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Recurrent probabilistic neural 
network‑based short‑term 
prediction for acute hypotension 
and ventricular fibrillation
Toshio Tsuji1*, Tomonori Nobukawa2, Akihisa Mito2, Harutoyo Hirano  3, Zu Soh  1, 
Ryota Inokuchi4, Etsunori Fujita5, Yumi Ogura5, Shigehiko Kaneko6, Ryuji Nakamura  7, 
Noboru Saeki  7, Masashi Kawamoto7 & Masao Yoshizumi7

In this paper, we propose a novel method for predicting acute clinical deterioration triggered by 
hypotension, ventricular fibrillation, and an undiagnosed multiple disease condition using biological 
signals, such as heart rate, RR interval, and blood pressure. Efforts trying to predict such acute clinical 
deterioration events have received much attention from researchers lately, but most of them are 
targeted to a single symptom. The distinctive feature of the proposed method is that the occurrence 
of the event is manifested as a probability by applying a recurrent probabilistic neural network, which 
is embedded with a hidden Markov model and a Gaussian mixture model. Additionally, its machine 
learning scheme allows it to learn from the sample data and apply it to a wide range of symptoms. 
The performance of the proposed method was tested using a dataset provided by Physionet and the 
University of Tokyo Hospital. The results show that the proposed method has a prediction accuracy 
of 92.5% for patients with acute hypotension and can predict the occurrence of ventricular fibrillation 
5 min before it occurs with an accuracy of 82.5%. In addition, a multiple disease condition can be 
predicted 7 min before they occur, with an accuracy of over 90%.

Biometric information monitoring devices are used in various clinical scenarios such as surgeries and the inten-
sive care units (ICUs)1. Many of these devices raise an alarm when clinical deterioration of the patient (detected 
via biological indices) is detected. For example, a pulse oximeter, which is capable of measuring the saturation 
of peripheral oxygen ( SpO2 ) through a simple pinch on the fingertip, raises an alarm when SpO2 is below the 
threshold value (Generally 89–92%2). In other cases, blood pressure (e.g., diastolic blood pressure) can be con-
tinuously measured using a sphygmomanometer, and an alert is sounded when it falls below a set threshold. 
The thresholds for many of these alarms are set based on prior experiences of the healthcare provider and the 
patient’s condition3. These medical devices can perform long-term monitoring of the patients’ biological infor-
mation and are important for efficient and effective treatment. However, conventional medical devices raise an 
alarm only after detecting a deterioration. This proves to be problematic for the medical staff, who cannot stay 
near the patient all the time.

To solve this problem, several studies have proposed clinical deterioration prediction systems4,5. For exam-
ple, Langley et al.4 focused on the change of heart rate intervals and they proposed an approach to predict the 
development of idiopathic atrial fibrillation with an accuracy of 56.0%. This approach used deviance from the 
average heart rate interval as a predictor. Lynn and Chiang6 proposed an algorithm based on nonlinear features 
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computed from the return and difference maps of the heart rate variability (HRV) signal and reported a sensitiv-
ity of 64%. In addition, Boon et al.7 predicted atrial fibrillation with 79.3% accuracy by using a support vector 
machine with the features extracted via a genetic algorithm among HRV parameters as predictors. Maryam 
et al.8 reported a sensitivity of 96.3% for predictions made using nonlinear features obtained from spectral 
analysis of the HRV signal. Wollmann et al.9 proposed a method that could predict ventricular arrhythmia with 
an accuracy of 72.5% by analysing HRV parameters calculated using an electrocardiogram by the classification 
and regression tree method.

To broaden the application range to other symptoms, methods that use machine learning5,10,11 were recently 
proposed. These methods can adapt the prediction model to the patients using the learning dataset. For example, 
in10,11, k-nearest neighbour and support vector machine were employed to predict acute hypotension, which 
is a type of shock symptom. However, these techniques did not consider the time series characteristics of the 
measured biological signals. This could be a reason why the prediction accuracy of these techniques was less 
than 90%. Henriques et al.5 employed a general regression neural network12 to predict acute hypotension. This 
prediction method received recognition as it achieved the highest prediction accuracy (92.5%) in Physionet 
Challenge 200913. To represent the uncertainty in classification, these approaches calculate normalised indices in 
the range of [0, 1] from the outputs of the classifiers; however, they do not account for the probabilistic process 
of transition in physiological conditions.

Thus, we propose a target symptoms prediction method involving a probabilistic neural network called the 
recurrent log-linearised Gaussian mixture network (R-LLGMN)14. The R-LLGMN embeds a hidden Markov 
model (HMM) with multidimensional mixed Gaussian distribution, which are often used for time-series analy-
sis and probabilistic classification, respectively. Because the parameters of HMM and Gaussian mixture model 
(GMM) are unified into connective weights through a log-linearisation process under the framework of a neu-
ral network, the R-LLGMN allows training the connective parameters comprehensively. This feature makes 
the proposed method suitable for probabilistic classification of time-series data15–20. In addition, using GMM 
to approximate the probability distribution is advantageous when dealing with a small dataset. This feature is 
important in clinical settings where a large dataset is not always available. In this paper, the target symptoms 
were acute hypotension and ventricular fibrillation (Vf) in addition to a multiple disease condition, and the 
prediction accuracy was tested using the data provided by Physionet13 and those collected from the University 
of Tokyo Hospital.

Materials and methods
Proposed method.  Figure 1 shows the proposed prediction method. First, the measured biological signals 
were preprocessed. Preprocessing includes calculation of indices related to HRV. The preprocessed signal was 
then fed to a probabilistic neural network (i.e., R-LLGMN) to predict probabilities of conditions in future P 
minutes. In this section, the proposed method is discussed in detail.

Preprocessing.  An analysis on HRV was performed on the heart rate interval (RRI) acquired from an electro-
cardiograph. In this paper, we configured the RR recording interval as 1 minute in accordance with the previ-
ous studies21–23 on the short-term and ultra-short-term HRV analyses. The related indices include coefficient 
of variation of R-R intervals (CVRR) and the following indices that reflect vagal tone intensity24,25: root mean 
square successive difference26 (RMSSD) and number of pairs of successive RRI that differ by more than 50 
[ms]27(pNN50). The aforementioned indices can be calculated using the following equations:

where NRRI is the total number of RRIs in 30 s, RRImean is the average value of the RRIs in 30 s, Ndif  is total 
number of successive adjacent RRI differences, and Ndif 50 is total number of successive adjacent RRI differences 
whose absolute values is greater than or equal to 50 [ms].

For biological signals that were not obtained from electrocardiographs, we employed the following preproc-
essing methods: 

(a)	 Standardise the biological signal to the normal distribution N(0, σd):
(b)	 Time-differentiation using a differential filter that can reduce measurement noise based on the centred 
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 where s(t) represents a measured biological signal and �h is the sampling time.

Proposed prediction model.  Prediction model for acute deterioration triggered by the target symptoms must 
satisfy the following requirements: 

(1)	 Ability to account for the time series characteristics of biological signals.
(2)	 Ability to express diversity of patients’ conditions.
(3)	 Ability to express uncertainty of the predicted physical condition in a probabilistic manner.
(4)	 Ability to simultaneously evaluate multiple types of biological signals.
(5)	 Applicability to different medical fronts and different patients.

To satisfy the first two requirements, we apply HMM29. HMM can express various symptoms of the patient by 
applying a concept called “states” and “probabilistic transitions” between the states. For example, the condition of 
a patient can be defined as either “normal deterioration” or “acute deterioration”, and the temporal change of the 
biological signal drives the probabilistic transition between the defined conditions. However, biological signals are 
expected to be complex nonlinear waveforms. Therefore, they are approximated using multidimensional mixed 
Gaussian distribution model30, which is capable of expressing multimodal distribution by weighted summation 
of multiple Gaussian distributions31. To approximate complex waveforms of biological signals and to satisfy 
requirements (3) and (4), the proposed model was constructed based on continuous density HMM32, which is a 
combination of HMM and the multi-dimensional Gaussian mixture model. Probabilistic output of each state of 
the HMM can thus be represented by multi-dimensional mixed Gaussian distribution, which enables calcula-
tion of the occurrence probability of a deterioration event from multiple types of biological signals. The bottom 
row of Fig. 1 shows a physical change model represented by probability density distribution of the continuous 
multi-dimensional Gaussian model. Here, let us denote the number of evaluation target classes as (c ∈ {1, . . . ,C}) . 
Each class c is composed of Kc states, indexed as k, k′ = 1, . . . ,Kc , and the probability distribution of each state 
k includes Mc,k Gaussian distribution components, indexed as m = 1, . . . ,Mc,k . The probability distribution of 
class c is represented by multidimensional Gaussian mixture distribution with Mc,k Gaussian components. Given 
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Figure 1.   Overview of the proposed short-term prediction method.



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:11970  | https://doi.org/10.1038/s41598-020-68627-6

www.nature.com/scientificreports/

a time series biological signal X = [x(1), x(2), . . . , x(T)] , where x(t) ∈ R
d , the a posteriori probability of class 

c, P(c|x(t)) is derived as follows:

where γ c
k′ ,k is the probability of state transition from k′ to k in class c, and bck(x(t)) is defined as the a posteriori 

probability for state k in class c corresponding to x(t) . The prior probability π c
k is equal to P(c, k)|t=0.

Assuming that the posterior probability bck(x(t)) is given by a multidimensional Gaussian mixture model 
consisting of Mc,k components, γ c

k′ ,kb
c
k(x(t)) can be rewritten as follows:

where r(c,k,m) is the mixing proportion, µ(c,k,m) ∈ R
d is the mean vector, and �(c,k,m) ∈ R

d×d) is the covariance 
matrix of each component. The parameters included in the model are used to estimate the probability distribution 
and generate the posterior probability P(c|x(t)) of acute deterioration. To set a machine learning framework for 
the determination of parameters and to satisfy requirement (5), an R-LLGMN14 (see Supplementary Informa-
tion S1) was employed.

The output of R-LLGMN is represented by the posterior probability of each class based on the mul-
tidimensional Gaussian mixture model. In addition, because the parameters of R-LLGMN can be adjusted 
for the given learning dataset, the proposed method can be applied to various symptoms. Let us represent 
a pair of learning data for R-LLGMN consisting of the input vector of X(n)
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C ]T . Here, the element xi,c(n)(t) is a biological signal measured at time t, and Y (n)

c  
is the posterior probability of class c. Each index represents the following: n = 1, 2, . . .N is the dataset number, 
Td is the total time step to output a posterior probability vector Oc

(n) at the output layer of R-LLGMN, class c = 1 
represents the class for normal condition, and c = 2 represents the class for occurrence of deterioration event, 
such that C = 2 . The evaluation function J is then defined by the following equation:

The learning process is applied to minimise the above function (i.e., maximising the likelihood). The weight 
parameters in R-LLGMN are iteratively updated using backpropagation through time33 (BPTT). BPTT is a 
method of accumulating the error gradient in the time series and calculating the weight correction amount for 
each iteration. After the parameters included in the first and second layer are adjusted, R-LLGMN can predict the 
class of the condition, such as normal or acute deterioration, of the target patients P minutes from the acquisi-
tion of the biological signals.

Experimental configuration. 
In order to verify the prediction performance of the proposed model, a prediction experiment was conducted 
using datasets that include various cases of ICU patients, published by Physionet13 and the University of Tokyo 
Hospital. The dataset provided by the ICU at the University of Tokyo Hospital is composed of vital signs of 
patients in the ICU, with a sampling time of 1024 [ms]. In addition, two types of information are given as expert 
annotations. These are technical validity and clinical relevance of the alarm raised by the biological information 
monitor. Technical validity is the result of the diagnosis performed by the nurse when an alarm is raised, and 
clinical relevance is the result of the diagnosis performed by the doctor when the alarm is raised.

For the Physionet13 dataset, one of the authors took part in an online ethics training program called “protect-
ing human research participants34” (Certification number: 1756830, Acquisition Date: May. 2, 2015). For the 
University of Tokyo Hospital dataset35,36, the authors confirmed that all data were provided with authorisation 
from the University of Tokyo Hospital ethics committee. Furthermore, informed consent was taken from all 
examinees or their families. Using the above datasets, the following five analyses were conducted: 
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(i)	 Preprocessing selection: The influence of two types of preprocessing methods on the prediction accuracy 
was tested to determine the best preprocessing method. In addition, the optimal σd was also determined.

(ii)	 R-LLGMN hyperparameters selection: The influence of Mc,k and Kc on the prediction accuracy and the 
learning time was tested using the same dataset that was used for preprocessing selection.

(iii)	 Prediction of Acute hypotension: Using the hyperparameters determined above, the prediction accuracy on 
occurrence of acute hypotension was examined. The accuracy was compared with the previous methods.

(iv)	 Prediction of Vf: The accuracy of Vf prediction was tested. This analysis aims to investigate whether the 
proposed method can predict occurrence of acute diseases other than acute hypotension.

(v)	 Prediction of multiple symptoms: The prediction accuracy of events triggered by a multiple disease condi-
tion was tested.

In all experiments, the positive threshold was calculated by performing receiver operating characteristic (ROC) 
analysis on the learning dataset. In addition, we defined patients with deterioration as the patients whose events 
occurred within P minutes, corresponding to class c = 2 , and patients in normal condition as those patients 
whose events did not occur within P minutes, corresponding to class c = 1 . Next, the configurations are dis-
cussed in detail.

Preprocessing selection.  Dataset 1 provided by Physionet (see Table  1) was used to determine the best pre-
processing method. Dataset 1 has a total of 60 patients’ data, among which 30 patients had developed acute 
hypotension while the remaining 30 patients had not. The sampling time of Dataset 1 is 60 s, and the input 
biological signals are heart rate, systolic blood pressure, diastolic blood pressure, and mean blood pressure. The 
data was trimmed to 12 min based on preliminary experiment (see Supplementary information S3). Two types 
of processing, (a) normalisation processing and (b) time-differential processing, were performed to investigate 
the influence on accuracy. For preprocessing (a), σd was varied as follows: σd = 1, 0.1, 0.01, 0.001. In these analy-
ses, the learning process of R-LLGMN was repeated five times with different initial weights, and the average 
prediction accuracy was calculated. Iterative two-way analysis of variance (ANOVA) was performed to compare 
methods (a) and (b). If interactions were confirmed with a significance level of less than 5[%], multiple tests 
based on the Bonferroni method were performed with p < 0.05 as the significance level. In statistical process-
ing in (b), multiple tests based on the Bonferroni method were performed under a significance level of 5%. In 
addition, multiple tests based on the Bonferroni method were also performed to compare the effect between 
different σd values. Three combinations of hyperparameters Mc,k and Kc included in R-LLGMN were set as: 
(Mc,k ,Kc) = (1, 2), (2, 3), (3, 3).

R‑LLGMN hyperparameter selection.  The influence of Mc,k and Kc , on prediction accuracy and learning time 
was tested using Dataset 1. This experiment was performed only on the normalisation process. The hyperpa-
rameters were varied in ranges of Mc,k = 1, 2, 3, 4, 5 and Kc = 1, 2, 3, 4, 5 . Hyperparameter σd was set to be 
0.01. Other hyperparameters’ settings were the same as those described in the previous section. The leave-one-
patient-out cross-validation method was employed to calculate prediction accuracy and learning time. The CPU 
of the PC used in this experiment employed an Intel Xeon (R) (X5667: Intel Corporation, number of cores: 4, 
clocking frequency: 3.1 GHz), memory (16.0 GB, DDR 3 800/1066/1333).

Prediction of acute hypotension occurrence.  To verify the prediction performance of the proposed model, a 
comparison with a previous prediction method was conducted. The learning dataset and configuration are the 
same as those used in R-LLGMN hyperparameter selection; however, only the normalisation preprocessing with 
σd = 0.01 was performed. The test dataset used for verification was Dataset 2 (see Table 1), among which 14 
patients had developed acute hypotension whereas the remaining 26 patients had not. The sampling time was 1 
min; the input signals were heart rate, systolic blood pressure, diastolic blood pressure, and mean blood pressure. 
Among the previous methods published by Physionet Challenge5, the method by Henriques et al., the one which 
achieved the highest accuracy, was chosen as the comparison target11. To compare the proposed method under 
the same conditions as the previous method, prediction accuracy of acute hypotension, sensitivity, and specific-
ity were calculated using the test data.

Prediction of Vf occurrence.  Prediction of Vf was performed using Dataset 3 (see Table 1), which was provided 
by Physionet and composed of patients with Vf. Here, because Dataset 3 only contains the patients with positive 
events, we extracted a negative time span from each patient to constitute negative data such that the number 

Table 1.   A list of datasets used in the experiments.

Number of patients Positives Negatives Type of disease Provider

Dataset 1 60 30 30 Acute hypotension Physionet

Dataset 2 40 14 26 Acute hypotension Physionet

Dataset 3 20 20 20 Vfentricular fibrillation Physionet

Dataset 4 15 39 30 A multiple disease condition (These 
name are hidden) The University of Tokyo Hospital
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of positive and negative data was equalised. Here, normalisation preprocessing was selected as the preproc-
essing method. First, the parameters related to RRI were calculated and the influence of input parameters on 
accuracy was investigated. The prediction accuracy for a one-dimensional input (input data: RRI) and a three-
dimensional input (input data: CVRR, RMSSD, and pNN50) was compared. The influence of the prediction 
time P on the prediction accuracy was also investigated. Twenty patients with Vf participated for this analysis. 
As Vf occurred once for each patient, the normal data could be extracted from the same patient but different 
time spans. This resulted in 20 samples with occurrence of Vf and 20 samples under normal conditions. Here, 
the normal data was extracted from the data by excluding one hour before and after the occurrence of Vf. The 
sampling frequency was 250 [Hz]. The analysis target data was trimmed to 30 s. In preprocessing, σd = 0.1 was 
used for one-dimensional inputs and σd = 0.01 was used for three-dimensional inputs. Leave-one-event-out 
cross-validation method was applied to test the influence of prediction time P minutes ahead of the actual occur-
rence of Vf. Here, P was changed from 1 to 10 min in intervals of 1 min. The above procedure was repeated 10 
times with different initial weights of R-LLGMN, and the average prediction accuracy was calculated. A statisti-
cal comparison was performed using the Welch test with a significance level of 5%.

Prediction of symptom events triggered by a multiple disease condition.  Prediction of symptom events triggered 
by a multiple disease condition was performed using Dataset 4 (see Table 1). Dataset 4 contains biological signals 
such as heart rate and arterial blood pressure measured from ICU patients provided by Department of Emer-
gency and Critical Care Medicine of the University of Tokyo Hospital35,36. In this experiment, patients whose 
blood pressure gauge alarms were confirmed to be clinically and technically appropriate were defined as patients 
with a symptom event for their respective disease. Other patients were defined as normal in this experiment. 
Among 15 patients, doctors confirmed that the blood pressure gauge raised the correct alarms for a total of 39 
times in nine patients (Sub. A-I) and 30 times the false alarms in the other six patients (Sub. J-O). The number of 
confirmed symptom events for each patient is as follows: Sub. A: 15 times, Sub. B: 2 times, Sub. C: 5 times, Sub. D: 
6 times, Sub. E: 2 times, Sub. F: 2 times, Sub. G: 1 time, Sub. H: 1 time, and Sub. I: 5 times. The time durations that 
include the symptom events obtained from Sub. A-I comprised 39 positive event data. The negative event data is 
composed of the five different time periods extracted from every six normal patients with false alarms (Sub. J-O). 
As such, 39 data of symptom events and 30 data under normal conditions were obtained (see Table 1).

The prediction accuracy was calculated using leave-one-event-out cross-validation with different P; P was 
changed from 1 to 7 min with 1 min intervals. Here, normalisation preprocessing was selected as the preprocess-
ing method. The input signals were heart rate, systolic blood pressure, diastolic blood pressure, and mean blood 
pressure. σd = 0.01 , and the analysis period was 30 s.

Results
Preprocessing selection.  The results for selection of preprocessing method are shown in Table  2. The 
table shows a two-way ANOVA for hyperparameters (Mc,k ,Kc) = (1, 2), (2, 3), (3, 3) . Based on Table 2. I, it is 
not confirmed that there was a significant difference in the influence of time-differential processing on the pre-
diction accuracy ( p = 1.0 ). In contrast, the normalisation process was confirmed to have a significant effect on 
the prediction accuracy. Moreover, a significant interaction between time-differential preprocessing and nor-

Table 2.   Interaction between time-differential processing and normalisation processing for hyperparameters 
Mc,k and Kc. ∗ : p < 0.05 ∗ ∗ : p < 0.01

Source Sum of squares Degrees of freedom Mean squares Variance ratio F p-value

I. Mc,k and Kc are set 1 and 2

Differential processing 0 1 0 0 1.0

Normalisation processing 802.2 1 802.2 186.3 3.1×10−10∗∗

Interaction 142.2 1 142.2 33.0 3.0×10−5∗∗

Error 68.8 16 4.3

Total 1013.3 19

II. Mc,k and Kc are set 2 and 3

Differential processing 347.2 1 347.2 48.5 3.2×10−6∗∗

Normalisation processing 20.0 1 20.0 2.8 1.1×10−1

Interaction 293.9 1 293.9 41.1 8.6×10−6∗∗

Error 114.4 16 7.2

Total 775.6 19

III. Mc,k and Kc are set 3 and 3

Differential processing 50.1 1 50.1 7.5 1.4× 10−2∗

Normalisation processing 101.3 1 101.3 15.2 1.3× 10−3∗∗

Interaction 133.5 1 133.5 20.0 3.8× 10−4∗∗

Error 106.7 16 6.7

Total 391.5 19
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malisation preprocessing was confirmed ( p = 3.1× 10−10, p = 3.0× 10−5 , respectively). Based on Table 2. II, 
a significant difference in the effect of time-differential preprocessing on the accuracy ( p = 3.2× 10−6 ) was 
observed. It was also confirmed that there was a significant interaction between time-differential preprocess-
ing and normalisation preprocessing ( p = 8.6× 10−6 ). However, a significant difference in the influence of 
normalisation preprocessing on accuracy ( p = 1.1× 10−1 ) was not confirmed. Based on Table  2. III, it was 
confirmed that there was a significant difference in the influence of differentiation preprocessing and normalisa-
tion preprocessing on prediction accuracy ( p = 1.4× 10−2, p = 1.3× 10−3 , respectively). In addition, it was 
confirmed that there was a significant interaction between time-differential preprocessing and normalisation 
preprocessing ( p = 3.8× 10−4 ). The above results show that time-differential preprocessing and normalisa-
tion preprocessing affect each other for all (Mc,k ,Kc) = (1, 2), (2, 3), (3, 3) . Therefore, the four groups can be 
regarded as independent groups and multiple tests based on the Bonferroni-adjusted method were performed 
for a significance level of 5%.

Figure 2a shows the average prediction accuracy calculated using the following four different preprocessing: 
(i) Without preprocessing, (ii) normalisation preprocessing, (iii) time-differential preprocessing, and (iv) time-
differential and normalisation preprocessing. From Fig. 2a, when Mc,k = 1 , Kc = 2 , the accuracy and standard 
deviation for (i), (ii), (iii), and (iv) are 43.7± 0.7%, 61.7± 2.0%, 49.0± 2.8%, and 56.3± 2.2% , respectively. In 
addition, it is confirmed that there was a significant difference between all the groups, except between (i) and (iii) 
and between (i) and (ii). When Mc,k = 2 , Kc = 3 , the accuracy and standard deviation for (i), (ii), (iii), and (iv) 
were 52.3± 3.4%, 62± 1.4%, 51.7± 2.6%, and 46.0± 2.8% , respectively. Significant differences were confirmed 
between (i) and (ii), (ii) and (iii), and (ii) and (iv). When Mc,k = 3 , Kc = 3 , the accuracy and standard deviation 
for (i), (ii), (iii), and (iv) are 49.3± 2.5%, 59.0± 1.9%, 51.3± 3.6%, and 50.7± 1.9% , respectively. In addition, 
significant difference was confirmed among (i) and (ii), (ii) and (iii), and (ii) and (iv). From these results, it can be 
determined that the accuracy was highest when normalisation preprocessing is performed under the conditions 
of (Mc,k ,Kc) = (1, 2), (2, 3), (3, 3) . It was also confirmed that there was a significant difference between all groups.

Figure  2b shows the average prediction accuracy for different σd . When Mc,k = 1 , Kc = 2 , the pre-
diction accuracy for σd = 1, 0.1, 0.01 , and 0.001 were 61.7± 2.0%, 61.0± 3.5%, 70.3± 0.7%, 58± 1.3% , 
respectively. A significant difference was confirmed between σd = 1 and σd = 0.01 , σd = 0.1 and 
σd = 0.01 , and σd = 0.01 and σd = 0.001 . When Mc,k = 2 , Kc = 3 , the prediction accuracies were 
62.0± 1.4%, 60.0± 2.4%, 73.3± 0.0%, 50.0± 1.7% , respectively. A significant difference was confirmed between 
all the groups, except between σd = 1 and σd = 0.1 . When Mc,k = 3,Kc = 3 , average prediction accuracies and 
standard deviations were 49.3± 2.5%, 56.0± 2.1%, 73.3± 0.0%, and65.0± 0.9% . In addition, it was confirmed 
that there was a significant difference between all groups. Therefore, the accuracy was highest when σd = 0.01 
and a significant difference between all groups in the conditions of (Mc,k ,Kc) = (1, 2), (2, 3), (3, 3) was confirmed.

R‑LLGMN hyperparameter selection.  Figure 2c shows the prediction accuracy and time required for 
learning when Mc,k , Kc is varied in the range of 1–5. The prediction accuracy was improved with an increase in 
Mc,k and Kc . The prediction accuracy was maximised (76.6 %) when Mc,k = 3,Kc = 3 and Mc,k = 3,Kc = 4 . It 
then decreased as Mc,k and Kc increased. In addition, it was confirmed that time required for learning increases 
with the increase in Mc,k and Kc.

Prediction of acute hypotension occurrence.  The data from a total of 60 patients was extracted from Physionet13 
(see section “Experimental configuration”) and used to test prediction accuracy for acute hypotension. We com-
pared the prediction accuracy of the proposed method against some previous studies5,11 in which Physionet 
datasets13 were also used. Figure 3 shows the results of comparison of the prediction accuracies between the 
proposed method and the previous methods. From the figure, it can be seen that the accuracy, sensitivity, and 
specificity of the proposed model were 92.5%, 100.0%, and 88.5%, respectively. A receiver operation character-
istic analysis confirmed the area under the curve (AUC) value of 0.86. From this result, the proposed model had 
the same prediction accuracy (92.5%) as the method proposed by Henriques et al., which achieved the highest 
accuracy among the methods published in Physionet Challenge 200913. Moreover, it was also confirmed that the 
proposed method has higher sensitivity (100.0%) than some of the previous methods. 

Prediction of Vf occurrence.  Dataset 3 provided by Physionet13 is used to test the prediction accuracy of Vf (see 
section “Experimental configuration”). Figure 4a shows the time series posterior probabilities of Vf occurrence 
of a patient (Sub. P) when CVRR, RMSSD, and pNN50 were together used as inputs for each 10 s period. The 
figure confirms that posterior probabilities increase as a function of time till the occurrence of Vf reduces. Fig-
ure 4b compares accuracy, sensitivity, and specificity between a one-dimensional and a three-dimensional input. 
The prediction time was set to P = 1 minute. The figure confirms that there is a significant increase in accuracy, 
sensitivity, and specificity for the three-dimensional input compared to a one-dimensional input. Therefore, it 
was confirmed that the prediction accuracy improves when using multidimensional inputs. Table 3 shows the 
confusion matrix and prediction accuracies for all patients with different prediction time points P minutes ahead 
of the occurrence of Vf. Based on Table 3, prediction accuracies at prediction time points P=1, 2, ...,10 are 90.0%, 
90.0%, 87.5%, 82.5%, 82.5%, 77.5%, 72.5%, 72.5%, 75.0%, and 65.0%, respectively. The AUC values at prediction 
time points P=1, 2, ...,10 are 0.94, 0.94, 0.85, 0.91, 0.90, 0.84, 0.70, 0.74, 0.72, and 0.62, respectively. Therefore, the 
prediction accuracy increases as we approach the time of occurrence of Vf.

Prediction of symptom events triggered by a multiple disease condition.  The dataset provided by the ICU at the 
University of Tokyo Hospital was used to test the prediction accuracy of symptom events triggered by an undi-
agnosed multiple disease condition (see section “Experimental configuration”). Figure 5 shows the time-series 
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posterior probabilities of a symptom event in a patient (Sub. A) when measured biological signals were input for 
each 10 s period. The figure confirms that the posterior probabilities increase as time approaches the symptom 
event. Table 4 shows the confusion matrix and prediction accuracies for all patients from P = 1 min to P = 10 
min. The prediction accuracies at prediction time points P=1, 2, ..., 7 are 97.1%, 94.2%, 95.7%, 94.2%, 91.3%, 
92.8%, and 91.3%, respectively. The AUC values at prediction time points P=1, 2, ..., 7 are 0.98, 0.97, 0.94, 0.94, 
0.95, 0.93, and 0.94, respectively. Therefore, the prediction accuracy increases as we approach the time of occur-
rence of acute clinical deterioration.

Figure 2.   Comparison of accuracies for different configurations. (a) Compares the preprocessing methods. (b) 
Compares the different values of standard deviation parameter σd (hyperparameter). Both comparisons were 
carried out by setting (Mc,k ,Kc) = (1, 1), (2, 3), (3, 3) . (c) Accuracies and the required time duration for learning 
in different configurations of hyperparameters Mc,k and Kc.
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Discussion
With the aim of predicting an acute deterioration triggered by target symptoms, we proposed a prediction method 
employing a probabilistic neural network that embeds the hidden Markov model with multidimensional mixed 
Gaussian distribution, called R-LLGMN. It enables prediction of a symptom event from multiple biological 
signals using the probability transition process in physiological conditions. The parameters of the model can be 
acquired through machine learning; hence, it can potentially be applied to various symptoms.

To determine the appropriate preprocessing method and model configuration, we statistically analysed the 
prediction accuracies generated under different settings using the data provided by Physionet. We then found 
that the prediction accuracy peaks when normalisation preprocessing is performed (see Fig. 2a). This is because 
appropriate scaling of the input data eliminates the difference in amplitude between data, which is irrelevant for 
R-LLGMN to discriminate between the two classes. Significant differences between time-differential preprocess-
ing and no preprocessing was not confirmed when the hyperparameters in R-LLGMN were set to the following 
values: (Mc,k ,Kc) = (1, 2), (2, 3), (3, 3) (see Fig. 2a). This is because time-differential preprocessing can only 
represent information on short-term temporal changes in the biological signal, making it difficult to make long-
term predictions. These results indicated that normalisation is an effective preprocessing that enabled to obtain 
the highest accuracy. In addition, we confirmed that the prediction accuracy was the highest when σd = 0.01 (see 
Fig. 2b). This is because variation in the input data affected the learning of R-LLGMN. These results indicate that 
hyperparameter σd must be determined based on the variation in the input data used for prediction. Therefore, in 
the following analysis, a preliminary analysis was conducted to determine σd . However, a detailed investigation 
on the method for selecting σd will be necessary in the future.

In terms of the neural network configuration, it was demonstrated that the prediction accuracy becomes 
maximum when Mc,k = 3 , Kc = 3 and Mc,k = 3 , Kc = 4 (see Fig. 2c). This is because increasing Mc,k and Kc 
enables R-LLGMN to model complicated time series characteristics by improving its representation ability. 
Moreover, it was demonstrated that prediction accuracy decreases when the values of the hyperparameters are 
increased to more than Mc,k = 3 , Kc = 3 and Mc,k = 3 , Kc = 4 . This is due to overfitting, which can worsen the 
generalisation performance. In addition, Mc,k , Kc increases the time required for the learning process (see Fig. 2c) 
because the computational complexity increases. Therefore, considering the trade-off between learning time and 
prediction accuracy, Mc,k = 3 , Kc = 3 ( c = 1, 2 , k = 1, 2, 3 ) were considered as the optimal hyperparameters.

Based on the hyperparameters and model configuration, the prediction accuracies were tested for acute 
hypotension, Vf, and a multiple disease condition. The prediction results for acute hypotension confirmed that 
the proposed model has the same level of prediction accuracy (92.5%) and sensitivity (100%) as the method 
proposed by Henriques et al. (see Fig. 3).

The prediction results for Vf confirmed a significant increase in accuracy, sensitivity, and specificity when 
using a three-dimensional input (see Fig. 4b). This is because not only the time series characteristics of RRI, but 
also the vagus nerve activity of the patient could be evaluated. Vagal nerve activity has been reported to increase 
or decrease37 before the onset of Vf. Thus, it is effective in predicting Vf, which is a type of ventricular arrhythmia. 
In addition, an increase in the number of input dimensions also contributed to an improvement in prediction 
accuracy as it enabled R-LLGMN to extract characteristics of multiple types of biological information. However, 
the prediction accuracy decreased as the prediction time point parameter P increased. This indicates difficulties 
in early prediction (see Table 3). Introducing frequency analysis on the biological signals and applying it as an 
additional input dimension may improve early prediction accuracy.

The prediction result for a multiple disease condition confirmed that the posteriori probability increases as 
the prediction time point P approaches the point of a symptom event (see Fig. 5). Table 4 shows that all the pre-
diction accuracies at prediction time points from P = 1 min to P = 7 min before the occurrence of a symptom 
event exceed 90.0%. This verifies the effectiveness of the proposed method in predicting events triggered by a 
multiple disease condition.

In this paper, we only tested prediction accuracy using a limited number of combinations of hyperparam-
eters ( Kc and Mc,k ). Testing with more combinations could provide better prediction accuracy or enable earlier 
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Table 3.   Confusion matrix and accuracies of patients with Vf for different prediction time points P.

Prediction time P 1 2 3 4 5 6 7 8 9 10

True positive 17 17 16 14 15 14 12 12 13 9

True negative 19 19 19 19 18 17 17 17 17 17

False negative 3 3 4 6 5 6 8 8 7 11

False positive 1 1 1 1 2 3 3 3 3 3

Accuracies [%] 90.0 90.0 87.5 82.5 82.5 77.5 72.5 72.5 75.0 65.0
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Figure 4.   Prediction of acute clinical deterioration triggered by Vf. (a) Time course change in HRV indices 
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different input dimensions in terms of average accuracy, sensitivity, and specificity. The blue bar indicates 
accuracy achieved when RRI was used as the input. The red bar indicates accuracy achieved when CVRR, 
RMSSD, and pNN50 were together used as the input.
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detection. In addition, optimising the duration of RR interval analysis may also contribute to better performance. 
However, searching the combinations of hyperparameters is considerably time-consuming, and large values of Kc 
and Mc,k may cause overlearning. A more efficient learning algorithm is required to optimise the hyperparameters 
for the neural networks used in this paper.

All input indices employed in this study are the linear variables in the time domain, but linear and nonlin-
ear variables in the frequency domain such as standard deviation of HRV and power of HRV in the high- and 
low-frequency bands are reportedly more effective for predictive clinical purposes23,38–40. However, the electro-
cardiogram data used in this study were sampled at 250 Hz, which was insufficient to estimate the frequency 
information of the heart rate interval accurately. Further improvement of the prediction accuracies and earlier 
detection of deterioration may thus be achieved by incorporating the frequency domain indices derived from 
the electrocardiogram data sampled at higher sampling frequencies. It should be noted that when adding these 
indices as the input features, the proposed method does not need to change its fundamental structure and algo-
rithm because it adopts an R-LLGMN-based machine learning framework.

The number of patients analysed is not ideal. The database we used (Physionet Challenge 2009) only provides 
data for 30 patients with acute clinical deterioration for the learning dataset and 14 patients with acute clinical 
deterioration for the test dataset. Although we analysed four different datasets using the proposed algorithm 
with a single network architecture and the results demonstrated in this paper indicate the success and versatility 
of the proposed method, it is necessary to increase the number of patients from other open databases such as 
MIMIC III to further enhance the generalisability of the proposed method.

The results of our experiments showed that the proposed model has the highest prediction accuracy com-
pared to contemporary methods. In addition, the proposed method is capable of predicting a symptom event 
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Figure 5.   Analysis results of heart rate, arterial pressure, and prediction of acute clinical deterioration for a 
patient with a multiple disease condition (Sub. A).

Table 4.   Confusion matrix and identification rates of patients with a multiple disease condition for different 
prediction time points P.

Prediction time P 1 2 3 4 5 6 7

True positive 37 36 36 35 34 36 34

True negative 30 29 30 30 29 28 29

False negative 2 3 3 4 5 3 4

False positive 0 1 0 0 1 2 1

Accuracies [%] 97.1 94.2 95.7 94.2 91.3 92.8 91.3
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triggered by different diseases, such as acute hypotension and Vf, by adjusting the parameters of the model using 
the corresponding learning data. Given that the proposed method can predict a target symptom event before 
it actually occurs with a high accuracy of approximately 90%, we can conclude that the proposed method has 
achieved a clinically applicable precision.
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