/(a/2) ~ 2.3. This is not far from the theoretical optimal geometry19 with 
a lattice constant a = 1,000 nm. Furthermore, the etched profile may be approximated by the Gaussian and/or 
parabolic function that leads to superior broadband and wide angle antireflection27–29. Accordingly, the Teepee 
PhC is also referred to as the Parabolic Pore PhC19. Due to the dry etch process, some silicon surface roughness 
is evident. While this does not affect optical absorption, it could lead to additional charge carrier recombina-
tion centers compared to a smooth surface. To partially compensate for surface damage, a thin SiO2 coating 
(t ~ 60 nm) by high temperature oxidation and annealing was introduced, providing some surface passivation 
as well as improved antireflection property.

Results and discussion
Figure 2 shows the computed absorption spectra, at normal incidence, of a 10-μm thick Inverted Pyramid PhC 
structure (the green curve). The structures have lattice constant a = 2,500 nm, a single, 100 nm, SiO2 layer of 
ARC, a 100 nm back-side SiO2 buffer layer and an Aluminum back-reflector. This is not far from the optimized 
structure with a dual layer ARC of 145 nm thickness20. The Lambertian absorption spectrum (the red curve) 
and AM1.5G solar spectrum are also shown as references. The computed IP PhC’s absorption approaches the 
Lambertian curve in the λ ~ 550–900 nm range, slightly exceeds the Lambertian limit in the λ ~ 900–1,000 nm 
range and far exceeds the Lambertian limit in the λ = 1,000–1,200 nm range. In the λ = 1,000–1,200 nm range, 
multiple resonant peaks occur and three of which are indicated by red vertical arrows at λ = 1,016, 1,070 and 
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1,110 nm. These strong absorption peaks originate from higher order PhC modes that are long lifetime, slow-
light resonance, parallel-to-the-interface refraction1. The parallel flow of electromagnetic waves increases the 
optical path-length by an order-of-magnitude within the 10-μm thick silicon and, hence, dramatically increases 
optical absorption in this otherwise weakly absorbing near-infrared region. The absorption dip for λ < 400 nm 
is due to strong specular reflection of sunlight as the real part of refractive index of silicon exhibits a sharp peak 
in this range [see Fig. 1 of A. Deinega and S. John, Optics Letter 37, no.1, p. 112–114 (2012)].

Following the computational analysis, we perform a series of absorption measurements of the IP and Tee-
pee PhCs. Total absorption measurements were performed using an integrating sphere (Labsphere) with an 
unpolarized xenon light source, and an Ocean Optics HR2000 + spectrometer was used for data collection. The 
sample was inserted in the middle of the sphere and the absorption (A) was measured. For angular dependence 
measurements, the sample holder was rotated accordingly with respect to the incident light beam. For each 
sample, we performed measurement for a range of angles at θ = 4, 10, 20, 30, 40, 50 and 60°. The absorption 
at normal incidence (0°) was neglected because the specular reflection from the sample surface would escape 
from the integrating sphere. Instead, the smallest light incident angle we used for our experiment is θ = 4°. For 
the θ = 4° testing, our light source has a beam diameter of ~ 10 mm so that it illuminates the entire test sample 

Figure 1.   (a) A schematic cross section view of the SOI (silicon-on-insulator) sample structure. Its front surface 
has a periodic surface texture and its back surface etched, leaving behind a 10 μm thick crystalline silicon; (b) 
a magnified schematic of the sample coated with a front ARC (antireflection) layer and a back-side SiO2 buffer 
and a back reflector; (c) a photo of the front side of a 4-inch SOI wafer, having a periodic surface texture; (d) a 
photo of the back side of the SOI wafer, showing the etched silicon side-wall. (e) A schematic of the Inverted 
Pyramid Photonic-Crystal (PhC) with a lattice constant a = 2,500 nm; (f) a SEM (scanning electron micrograph) 
image of the fabricated Inverted Pyramid structure. A wet etch method is used to etch and expose the silicon 
(111) surfaces, as indicated by the black arrow. (g) A schematic of the Teepee PhC with a lattice constant 
a = 1,200 nm. (h) A SEM image of the fabricated Teepee PhC structure. The etched surface follows a Gaussian-
like graded index profile.



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:11857  | https://doi.org/10.1038/s41598-020-68704-w

www.nature.com/scientificreports/

piece of 10 × 10mm2. For all other incident angles, the beam diameter is reduced to ~ 5 mm to accommodate tilt 
angle testing of a finite size sample. For absorption measurements in the near IR wavelength (λ = 900–1,200 nm), 
Near Infrared Spectrometer (Ocean Optics NIRQuest512-2.5) was used for data collection with a high-quality 
thermoelectric-cooled InGaAs linear array (Hamamatsu G9208-512 W) and an unpolarized tungsten-halogen 
light source.

Figure 3a shows spectrum measured for an Inverted Pyramid sample of 10-μm thick (the blue curve) over 
the ultraviolet, visible and near-infrared wavelengths (λ = 300–1,200 nm). This sample has lattice constant 
a = 2,500 nm, a mesa-width of w = 100 ± 10 nm, and has no ARC or back reflector. The red curve is the Lam-
bertian absorption limit for a 10-μm thick silicon cell. For λ = 300–1,000 nm, the measured absorption is below 
the Lambertian limit. For λ = 1,000–1,200 nm, multiple high resonant absorption peaks are observed (indicated 
as the red arrows) which slightly exceed the Lambertian limit. Figure 3b shows the spectrum measured for 
the same sample, but coated with a ~ 100 nm thick SiO2 ARC, a 100 nm SiO2 buffer layer, and no Al-back-
reflector. The ARC coating is to reduce optical reflection loss at the air-PhC interface. Indeed, the absorption at 
λ = 550–750 nm is increased and approaches the Lambertian curve. Furthermore, the resonant absorption peaks 
at λ = 1,000–1,200 nm become more pronounced and exceeds the Lambertian limit. Finally, Fig. 3c shows the 
spectrum measured for the same sample coated with a front SiO2 ARC, a back-side ~ 100 nm SiO2 buffer layer 
and an Aluminum back reflector. The back reflector is to recycle the otherwise transmitted light and increase the 
absorption further. In this case, the absorption at λ = 550–900 nm approaches the Lambertian limit. Moreover, 
for the λ = 1,000–1,200 nm spectral range, the IP PhC’s absorption exceeds the Lambertian limit by orders of 
magnitude. The observed multiple resonant peaks at λ = 1,015, 1,055 and 1,100 nm agree with the predicted ones 
within Δλ = 15 nm. The slight discrepancy is likely due to a small amount of structure disorder across the fabri-
cated sample surface. However, the average absorption over the band of sharp resonances in λ = 1,000–1,200 nm 
shows good agreement between theory and experiment. The MAPD over 300–1,200 nm range for cases Fig. 3a–c 
increases from 35.81, 38.56 to 41.29 mA/cm2, respectively. It is expected that with further optimization of the 
mesa width and a dual layer SiN and SiO2 ARC, this absorption can be enhanced to yield nearly an additional 
2 mA/cm2 in the MAPD over the 300–1,200 nm range1,20.

The final optimization of the IP cell structure is its mesa-width w, which is indicated in the SEM image in 
Fig. 1e. Figure 4a shows absorption spectra of 10-μm thick IP structures computed for two different mesa-width 
w = 25 nm (the black curve) and 100 nm (the green curve). The IP PhC structure is coated with a single layer SiO2 
ARC (100 nm), a SiO2 buffer layer (100 nm) and a Al-back-reflector. The Lambertian absorption is also shown 
as a reference (the red curve). For the w = 25 nm cell structure, its absorption in the λ = 300–700 nm range is 
slightly higher due to a narrower mesa-width, resulting in less optical reflection loss. The inset of Fig. 4a shows a 
plot of the partial MAPD (over the 300 nm to 1,100 nm range) versus mesa-width w = 25–100 nm. MAPD of the 
cell structure under AM1.5G illumination is given by: JMADP =

∫
�max

�min

e�
hc
I(�)A(�)d� . Here, I(λ) is the intensity 

of the AM1.5G solar radiation spectrum. We assume that each absorbed photon creates a single electron–hole 
pair. The short-circuit current (Jsc) of an ideal cell, without surface and bulk recombination losses, coincides 

Figure 2.   A computed absorption spectra of a 10 μm-thick silicon Inverted Pyramid (IP) structure at normal 
incidence. The structure has lattice constant a = 2,500 nm, a single layer ARC (100 nm), a back-side SiO2 buffer 
layer (100 nm) and a Al back-reflector. The Lambertian absorption (the red curve) and AM1.5G solar radiation 
spectra are also shown as references. The IP’s absorption approaches the Lambertian curve over the λ ~ 550–
900 nm region, slightly exceeds the Lambertian limit over the λ ~ 900–1,000 nm and far exceeds the Lambertian 
limit over the λ = 1,000–1,200 nm region. The red arrows indicate strong resonance peaks at λ = 1,016, 1,070 and 
1,110 nm.
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with JMAPD. The MAPD corresponding to the Lambertian limit for 10 μm-thick silicon cell is 39.52 mA/cm2 in 
the 300–1,100 nm range. For the 300–1,100 nm spectral range, MAPD corresponding to the 10-μm thick IP 
structure is increased from 39.769 to 40.479 mA/cm2 as w is decreased from 100 to 25 nm. By implementing an 
optimized dual layer SiN and SiO2 ARC, MAPD for the 10-μm thick PhC can be further increased to 42.5 mA/
cm220. Figure 4b shows a summary of the experimental and computed MAPD values obtained from the IP 
cell structure over λ = 300–1,100 nm, 1,100–1,200 nm (sub-gap region) and 300–1,200 nm region. The MAPD 
corresponding to the Lambertian limit for 10-μm thick silicon is also shown. Over λ = 300–1,100 nm region, 
MAPD values for the IP cells slightly exceed the Lambertian limit of 39.52 mA/cm2. Over the sub-gap region, 
λ = 1,100–1,200 nm, MAPD for the IP cells far exceed the Lambertian limit of 0.1115 mA/cm2. Finally, for the 
entire λ = 300–1,200 nm region, the measured MAPD corresponding to the 10-μm thick IP PhC is 41.29 mA/

Figure 3.   Experimentally measured absorption spectra of a 10-μm thick silicon IP cell, having lattice constant 
a = 2,500 nm. (a) Absorption spectrum measured for an IP structure without either an ARC layer, a buffer 
layer, or the back-reflector (the blue curve). The red curve corresponds to the Lambertian absorption limit. 
Over λ = 1,000–1,200 nm region, multiple high resonant absorption peaks are observed (indicated as the red 
arrows). (b) Spectrum measured for the same structure, but only coated with a ~ 100 nm thick SiO2 ARC. There 
is no back reflector. (c) Spectrum measured for the same structure coated with a front SiO2 ARC, a back-
side ~ 100 nm SiO2 buffer layer and a back reflector. Over λ = 1,000–1,200 nm region, the multiple resonant 
peaks become more pronounced and far exceed the Lambertian absorption limit.
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cm2 which exceeds the Lambertian limit of 39.63 mA/cm2 by 1.66 mA/cm2. For the specific structure fabricated, 
there is good overall agreement between theory and experiment. This agreement provides credence to theoreti-
cal prediction that with further optimization of the ARC and mesa structure, the MAPD could reach as high as 
43.59 mA/cm2 over the 300–1,200 nm band1.

While the Teepee and Inverted Pyramid PhCs possess the same square-lattice symmetry, the Teepee PhC cell 
structure has a deeper and more curved trench in its surface profile. This feature has been shown to yield a better 
broad bandwidth and wide angle absorption performance18,29. Figure 5a,b shows the measured and computed 
absorption spectra of the 10-μm thick, fabricated Teepee PhC structure with lattice constant a = 1,200 nm. The 
inset shows that the cell structure has a single layer ARC (60 nm), a back-side SiO2 buffer layer (75 nm) and Ag 
back-reflector (200 nm). It should be noted that both spectra agree with each other. They both exhibit a slight 
dip of A ~ 83% at λ ~ 375 nm, approach the Lambertian limit in the λ ~ 600–1000 nm range and exceed the 
Lambertian limit in the λ ~ 1,000–1,200 nm range. In the 700–900 nm range, the measured absorption spec-
trum is smoother than the computed one and also shows a slightly stronger absorption. The smear out of the 
computed resonance peaks in this range may be caused by local randomness in the fabricated structure, which in 
turn reduces the surface reflection and increases the Teepee structure’s absorption accordingly30,31. Finally, over 
950–1,200 nm, the computed and measured spectra show multiple resonant peaks that agree with each other. 
For example, the absorption peaks at λ = 1,028 nm and 1,062 nm agree with each other and are indicated as red 
arrows. In contrast to Lambertian cell and planar cell structures, higher solar absorption in the 950–1,200 nm 
spectral range due to multiple resonant absorption peaks is a signature of photonic crystal light-trapping.

Figure 4.   (a) Absorption spectra of a 10-μm thick IP cell structure computed for two different mesa-width 
w = 25 and 100 nm, respectively. The IP structure is coated with a single layer SiO2 ARC (100 nm), a buffer layer 
(100 nm), and an Al-back-reflector. The Lambertian absorption is also shown as the red curve. The inset shows 
a summary of MAPD over λ = 300–1,100 nm as a function of mesa-width w. (b) A summary of MAPD values 
over λ = 300–1,100, 1,100–1,200 nm and 300–1,200 nm regions for the 10-μm thick silicon IP cell structure. The 
MAPD corresponding to the Lambertian limit was also shown. The total MAPD over 300–1,200 nm range for 
the w = 25 nm and 100 nm IP PhC structure is 41.79 and 41.11 mA/cm2, respectively.
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We comment that while the use of a metallic back reflector can increase optical absorption of a thin film 
structure, it also can contribute to parasitic absorption. Further FDTD (finite difference time domain) cal-
culations were performed to estimate such parasitic absorption losses in our cell structure. Figure 6a shows 
absorption spectra of a 10-μm thick Teepee structure computed for three different back reflectors, i.e. the per-
fectly electric conductor PEC (the red curve), Ag-mirror with 75 nm SiO2 buffer (the green curve) and also 
Ag-mirror without buffer (the black curve). The top SiO2 ARC is a 60 nm thick, conformal ARC. The use of 
either PEC or Ag-mirror with buffer leads to very similar absorption spectra over the entire spectral range of 
300–1,200 nm. However, the use of the Ag-mirror without buffer reduces the absorption significantly especially 
over λ = 650–1,100 nm range. Figure 6b summarizes MAPD corresponding to the computed and measured 
absorption spectra of the 10-μm thick optimized Teepee cell structure. In the case of 75 nm buffer + 100 nm 
PEC mirror, MAPD over 300–1,200 nm range is 40.11 mA/cm2. In the case of 75 nm buffer + 100 nm Ag-mirror, 
MAPD over 300–1,200 nm range is 40.43 mA/cm2. Thus, in the presence of the buffer layer the parasitic absorp-
tion in Ag over 300–1,200 nm range is 0.32 mA/cm2. Note that, in the case of 75 nm buffer and 100 nm Ag mir-
ror, MAPD over 300–1,100 nm range corresponding to the experimental and computational data is 40.175 and 
39.280 mA/cm2, respectively. MAPD corresponding to the experimental data is higher than the computational 
one by 0.895 mA/cm2. This difference is due to the higher absorption measured in the 700–900 nm range, as 
explained in the previous paragraph. Finally, we note that MAPD over λ = 300–1,200 nm range for the 10-μm 
thick Teepee PhC structure-Exp. is 41.52 mA/cm2, which exceeds the Lambertian limit of 39.63 mA/cm2 by 
1.89 mA/cm2. This is clearly beyond any effects that could arise from parasitic absorption in the back-reflector.

Figure 5.   The (a) measured and (b) computed absorption spectra of the Teepee cell structure, having lattice 
constant a = 1,200 nm. Both structures are coated with a single layer ARC (60 nm), a back-side SiO2 buffer 
layer (75 nm) and Ag back-reflector. Both spectra agree with each other. Particularly, they both approach the 
Lambertian limit over λ ~ 550–1,000 nm region and exceeds the Lambertian limit over λ ~ 1,000–1,200 nm 
region. The predicted multiple resonant peaks at λ = 1,028 and 1,062 nm were also observed in the experiment 
(the red arrows).
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Computational results
These multiple peaks in the absorption spectra over λ = 1,000–1,200 nm originate from purely wave-interference 
effects, absent in Lambertian light-trapping. To illustrate this point, we show a magnified view of the absorption 
spectrum of the 10 μm-thick, optimized Inverted Pyramid PhC cell over the 850–1,200 nm wavelength range in 
Fig. 7a. The red vertical lines correspond to resonant absorption peaks located at λ = 1,055 and 1,100 nm. Fig-
ure 7b, c show the in-plane Poynting vector plots over the central xz-slice of the Inverted Pyramid PhC unit cell 
at these resonances. The Poynting vectors are superposed on the color map that represents |E|2 (normalized by 
maximum of |E|2 ). The grey lines in these plots denote the outline of the top of the silicon layer. The energy flow-
pattern reveals multiple regions with vortex-like flow and parallel to interface flow of light at these resonances 
leading to very long dwell-time of photons in the solar cell. On the other hand, Lambertian light trapping assumes 
that the distribution rays in the cell obeys a probability distribution f(θ) = 1/π (cosθ), where θ is the angle that a 
ray within the cell makes with the cell-surface normal. According to this distribution, propagation of energy near 
θ = 90° (i.e. parallel to the interface) is insignificant. However, direct solutions of Maxwell’s equations show that 
a significant amount of energy flows close to θ = 90° due to wave-interference based light-trapping in our PhC 
structure. Similar computations were also performed for our Teepee PhC structure. Figure 7d show a magnified 
view of the absorption spectrum of the 10 μm-thick, optimized Teepee PhC cell over the 850–1,200 nm wave-
length range. The red vertical lines correspond to resonant absorption peaks located at λ = 1,028 and 1,062 nm. 
Figure 7e, f show the in-plane Poynting vector plots over the central xz-slice of the Teepee PhC unit cell at these 
resonances. Again, the energy flow-pattern reveals multiple regions with vortex-like flow and parallel to interface 
flow of light at these resonances.

Figure 6.   (a) Absorption spectra of a 10-μm thick silicon Teepee cell structure computed for three different 
back reflectors, i.e. the perfect electric conductor (PEC), Ag mirror with 75 nm SiO2 buffer and Ag mirror 
without buffer, respectively. The top SiO2 ARC is a 60 nm thick conformal ARC. (b) A summary of MAPD 
values for the 10-μm thick silicon Teepee cell structure with a single layer SiO2 ARC over λ = 300–1,100, 
1,100–1,200 and 300–1,200 nm regions. In the presence of the buffer layer (75 nm), the parasitic absorption in 
Ag is 0.18 and 0.14 mA/cm2 over 300–1,100 nm and 1,100–1,200 nm, respectively.
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Angular dependence of absorption spectra and MAPD
In the following, we investigate the angular response of the Inverted Pyramid and Teepee PhC structures from 
θ = 10° to 60°. Figure 8a–d shows the measured absorption spectra of the Inverted Pyramid PhC for light incident 
at θ = 10°, 20°, 30° and 40°, respectively. For the tilt angle testing, there is no absorption data presented here for 
λ = 300–330 nm range as the signal is too weak and beyond the detection limit of our Ocean Optics spectrometer. 
The weak signal is due to combined effects of a reduced beam size (~ 5 mm) and a weak light source intensity 
in this spectral range. Nonetheless, we found the sample’s UV absorption at λ = 375 nm remains high at ~ 80% 
for θ = 10–30° and then drops slightly to ~ 70% for θ = 40°. Additionally, the sample’s visible absorption over 
λ = 550–800 nm range is near the Lambertian limit for θ = 10°–30° and drops slightly below the limit for θ = 40°. 
Finally, the sample’s near infrared (1,000–1,200 nm) absorption far exceeds the Lambertian limit for θ = 10°–30°, 
but only slightly exceeds the limit for θ = 40°. Therefore, the Inverted Pyramid PhC maintains its excellent absorp-
tion performance for θ = 10°–30°, but not nearly as well for θ = 40°. Similarly, Fig. 8e–h shows the measured 
absorption spectra of the Teepee PhC for light incident at θ = 10°, 20°, 30° and 40°, respectively. For θ = 10–40°, 
the Teepee PhC maintains a high absorption in the UV, visible and near-infrared. Its UV absorption at λ = 375 nm 
is maintained at ~ 83% for all angles studied, and its near-infrared absorption at λ = 1,000–1,200 nm is 50–80% 

Figure 7.   Vortex-like modes and Parallel-to-Interface refraction (PIR) in square-lattice photonic crystal 
samples. (a) A magnified absorption spectrum of the silicon IP photonic crystal sample over the 850–1,200 nm 
wavelength range. The red vertical bars correspond to the resonances at λ = 1,055 and 1,100 nm. (b) and (c) 
Yellow arrows show the in-plane Poynting vector flow in the Z–X planes of the IP PhC crystal. Such long life 
modes are responsible for the high absorption even in the 1,000–1,200 nm weak absorption wavelength range. 
(d) A magnified absorption spectrum of the Teepee photonic crystal sample over the 850–1,200 nm wavelength 
range. The red vertical bars correspond to the resonances at λ = 1,028 and 1,062 nm. (e) and (f) Yellow arrows 
show the in-plane Poynting vector flow in the Z–X planes of the Teepee PC.
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for all angles studied, which far exceeds the Lambertian limit. We believe the reduced angular dependence of 
optical absorption of the Teepee PhC is due to its more gradual optical index profiles18,27–29. This Gaussian index 
profile can lead to an excellent optical antireflection that is broadband (λ = 300–1,200 nm) and almost angular 
independent (θ = 0°–60°).

Table 1 shows a summary of the angular dependence of MAPD over 330–1,200 nm range under AM1.5G 
illumination for the 10-μm thick silicon Inverted Pyramid and Teepee PhC structures. As a reference, MAPD over 
330–1,200 nm range corresponding to Lambertian limit is 39.51 mA/cm2. We experimentally demonstrated the 
MAPD for the Inverted Pyramid PhC exceeds the Lambertian limit at θ = 10°, 20°, and 30°, although it falls below 
the Lambertian limit at larger light incident angles from θ = 40°-60°. Moreover, we found experimentally that 
the MAPD for the Teepee PhC exceeds the Lambertian limit by 2.77, 1.36, 2.11, 2.10, 1.80 and 1.48 mA/cm2 for 
θ = 10°, 20°, 30°, 40°, 50° and 60°, respectively. This excellent MAPD performance is due to an efficient coupling 
of plane-waves to the long-lifetime PIR modes of the PhC utilizing all-θ, all-λ graded-index antireflection design.

Figure 8.   Angular dependence of absorption spectra over λ = 330–1,200 nm. (a)–(d) shows the measured 
absorption spectra of the IP cell structure for light incident at θ = 10°, 20°, 30° and 40°, respectively. (e)–(h) 
shows the measured absorption spectra of the Teepee cell structure for light incident at θ = 10°, 20°, 30° and 40°, 
respectively.

Table 1.   A summary of the angular dependence of MAPD for 330–1,200 nm range under AM1.5G 
illumination for both the 10-μm thick silicon Inverted Pyramid and Teepee PhC cell structures. The MAPD 
corresponding to the Lambertian limit for λ = 330–1,200 nm range is 39.51 mA/cm2.

Samples

Incident angle

10 deg 20 deg 30 deg 40 deg 50 deg 60 deg

 Inverted pyramid photonic-crystal (mA/cm2) 40.12 40.01 40.18 37.86 36.25 35.57

 Teepee photonic-crystal (mA/cm2) 42.28 40.87 41.62 41.61 41.33 40.99
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Summary
In summary, we proposed and realized a new light-trapping structure for thin film silicon solar cells based on 
wave-interference optics. This is a singular experimental demonstration of above-Lambertian solar absorption 
integrated over the entire wavelength range of 300–1,200 nm. We constructed two types of 10-μm thick silicon 
simple-cubic PhC cell structure: the Inverted Pyramid PhC and the Teepee PhC. In contrast to the Lamber-
tian cell and planar cell structures, higher solar absorption in the 950–1,200 nm spectral range due to multi-
ple resonant absorption peaks was demonstrated. These peaks in the absorption spectra originate solely from 
wave-interference effects that are absent in Lambertian light-trapping. Furthermore, we found the maximum-
achievable-photocurrent-density (MAPD) under AM1.5G illumination at a 4-degree incident angle to be 41.29 
and 41.52 mA/cm2 for the Inverted Pyramid and Teepee PhC, respectively. These values exceed the MAPD 
(= 39.63 mA/cm2) corresponding to the Lambertian limit for a 10-μm thick silicon despite the architectures not 
being fully optimized for light-trapping. In the experimentally measured systems, we observed overall absorption 
up to 2 mA/cm2 beyond the Lambertian limit. Numerical simulations of Maxwell’s equations in fully optimized, 
10-μm thick silicon, photonic crystal structures1 suggest that the overall absorption would be up to 4 mA/cm2 
beyond the Lambertian limit. The agreement of present measurements with theory lends credence to this more 
far-reaching prediction and the resulting possibility of thin-silicon solar cells with efficiencies surpassing 30%.
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