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estimating the introduction 
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The estimation of farm-specific time windows for the introduction of highly-pathogenic avian 
influenza (HPAI) virus can be used to increase the efficiency of disease control measures such as 
contact tracing and may help to identify risk factors for virus introduction. The aims of this research 
are to (1) develop and test an accurate approach for estimating farm-specific virus introduction 
windows and (2) evaluate this approach by applying it to 11 outbreaks of HPAI (H5N8) on Dutch 
commercial poultry farms during the years 2014 and 2016. We used a stochastic simulation model with 
susceptible, infectious and recovered/removed disease stages to generate distributions for the period 
from virus introduction to detection. The model was parameterized using data from the literature, 
except for the within-flock transmission rate, which was estimated from disease-induced mortality 
data using two newly developed methods that describe HPAI outbreaks using either a deterministic 
model (A) or a stochastic approach (B). Model testing using simulated outbreaks showed that both 
method A and B performed well. Application to field data showed that method A could be successfully 
applied to 8 out of 11 HPAI H5N8 outbreaks and is the most generally applicable one, when data on 
disease-induced mortality is scarce.

Highly pathogenic avian influenza (HPAI) virus may cause severe clinical signs in poultry species, resulting in 
very high mortality  rates1–3. Wild waterfowl is the main reservoir for low pathogenic avian influenza (LPAI) 
 viruses4, which may evolve into highly pathogenic strains after introduction of LPAI subtypes H5 and H7 into 
poultry  flocks5,6. Since the beginning of the 21th century, evidence has emerged that an endemic situation of 
HPAI virus strains in poultry flocks in South East Asia has created the opportunity for spill over into wild bird 
populations and migratory waterfowl is thought to be responsible for the spread of different HPAI viruses of sub-
type H5Nx to parts of the world where there is no endemic HPAI situation in commercial  poultry4. For example, 
in the Netherlands recent outbreaks of H5N8 (in 2014 and 2016) and H5N6 (2017) in commercial poultry are 
thought to have been caused by virus that is brought by migratory waterfowl infected with HPAI to areas in the 
neighbourhood of poultry  farms7–9. It is therefore important to be prepared for new HPAI outbreaks and have 
plans in place to control the spread of HPAI.

Estimating a time window for the introduction of a virus on a farm is important for the prevention and 
control of disease outbreaks for several reasons. Firstly, contact-tracing may be an important control measure 
that aims to prevent or reduce the size of an  epidemic10. For this purpose (amongst others), many countries have 
put systems in place to record the location of farms and movement of  poultry11. Having accurate estimates of 
the time of virus introduction will improve the efficiency and efficacy of contact tracing by focusing efforts on 
the time window that an outbreak farm was infectious. Secondly, the time from the introduction of a virus on a 
farm until its detection is a sensitive parameter in simulation models that try to estimate the size and duration 
of epidemics given various control  measures12,13. Thirdly, it may also help to identify and assess the importance 
of potential risk factors for the introduction of a disease on a farm. For example, movements of people, vehicles 
or materials or ecological/environmental changes in the direct surroundings of the poultry house are more likely 
to be associated with virus introduction onto a farm if they happen close to the estimated introduction  time14. 
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And having accurate estimates of the time of disease introduction makes it possible to account for the timing of 
introduction through the year (e.g. the month) in the analysis of risk-factors for disease introductions.

Surprisingly, literature on the estimation of the introduction time of avian influenza into farms from outbreak 
data is scarce. To our knowledge there are three studies estimating the introduction time of avian influenza virus, 
two for LPAI and one for HPAI. The studies on LPAI derive the virus introduction time by fitting a deterministic 
simulation model to data on either the prevalence of infected and seroconverted  animals15 or from data on egg 
 production16. The study on HPAI describes a method to estimate the virus introduction time from disease-
induced mortality  data17. In the latter study, a stochastic simulation model was derived to describe the spread of 
HPAI virus within flocks of chickens. Using this model, a window for the introduction of HPAI was derived by 
tracking the time that was needed for the predicted disease-induced mortality to match the observed mortality 
at the time of detection.

The estimated time from HPAI virus introduction until detection will depend on the assumed value for the 
transmission rate, which represents the number of susceptible birds that is infected by an infectious bird during 
a given time interval. The transmission rate of HPAI virus may depend on many factors such as the HPAI virus 
subtype and clade, the poultry species, the farm type and the design of farm-buildings5,18,19. To our knowledge, 
there is only one published method to estimate a farm-specific between-bird transmission rate of HPAI virus from 
daily disease-induced mortality  data20,21 (see “Methods”) and this method has a number of important limitations. 
First of all, it may overestimate the transmission rate, because it does not account for the fast increase in the 
number of infected individuals during even small time steps in the exponential phase of an outbreak. Secondly, 
this method can often not be applied to outbreaks for which disease-induced mortality data is only available 
for a few days (see the “Results” section of this study). This is an important limitation, because HPAI outbreaks, 
especially after detection of the first outbreak in a country and resulting in a high level of alertness, are often 
detected shortly after the disease-induced mortality exceeds the background mortality.

The aim of this paper is therefore to develop a more generally applicable approach for estimating a time win-
dow for the introduction time of HPAI virus into commercial poultry farms that (1) uses more accurate estimates 
of the farm-specific transmission rate and (2) can be applied to cases for which daily mortality is scarce. To show 
how this approach can be used in practice, we will apply it to HPAI-outbreaks on commercial poultry farms in 
the Netherlands during the years 2014 and 2016.

Methods
Data. We analysed mortality data from poultry farms in the Netherlands with outbreaks of HPAI virus clade 
2.3.4.4 of subtype H5N8 during the years 2014 and 2016. The mortality of poultry in each house on these farms 
was recorded daily by the farmer on a production chart until detection of the disease and subsequent culling. 
Production charts with daily mortality were gathered by the Netherlands Food and Consumer Product Safety 
Authority (NVWA) during a standardized-investigation interview of the farmer after an outbreak was confirmed 
by laboratory diagnostics. In 2014 there were outbreaks on four chicken farms and one meat duck farm. In 2016 
there were outbreaks on four chicken farms, four meat duck farms and on the premises of one backyard bird 
wholesale company. Chicken farms were either layers or broiler breeders. The outbreaks on one chicken farm 
and one duck farm in 2016 were excluded from our analysis, because disease-induced mortality could not be 
estimated for a period of at least 2 days (see below). The outbreak on the premises of the backyard bird wholesale 
company was also excluded, since mortality data were not available by species. Therefore, we analysed data from 
11 out of the 14 HPAI H5N8 outbreaks in 2014 and 2016: 7 outbreaks on chicken farms and 4 outbreaks on 
duck farms. The virus introduction windows for these farms were estimated using mortality data for one specific 
poultry house per farm, where clinical disease signs were observed. The virus infections on most farms were also 
limited to one poultry house on the farm premises. For one outbreak on a duck farm in 2014 (farm E), enhanced 
mortality was observed in both an old and a young flock (kept in separate houses). We only used the data on 
the young flock, since the old flock was already slaughtered at the time of detection. For another outbreak on a 
duck farm in 2016 (farm H), enhanced mortality was detected in two houses and both houses were culled on the 
same day. However, only one of these houses was included in our analysis (house 1), because disease-induced 
mortality in the other house could not be estimated for a period of at least two days. For the two breeder farms, 
we combined mortality data for cocks and hens. Table 1 gives an overview of the characteristics of the outbreak 
farms. Daily mortality data were available for a period of a few weeks to several months prior to detection. The 
last day for which mortality was observed was usually one or two days before the culling date, but was the same 
as the culling date for two outbreak farms.

Back-calculation approach. To back-calculate from mortality data the probable time window of virus 
introduction into an individual outbreak farm, we used a SEIR (susceptible-exposed-infectious-recovered) 
modelling approach consisting of the following steps:

1. Determine the time interval prior to detection during which the recorded mortality can be considered to 
reflect disease-induced mortality

2. Estimate the farm-specific transmission parameter β from the pattern of daily disease-induced mortality 
in the interval above. This parameter represents the daily number of secondary infections by one infectious 
animal in a susceptible population. The transmission rate was determined for each farm separately, because 
it may depend on factors such as the farm type, design of the poultry house and farm management specifics. 
Other model parameters describing the distributions of the latent and infectious periods and the percentage 
of infected birds dying were assumed to be the same for farms housing the same species and taken from the 
literature.
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3. Enter the above-mentioned parameter values into a stochastic model and repeatedly simulate the disease 
outbreak on a farm until the calculated cumulative disease-induced mortality exceeds the observed mortal-
ity throughout the time interval determined in step 1. Each simulation is started with one latent individual. 
The length of the simulated period is recorded for every simulation and used to construct a distribution for 
the virus introduction time window.

4. Perform a sensitivity analysis to uncertain parameters.

Below, these four steps are described in more detail. For step 2, we developed two new methods (A and B). 
Method A estimates β by directly fitting the SEIR model to the deterministic growth in mortality. Method B 
estimates β by fitting back-calculated data on the daily number of infectious and newly infected animals using a 
likelihood function which accounts for the stochastic nature of the early phase of disease outbreaks.

the time interval of disease-induced mortality. To estimate for each outbreak farm from which day 
onwards the observed mortality reflected HPAI virus-induced mortality instead of background mortality due to 
other causes, we used a moving weekly average  approach22. In short, this approach identifies the first instance 
when, for two consecutive days, the mortality is significantly higher than the daily mortality during the preced-
ing week-long period. The number of consecutive time points nd during which the recorded daily mortality was 
estimated to reflect HPAI virus-induced mortality is given in Table 2 for the different outbreak farms.

General modelling approach. In order to estimate the farm-specific transmission rate β and back-calcu-
late the point of virus introduction from disease-induced mortality data, we used a SEIR modelling approach. 
The poultry population was divided into susceptible ( S ), exposed ( E ), infectious ( IR, ID ) and recovered ( R ) com-
partments. To track the cumulative number of disease-induced deaths, we added an additional compartment D . 
The model distinguishes two alternative infectious stages IR and ID in order to accommodate for differences in 
the infectious period distribution between animals that die and animals that recover. A fraction fD of the indi-
viduals that become infectious enter the compartment of individuals that die from disease and the remainder 
( 1− f D ) enters the compartment of recovering individuals.

Model parameters describing the distributions of the latent and infectious periods and the percentage of 
infected birds dying were assumed to be the same for farms housing the same species and taken from the litera-
ture. Below we present two alternative methods to estimate a farm-specific transmission parameter β (methods 
A and B) using the general SEIR modelling approach.

Having obtained an estimate of transmission parameter β , we used a stochastic version of the general SEIR 
model (Supplementary Methods S1) to obtain a distribution for the time of disease introduction by repeat-
edly running this and recording the time interval from disease introduction until exceedance of the observed 
cumulative disease-induced mortality. The variation in outcome between the different model runs is due to the 
stochastic nature of the early phase of an outbreak, when the number of infectious individuals is still small. We 
define the ‘mean time of virus introduction’ as the mean of the distribution for the point of virus introduction 
with parameter β set to its maximum likelihood estimate. The ‘introduction window’ is defined as the time 

Table 1.  Farm characteristics, disease-induced mortality and the estimated date of virus introduction for 
outbreaks of highly pathogenic avian influenza of subtype H5N8 on poultry farms in the Netherlands in 
2014 and 2016. a All outbreaks were in flocks that were housed indoors. b Based on the mean time of virus 
introduction with transmission parameter β estimated using method A (see “Methods”). c The value of the 
transmission parameter β could not be estimated and therefore the time of virus introduction could not be 
back-calculated.

Farm identifier Farm  typea # Birds in infected house
Estimated cumulative mortality 
due to disease Date last recorded mortality

Estimated date of virus 
 introductionb

Chickens 2014

A Layer 23,459 1519 16/11/2014 01/11/2014

B Layer 27,840 997 20/11/2014 10/11/2014

C Layer 28,417 106 29/11/2014 17/11/2014

D Broiler breeder 6,141 210 20/11/2014 –c

Ducks 2014

E Meat duck 14,500 115 21/11/2014 –c

Chickens 2016

F Layer 23,699 656 12/12/2016 05/12/2016

C Layer 27,369 127 24/12/2016 18/12/2016

G Broiler breeder 12,296 224 20/12/2016 –c

Ducks 2016

H Meat duck 7,800 83 01/12/2016 16/11/2016

I Meat duck 8,550 416 01/12/2016 21/11/2016

E Meat duck 15,000 105 15/12/2016 26/11/2016
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interval between the means of the distributions for the point of virus introduction with parameter β set to its 
lower and upper confidence bound, respectively (Fig. 1). The introduction window therefore provides a measure 
of the uncertainty in the time of virus introduction.

The distribution for the time of virus introduction for a given value of parameter β was based on the output 
of 1,000 stochastic model runs. At the start of a simulation, one exposed animal was assumed to be present in 
an otherwise susceptible population. Simulations were discarded and did not count towards the 1,000 simula-
tions, if the disease died out before the estimated cumulative disease-induced mortality at the time of detection 
was reached. The percentage of discarded simulations varied between outbreak farms from 0 to 28%, but was 
usually close to 0% (Supplementary Results S1). In the model simulations we used a fixed-time step of 0.01 day.

Estimating model parameters that are not farm-specific. The length of the exposed stage, the infec-
tious stages, the shape parameter of the gamma distribution for these stages and the fraction of animals dying 
from HPAI subtype H5N8 in 2014 were estimated from the literature for both chicken and duck farms. For 
the HPAI H5N8 outbreaks in 2016, these parameter values were estimated from a transmission  experiment23. 
Further details about the methodology used for the literature review and the estimation of these parameters are 
described in Supplementary Methods S2. The default settings of epidemiological parameters other than β are 
given in Table 3.

Estimating the farm-specific transmission rate. We used and compared two methods for the estima-
tion of the transmission parameter β using a maximum likelihood approach. The likelihood-ratio test was used 
to obtain lower and upper 95% confidence bounds.

Method A. This method estimates the value of parameter β by using a deterministic version of the general 
SEIR model and by fitting the model-predicted disease-induced mortality dpred to the observed mortality dobs . 
We constructed the following expression for the likelihood L assuming Poisson variation at each observation 
time point:

Although this method requires the estimation of the time of virus introduction ( tintro) in addition to trans-
mission parameter β , the deterministic version of the SEIR model was only used to estimate the transmission 
parameter. As mentioned above, the virus introduction time was estimated in a subsequent step using the sto-
chastic version of the SEIR to account for the stochastic nature of the initial phase of an outbreak. We used the 
deterministic version of the SEIR model to estimate parameter β from disease-induced mortality data, because 
an outbreak will be in the exponential growth phase when mortality significantly increases.

A detailed description of the deterministic model is given in Supplementary Methods S3. Similar models 
consisting of ordinary differential equations (ODEs) with gamma distributed disease stages have previously been 
applied to describe the dynamics of  LPAI15 and  HPAI24 in poultry flocks. We numerically integrated the ODEs 

(1)L =
∏i=nd

i=1

(dpred,i
dobs,i )(e−dpred,i )

dobs,i!

Table 2.  The number of data points that were available for the estimation of transmission parameter β using 
methods A and B for outbreaks of highly pathogenic avian influenza of subtype H5N8 on Dutch poultry 
farms in 2014 and 2016. a This is the same as the number of data points available for the estimation of the 
transmission parameter β using method A.

Farm identifier
Number of days for which mortality 
was recorded

Number of days for which mortality was 
assumed to be disease-induced ( nd)a

Length of the latent period 
(days)

Number of data points available for β 
estimation using method B ( nt)

Chickens 2014

A 28 7 2 4

B 61 3 2 0

C 12 3 2 0

D 45 2 2 0

Ducks 2014

E 19 4 1 2

Chickens 2016

F 16 3 1 1

C 241 2 1 0

G 55 2 1 0

Ducks 2016

H 42 5 1 3

I 25 3 1 1

E 22 2 1 0
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using a method which applies a variable step size in order to balance computational efficiency with a sufficient 
level of accuracy (function lsoda in R package deSolve).

Figure 1.  The distributions for the day of virus introduction on outbreak farm H for three different values of 
transmission parameter β (maximum likelihood estimate (MLE), upper and lower 95% confidence bounds). 
Arrows indicate the introduction window and the mean time of virus introduction (see text).

Table 3.  The estimated values of epidemiological parameters for highly pathogenic avian influenza of subtype 
H5N8 that infected poultry farms in the Netherlands in 2014 and 2016. a See Supplementary Methods S2 
for a description of the search terms and selection criteria that were used for the literature review and for a 
description of the estimation of parameter values from the literature data. b In the absence of sufficient data, we 
used the value estimated for the distributions of the latent and infectious period of chickens in 2014.

Parameter Estimates for the 2014  straina Estimates for the 2016  straina Sources for 2014 strain Sources for 2016 strain

Chickens

Length of latent period (days) 2 1 41 23

Length of infectious period (days) 2.5 1.1 2,19,41–49 23

% of infected animals dying from disease 100 100 2,19,41–49 23

Shape parameter of the gamma distribution for the latent 
and infectious periods 20 20 2,41,45,46,48 –b

Ducks

Length of latent period (days) 1 1 18 23

Length of infectious period—survivors (days) 8.5 6 18 23

Length of infectious period—non-survivors (days) 8.5 3.5 18 23

% of infected animals dying from disease 20 20 18 23

Shape parameter of the gamma distribution for the latent 
and infectious periods 20 20 –b –b
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Method B. Method B is building on the work by Tiensin et al.21 and Bos et al.20. Below, we first describe the 
method developed in these two studies and then explain why and how we adjusted it to obtain Method B. 
The original method uses a product-binomial likelihood function to account for the stochastic variation in 
the early phase of an outbreak when there are relatively low numbers of infected birds and the deterministic 
approximation of method A may be unsatisfactory. Analogous to the estimation of β from small-scale transmis-
sion  experiments3, the method calculates the probability that susceptible individuals become infected or escape 
infection during one-day time steps. Denoting the number of time steps for which the probability on a certain 
number of new cases can be calculated as nt , the likelihood function is given by:

Here pinf (ti) is the infection probability across the ith day. The number of new cases ( C ) and susceptible 
animals ( S ) need to be back-calculated from the observed disease-induced mortality as described elsewhere 20,21 
and as summarized in Supplementary Methods S4. To be able to perform this back-calculation, the lengths of the 
latent and infectious periods must be rounded to a fixed integer numbers of days. The net number of data points 
( nt ) that is available for estimating parameter β equals to nt = nd − lE − 1 with nd denoting the number of days 
for which disease-induced mortality was available (Supplementary Methods S4). A longer latent period decreases 
the number of data points ( nt ), because it reduces the overlap of the period for which the number of infectious 
individuals can be back-calculated with the period for which the number of new cases can be back-calculated.

According to a standard  approximation20,21, the infection probability is approximated as 
pinf (ti) = 1− e

−
βItot(ti)
N(ti)  with Itot(ti) and N(ti) denoting the number of infected animals and the number of birds 

alive at time ti . The infection hazard βItotN  is assumed to remain constant during a one-day time step. However, 
the typically sharp rise in mortality in HPAI affected flocks suggests that the number of infectious individuals 
and therefore the infection hazard may significantly increase during a one-day time interval. To address this, we 
developed a new approximation to the likelihood by assuming exponential growth of the number of infectious 
individuals during the one-day time steps. This leads to the following equation for the probability of infection 
(see Supplementary Methods S5):

The value of growth rate r can be calculated from the value of parameter β , the lengths of the exposed and 
infectious stages and the fraction of individuals dying from disease (if applicable) using the following equation 
(see Supplementary Methods S5):

Here we use the total population size at the start of an outbreak ( N0) as a close approximation of the actual 
number of birds alive, since usually less than 10% of a flock has been infected at the time of detection in the 
Netherlands.

Goodness of fit. We used Lin’s concordance correlation  coefficient26 as a measure for the goodness of the 
model fit to the data. It  was calculated using the model-predicted vs. observed mortality counts for method A 
and using the model-predicted vs. back-calculated newly infected animals per day for method B.

Model testing. We tested the accuracy of methods A and B as well as the method described in  literature20,21 
by applying them to simulated HPAI-outbreaks on chicken farms and by subsequently comparing the estimated 
values of the transmission rate β with the value that was used to generate the outbreaks. For this purpose, we 
created outbreaks with transmission rates varying from 2.5 to 10 in steps of 2.5. In step 1 of our back-calcula-
tion approach, we assume all mortality to be disease-induced when the daily mortality exceeds a farm-specific 
threshold (see above). To explore the effect of this assumption, we created outbreaks with and without back-
ground mortality for each value of the transmission rate. If accounted for, the daily mortality rate was set to 
0.02% and equals the average daily mortality on the 7 chicken farms in this study prior to the estimated time of 
disease introduction. For each combination of transmission and background mortality rate, we simulated one 
outbreak using the deterministic version of the general SEIR model (Supplementary Methods S3) and 200 out-
breaks with the stochastic version of the general SEIR model (Supplementary Methods S1). The other parameter 
settings were the same for both models with a 1-day latent period, a 2-day infectious period, 100% mortality 
and the shape parameter of the gamma-distribution for the latent and infectious periods was set to 20. All 
simulations started with 1 latent individual in a poultry house with in total 25,000 birds. Parameter β was fitted 
to the predicted daily disease-induced mortality. The average 97.5% percentile of the daily mortality on the 7 
chicken farms in this study amounted to 0.06%. We therefore assumed that the daily disease-induced mortality 
must exceed 15 (0.06% of 25,000) to be flagged as disease-induced. Disease-induced mortality was assumed to 
be available for 4 days after disease-induced mortality exceeded the daily mortality threshold (Supplementary 
Methods & Results S1).

Time of virus introduction and the introduction window. Using the default parameter settings 
(Table 3), we tried to estimate the parameter β for each outbreak farm using both methods A and B. We subse-
quently determined the mean time of virus introduction and introduction window, as described above.

(2)L =
∏i=nt

i=1

(

S(ti)!

C(ti + 1)!(S(ti)− C(ti + 1))!

)

(pinf (ti))
C(ti+1)(1− pinf (ti))

S(ti)−C(ti+1)

(3)pinf (t) = 1− e
−

βItot (t)(e
r−1)

N0r

(4)r = β
(

fDlID + (1− fD)lIR
)

e−rlE

(

fD

lID

(

1− e−rlID
)

+
(1− f D)

lIR

(

1− e−rlIR
)

)
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Sensitivity and elasticity analysis. We determined the sensitivity of the transmission parameter β and 
the mean time of virus introduction to changes in (1) the number of days with disease-induced mortality and 
(2) in the default settings of epidemiological parameters. The number of days with disease-induced mortality 
was decreased and increased by one day compared to the default scenario, except when there were only two days 
with disease-induced mortality in the default scenario (Table 2). For these outbreak farms, we only increased the 
number of days with disease-induced mortality by one day.

The ranges over which epidemiological parameters were varied are given in Supplementary Methods & Results 
S2. To compare the effect of uncertainty in the different epidemiological parameters on transmission rate β and 
the mean time of virus introduction, we calculated the elasticity ( e)25. Only method A was used in our sensitivity 
analysis as it is the most generally applicable one of the two methods.

Decision rules. In order to obtain a minimal level of accuracy, we only accepted estimates of transmission 
rate β when the following requirements were met:

(1) the likelihood was based on ≥ 2 data points ( nd ≥ 2 for method A and nt ≥ 2 for method B)
(2) the shape of the likelihood profile allowed estimation of the maximum likelihood estimate as well as upper 

and lower confidence bounds for the transmission parameter β
(3) the agreement between the observed and predicted disease-induced mortality as measured by Lin’s con-

cordance correlation  coefficient26 ( rl ) was ≥ 0.75.

We set the minimum number of data points to 2, because the estimated transmission rate may change con-
siderably when increasing the number of data points from 1 to 2, while further increasing the number of data 
points to 3 or more often had less effect on the estimated value of the transmission rate (results not shown). In 
addition, from a practical point of view, often there are only 2 or 3 data points available for the estimation of the 
transmission rate. The second requirement avoids estimates of the transmission rate without an indication of 
the uncertainty. The third requirement ensures a minimum quality of the fit and is a strict criterion, since we are 
dealing with biological data and therefore complex and stochastic processes. The value of coefficient rl is highest 
(equal to 1) when all points on a scatter plot of the observed versus predicted disease-induced mortality lie on 
the 45-degree line through the origin (perfect model fit). Deviations from the slope or the intercept (origin) of 
the 45-degree line will decrease the value of rl.

Software. All analyses were coded and performed using R version 3.4.0 (The R Foundation for Statistical 
Computing, 2017).

Results
Descriptive statistics of the mortality data. In Table 1 we list the outbreak farms, their type, and the 
duration and size of virus-induced mortality, estimated using the moving average  approach22. Notably, for 8 of 
the 11 farms, the estimated period with virus-induced mortality was two or three days long. For the other three 
outbreak farms this period was between 4 to 7 days long.

estimates of the latent and infectious period length. The values for these parameters and their 
sources as derived from literature are summarized in Table 3. These values, determined by experimental infec-
tion trials, reflect the difference in time scales between the strains with the 2016 strain having a shorter infectious 
period than the 2014 strain in both chickens and ducks and also a shorter latent period in chickens.

Model testing. We tested the methods A and B as well as the literature method by applying them to simu-
lated HPAI outbreaks on a chicken farm for values of transmission parameter β varying from 2.5 to 10 and in 
absence and presence of background mortality (Supplementary Methods & Results S1). Method A as well as 
B performed well when applied to the deterministic outbreaks for all transmission and background mortal-
ity rate scenarios and deviations of the estimated transmission rate from the true value were less than 8%. The 
confidence intervals for parameter β were wider for method A than for method B, since method A also requires 
the estimation of a second parameter (see above). Contrary to methods A and B, the literature method overes-
timated the value of transmission parameter β by a factor 1.4 to 2.8. The same picture emerges when applying 
the different methods for estimating parameter β to the simulated stochastic outbreaks. Again, the estimates for 
β obtained by methods A and B were usually much closer to the actual value used for the model simulations 
(deviations 8 to 23.7%) than the estimates obtained by the literature method (deviations 13.6 to 104%). Interest-
ingly, estimates of the transmission rate by methods A and B deviated further from the true value for stochastic 
than for deterministic outbreaks and were always less than the true value of parameter β . This is probably due to 
the importance of stochastic effects in the early phase of an outbreak which slow down the increase in the daily 
disease-induced mortality in comparison to an outbreak predicted by a deterministic simulation model (Sup-
plementary Methods & Results S1).

transmission parameter β. Estimates for β could be obtained for 8 out of the 11 outbreak farms (Table 4). 
Only for two outbreak farms, β could be estimated using both method A and B (Fig. 2). For the other 6 farms, 
β could only be estimated using method A. Method B could not be applied to 9 out of the 11 outbreak farms, 
because the number of time points nt for the estimation of parameter β , that resulted from the back-calculation 
procedure on the data, was less than 2 (Table 2) and did not satisfy our minimum criteria for obtaining accurate 
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β estimates. Method A could not be applied to 3 out of the 11 outbreak farms, because the disease-induced mor-
tality fluctuated strongly in time and could not be described well by an exponential model ( rl < 0.75 ) (1 farm) 
or the likelihood profile was too flat to obtain a maximum likelihood estimate and confidence bounds (2 farms).

The estimated values of β for outbreaks within a single year varied considerably, both for chicken farms as 
well as for duck farms (Table 4). Maximum likelihood estimates of β for outbreaks on chicken farms varied from 
4.4 to 34.4 in 2014 and from 8.5 to 10.9 in 2016. For ducks, β could only be estimated for outbreaks in 2016 and 
varied from 0.95 to 11.8.

time of virus introduction. The mean time of virus introduction for outbreaks within a single outbreak 
season also varied considerably for both chicken and duck farms (Table 4). For chicken farms, it was higher for 
outbreaks in 2014 (9.8 to 14.8 days) than outbreaks in 2016 (5.9 to 7.4 days). For duck farms, the mean time of 
virus introduction for outbreaks in 2016 (9.5 to 18.8 days) was much higher than for chickens in the same year.

In general, the width of introduction windows was higher for outbreak farms with a wider confidence interval 
for the transmission parameter β and a lower maximum likelihood estimate of parameter β (Table 4). The width 
of the introduction window also varied considerably between outbreaks on chicken farms from 0.7 to 4.7 days. 
The width of the introduction window for the outbreaks on duck farms varied from 1.4 to 5.8 days, but was 

Table 4.  The farm-specific estimates of transmission parameter β according to method A (see text) and the 
corresponding mean times of virus introduction and introduction windows for outbreaks of highly pathogenic 
avian influenza of subtype H5N8 on poultry farms in the Netherlands in 2014 and 2016. a Only farms for which 
parameter transmission parameter β could be estimated are shown. b Maximum likelihood estimate.

Farm identifiera Farm type Type of β estimate
Mean time of virus 
introduction (days)

Virus introduction 
window (days)

MLEb 95% confidence bounds

Chickens 2014

A Layer 5 (4.4–5.6) 14.8 (14.3–15.3)

B Layer 34.4 (27.3–44.1) 9.8 (9.5–10.2)

C Layer 4.4 (2.2–11.4) 11.8 (9.8–14.5)

Chickens 2016

F Layer 8.5 (7.1–10.6) 7.4 (6.9–7.8)

C Layer 10.9 (6–21.4) 5.9 (5.1–6.9)

Ducks 2016

H Meat duck 1.6 (1–2.6) 14.5 (12.3–18.1)

I Meat duck 11.8 (8.3–18.1) 9.5 (8.8–10.2)

E Meat duck 0.95 (0.3–2.3) 18.8 (12.9–51)

Figure 2.  The maximum likelihood estimates and 95% confidence bounds of transmission parameter β on two 
outbreak farms according to three different estimation methods (see text). 
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much higher (38.1 days) for one outbreak in 2016; correspondingly this outbreak had a comparatively very low 
estimate for the transmission parameter β.

comparison of methods for the estimation of transmission parameter β. In Figs. 2 and 3 we 
compare the results of methods A and B for the two outbreak farms where both methods could be applied. The 
ML estimates for β obtained by the two methods were very similar for these outbreaks, but the widths of the 95% 
confidence interval for β were highest for method A. For comparison we also estimated parameter β for these 
two outbreaks using the approximation described by Tiensin et al.21 and Bos et al.20. This consistently resulted 
in β estimates that were higher than estimates for our methods A and B (Fig. 2). Correspondingly, the predicted 
mean times of virus introduction were shorter when applying the method described in the  literature20,21.

Sensitivity and elasticity analyses. Decreasing the number of data points included in the β estimation 
by one data point could both decrease and increase the estimated values of parameter β (see Table 5). The same 
was true when increasing the number of data points included in the β estimation by one data point. As a result, 
there was also no consistent effect of changes in the number of data points for the β estimation on the mean time 
of virus introduction (Table 5).

Increasing the length of the latent period increased the estimated value of the transmission parameter β for 
all outbreak farms (see Supplementary Methods & Results S2). The effect of changing the other epidemiological 
parameters on β was smaller and less consistent between outbreak farms. The mean time of virus introduction 
monotonically increased with increasing length of the latent period and increasing length of the infectious period 
for animals dying from disease (Supplementary Methods & Results S2).

The elasticity analysis showed that the transmission parameter β is most sensitive to changes in the length of 
the latent period for outbreaks on chicken as well as duck farms (Table 6). The elasticity of the mean time of virus 
introduction varied much less between epidemiological parameters for outbreaks on both chickens and duck 
farms. The mean time of virus introduction for outbreaks on duck farms was always least sensitive to changes in 
the length of the infectious period for recovering individuals.

Discussion
We developed a stepwise approach for estimating the introduction window of HPAI virus into poultry farms 
from disease-induced mortality data. A novel aspect of our approach is the focus on the accurate estimation of 
the farm-specific transmission rate of HPAI virus within poultry flocks, which makes it possible to account for 
differences in the transmission rate between farm types due to management practices and the design of farm 
houses. For this purpose, we developed two methods for the estimation of the transmission rate that can be 
applied to outbreaks in the initial stochastic growth phase (method B) as well as in later outbreak phases (methods 
A and B). Application to simulated outbreaks with a known transmission rate showed that both methods A and 
B provided much more accurate estimates than the method most often used in the literature. To demonstrate 
our approach for estimating the virus introduction window, we applied it to outbreaks of HPAI virus subtype 
H5N8 in duck and chicken farms in the Netherlands during the years 2014 and 2016.

Figure 3.  The mean time of virus introduction and the introduction window for two outbreak farms according 
to three different estimation methods for transmission parameter β (see text).
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We explored two different methods for estimating the transmission rate of HPAI virus within flocks. Method 
A estimates the transmission rate directly from the disease-induced mortality data. In contrast to method B, it 
assumes a continuous exponential increase in the number of infectious individuals during the initial phase of an 
outbreak. The fact that it could be successfully applied to 8 out of the 11 outbreaks shows that most outbreaks had 
already entered the exponential or a later outbreak phase when detected. The exception was the outbreak on one 
duck farm (farm E in 2014) for which the daily mortality fluctuated strongly in time shortly prior to detection. 
One must realize that we rely on self-reported mortality data recorded by poultry farmers and that the accuracy 
of these records will vary between poultry farmers during a clinical episode with high potential economic and 
emotional impact. The two remaining farms to which method A could not be successfully applied did show 
exponential growth, but the likelihood functions were too flat to reliably estimate the transmission rate. This is 
because method A requires the estimation of a second model parameter in addition to the transmission rate.

The second method (B) could only be applied successfully to 2 out of the 11 outbreak farms. This is because 
this method does not estimate the transmission rate directly from the disease-induced mortality data, but indi-
rectly from the back-calculated number of infectious individuals in time and the number of new cases produced 
by these individuals during one-day time steps. The number of time steps for which the back-calculation proce-
dure can predict both the number of infectious individuals and the number of new cases depends on two factors: 
the number of days for which mortality was assumed to be disease-induced and the length of the latent period. 
This is because the back-calculation procedure first predicts the daily number of new cases from the mortality 

Table 5.  The effect of the number of consecutive days with disease-induced mortality (data points) on the 
estimated value of transmission parameter β and the mean time of virus introduction.

Farm identifier

MLE for transmission rate β using method A Mean time of virus introduction (days to detection)

One data point less
Default number of data 
points

One additional data 
point One data point less

Default number of data 
points

One additional data 
point

Chickens 2014

A 5.2 5 5 14.6 14.8 14.7

B 34.4 34.4 37 9.8 9.8 9.7

C – 4.4 4.4 – 11.8 11.9

Chickens 2016

F 5.6 8.5 9.4 8.5 7.4 7.2

C – 10.9 9.5 – 5.9 6.1

Ducks 2016

H 2.2 1.6 1.8 12.8 14.5 13.9

I 16.5 11.8 10.5 9 9.5 9.7

E – 0.95 2 – 18.8 13.5

Table 6.  The elasticity of transmission rate β and the mean time of virus introduction to deviations from 
the default settings of epidemiological parameters. a Maximum likelihood estimate. b See Supplementary 
Methods & Results S2 for an overview of the deviations of epidemiological parameters from their default 
settings. c All infected chickens were assumed to die from disease. d The estimated value of the transmission 
rate β or the mean time of virus introduction did not consistently increase or decrease when the value of the 
epidemiological parameter was increased.

Farm identifier

Elasticity of the  MLEa for transmission rate β (using method A) to  changesb 
in the: Elasticity of the mean time of virus introduction to  changesb in the:

Latent period
Infectious period 
(dying animals)

Infectious period 
(recovering 
animals)

% dying from 
disease Latent period

Infectious period 
(dying animals)

Infectious period 
(recovering 
animals)

% dying from 
disease

Chickens 2014

A 1.76 − 0.50 –c –c 0.17 0.18 –c –c

B 1.52 0.18 –c –c 0.13 0.24 –c –c

C 2.93 − 0.36 –c –c 0.14 0.18 –c –c

Chickens 2016

F 1.54 − 0.43 –c –c 0.25 0.16 –c –c

C 0.80 − 0.38 –c –c 0.34 0.19 –c –c

Ducks 2016

H 0.78 − 0.07 − 0.09 ± 0.06d 0.12 0.22 ± 0.02d − 0.14

I 0.82 0.50 0.00 − 0.34 0.19 0.17 0.00 0.04

E 0.47 0.00 − 0.08 − 0.05 0.13 0.15 − 0.03 − 0.14
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data and then adds the latent period to predict when these new cases become infectious. For most of the H5N8 
outbreaks analysed in this study, disease-induced mortality data was scarce (because poultry farmers reacted 
fast on a suspicious disease situation). In combination with a latent period of 1 or 2 days, the back-calculation 
procedure could not provide enough time steps for these outbreaks with information on both the number of 
infectious individuals and the number of new cases in order to estimate the transmission rate of HPAI virus. The 
studies in which this back-calculation procedure was introduced for estimating the transmission rate of HPAI did 
not estimate farm-specific transmission rates, but instead used the back-calculated information from all farms 
to estimate a farm-independent, i.e. average transmission  rate20,21. Method B therefore seems better suited for 
studies at the population rather than at the individual farm level.

For the two outbreaks in this study where both methods A and B could be applied, the estimated transmission 
rates were very similar, but the confidence intervals were smaller for method B than method A. This is probably 
because method A involves the estimation of an additional model parameter from the mortality data.

Most of the outbreaks for which disease-induced mortality data was scarce involved poultry flocks that were 
detected after discovery of the primary case flock in the Netherlands in 2014 and 2016. The three outbreak farms 
with 4 to 7 days of data on virus-induced mortality were either primary case herds or the first infected farm of a 
certain type. This scarcity of data on disease-induced mortality may therefore be explained by a higher level of 
alertness following detection of the primary cases.

To our knowledge, this study is the first to publish estimates of the transmission rate of HPAI H5N8 from field 
data for domestic chickens as well as domestic ducks. Estimates of the transmission rate of H5N8 for chickens in 
2014 and 2016 varied from 4.4 to 34.4 (median 8.5). Published transmission rates of HPAI in domestic chickens 
for other HPAI subtypes (H5N1, H5N2 and H7N7) varied from 0.73 to 33 in transmission  experiments1,3,27–30 
and from 0.66 to 19.9 in the  field20,21. It can be concluded that the farm-specific estimates of the transmission 
rate of HPAI H5N8 virus in domestic chickens are close to or within the range of transmission rates found for 
other HPAI subtypes. For domestic ducks, the transmission rate was estimated to be 1.22 for HPAI H5N8 virus 
and 1.6 for HPAI H5N1 virus in transmission  experiments31. Estimates of the transmission rate in our study were 
very similar for two out of the three outbreaks on duck farms (0.9–1.6), but much higher for the remaining farm 
(11.8). It should be noted that the testing of methods A and B using simulated outbreaks with a known transmis-
sion rate showed that they may slightly underestimate the value of the transmission rate, but were much more 
accurate than the method described in the  literature20,21 above to estimate the transmission rate from field data.

The sensitivity analysis showed that the estimated transmission rates were most sensitive to changes in the 
latent period. An increase of the latent period by 2 days could increase the transmission rate up to 14.1 times. 
This sensitivity to changes in the latent period was also observed in other  studies20,24,30 and is probably caused 
by the effect of the latent period on the time interval from the moment an individual becomes infected until the 
first secondary case (generation time). Assuming that the length of the infectious period and the transmission 
rate remain constant, an increase in the latent period will decrease the growth rate of the number of infectious 
individuals, since the same amount of secondary infections is produced over a longer period. To achieve a good 
fit to the observed growth of the number of disease-induced deaths (and therefore infectious individuals), the 
longer latent period will be compensated for by increasing the value of the transmission rate.

As mentioned above, the estimated transmission rate could vary considerably between farms of the same type 
that were infected in the same avian influenza season, e.g. from 4.4 to 34.4 for outbreaks on layer farms in 2014 
and from 1.22 to 11.8 on meat duck farms in 2016. Several studies have explored the effect of flock age and flock 
size on the transmission rate of HPAI in poultry flocks. Flock size did not significantly influence the transmis-
sion rate of HPAI virus in chicken and turkey  farms20,32. Flock age did significantly influence the transmission 
rate of HPAI virus in chicken flocks with lower transmission in older  flocks20. This age-effect was however not 
found for turkey  flocks32. Differences in the density of chickens may also cause variation in the transmission 
rate, but the birds on all farms included in our analysis were housed indoors and densities in these houses are 
approximately similar in the Netherlands. In addition, we assumed frequency-dependent transmission in our 
SEIR model framework with a fixed contact rate independent of the bird density. Finally, the presence of co-
morbidities due to other diseases may also cause variation in the within-flock transmission rate. The number 
of outbreaks included in this study was too small to determine the effect of the different explanatory variables 
on the transmission rate.

In case of an HPAI outbreak in the Netherlands, the time window for back-tracing contacts will be deter-
mined based on epidemiological and other relevant factors (e.g. meteorological)33. Our study shows that the 
most likely time of HPAI introduction was ≤ 14.8 days prior to disease detection for outbreaks on chicken farms 
and ≤ 18.8 days prior to disease detection for outbreaks on duck farms. The sensitivity analysis showed that these 
estimates are robust to changes in the values of epidemiological parameters (Supplementary Methods & Results 
S2). Using conservative estimates of the transmission rate (lower bound of the 95% confidence intervals) also 
did not increase the time of virus introduction very much for outbreaks on chicken farms and most duck farms 
as well (Table 4). However, there is one exception. The virus introduction time increased to 51 days prior to 
detection on one meat duck farm (farm E 2016), when using the conservative estimate of the transmission rate. 
Our analysis suggests that in most cases a back-tracing window of approximately 3 weeks would be sufficient to 
capture the period during which a chicken or duck farm is infectious. This information can be used to improve 
both the efficiency and efficacy of contact-tracing. The uncertainty in the estimation of the introduction window 
can be reduced by the more accurate collection of mortality data by farmers. It should be noted that all chicken 
farms for which the transmission rate could be estimated in this study were layers. In addition, it should be noted 
that the values of epidemiological parameters for future HPAI strains may be different from the H5N8 strains 
in this study, especially for ducks.

The approach that we developed in this study for the estimation of the introduction window of HPAI onto 
poultry farms can account for differences in the epidemiology between HPAI subtypes and poultry species by 
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adjusting the values of epidemiological parameters in the SEIR framework. The approach can be extended to 
other livestock diseases by including other clinical signs than mortality and by including seroprevalence data, 
as long as these can be predicted using the SEIR framework.

A limitation of our modelling framework is that it does not account for environmental transmission of HPAI. 
Infectious birds will shed virus contaminating e.g. bedding material and drinking water and it is known that 
highly pathogenic avian influenza can survive for longer periods of time in the  environment34. Some models 
have been developed that account for both direct and environmental transmission in  flocks35,36, but the relative 
contribution of both transmission pathways was not estimated in these studies by fitting the model to data. 
Experimental studies that quantify both direct and environmental transmission of HPAI in poultry flocks have 
not yet been conducted to our knowledge. To separate the direct and environmental transmission pathways in 
a flock, we would therefore need data on disease-induced mortality as well as the viral load in the environment. 
Data on the environmental HPAI load are not collected by farmers. Therefore, we were unable to separate direct 
and environmental transmission in our models.

A possible improvement to our method would be to determine both the transmission rate and the virus intro-
duction window by fitting the stochastic SEIR model directly to the disease-induced mortality data. This would 
reduce the number of steps in our method, since the farm-specific transmission rate does not have to be estimated 
in a separate step. Methods to fit stochastic simulation models to data include both frequentist approaches such 
as iterated  filtering37 as well as Bayesian approaches such as Approximate Bayesian  Computation38, Data Aug-
mentation Markov-Chain Monte  Carlo39, and particle Markov-Chain Monte  Carlo40.

A possible disadvantage of fitting a stochastic model directly to the mortality data is the computational 
burden, which is likely to be higher than when fitting a deterministic model to data. Since the back-tracing of 
sources during an epidemic requires fast methods to estimate the virus introduction window, the computational 
burden is important when developing a method for estimating virus introduction windows. We aim to explore 
the possibility and usefulness of estimating the transmission rate as well as virus introduction window in one 
step by fitting the stochastic SEIR model directly to the data in future studies.

To conclude, we developed an approach for estimating the introduction window of HPAI virus into individual 
poultry farms using farm-specific estimates of the transmission rate. We successfully applied this method to 8 
out of 11 outbreaks of HPAI virus subtype H5N8 into chicken and duck farms in the Netherlands in 2014 and 
2016. The results of our analysis can be used to improve the efficiency and efficacy of contact-tracing efforts by 
focusing on the time window that a farm was infectious. To our knowledge this study reports the first estimates 
of the transmission rate of HPAI virus subtype H5N8 in flocks of domestic chickens and ducks.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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