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Bayesian method for inferring 
the impact of geographical distance 
on intensity of communication
fei ozga, Jukka‑pekka onnela & Victor DeGruttola*

Spatially-embedded networks represent a large class of real-world networks of great scientific and 
societal interest. for example, transportation networks (such as railways), communication networks 
(such as internet routers), and biological networks (such as fungal foraging networks) are all spatially 
embedded. Both the density of interactions (presence of edges) and intensity of interactions (edge 
weights) are typically found to decrease as a function of spatial separation of nodes in these networks. 
communication and mobility of groups of individuals have also been shown to decline with their 
spatial separation, and the so‑called gravity model postulates that this decline takes the form of a 
power‑law holding at all distances. there is however some evidence that the rate of decline might 
change as the distance increases beyond a certain value, called a change point, but there have been 
few statistically principled methods for determining the existence and location of change points or 
assessing the change in intensity of interactions associated with them. We introduce such a method 
within the Bayesian paradigm and apply it to anonymized mobile call detail records (cDRs). our results 
are potentially useful in settings where understanding social and spatial mixing of people is important, 
such as in the design of cluster randomized trials for studying interventions for infectious diseases, but 
we also anticipate the method to be useful for investigating more generally how distance may affect 
tie strengths in general in spatially embedded networks.

Spatially embedded networks are networks in which each node has been assigned a fixed location in some 
underlying Euclidean space. Although this description could include embedding of nodes in a covariate space 
(e.g., representing fitness of nodes), here we focus on geographically embedded networks, i.e., networks that have 
been embedded in a two-dimensional Euclidean space where the positions of the nodes can be interpreted as 
geographical locations. Although this interpretation is not necessary for the formulation or use of the method, 
it applies to our specific application.

With the rise of communication and social network technologies, the role of spatial distance on establish-
ing and maintaining social ties is constantly  changing1–3. Knowing that two individuals communicate with one 
another using a specific channel or mode of communication makes them more likely to use also  another4–6. For 
example, people who speak on the phone frequently also interact in  person7. For researchers studying infec-
tious diseases, such as HIV/AIDS or Malaria, the structure of social interactions in a population can provide 
valuable insights into how pathogens are transmitted among members of that  population8–10. Another context 
for which the interplay between social ties and geography is important is in the delivery of healthcare. Patterns 
of care delivery can be naturally represented as networks, wherein two physicians are connected to one another 
if they share one or more  patients11. The clusters of physicians in these networks often do not coincide with 
institutional boundaries but instead extend across  them12. The literature on geographic variations literature in 
healthcare costs and outcomes was launched by Wenberg and  Gittelsohn13, and has since become the central 
empirical argument for the inefficiency of the health care system in the Unites States. Because geography places 
constraints on patient-sharing relationships of physicians, a principled way to assess the impact of distance on 
intensity of connections in these networks might lead to a more complete examination of the sources of vari-
ability in provision of healthcare. Although we do not pursue this application here, the methods we introduce 
could also be used to address the role of geography also in healthcare delivery.

Because traditional surveys are resource intensive and scale poorly, mobile phone data, or more specifically 
call detail records (CDRs), have emerged as an alternative for inferring the structure of underlying interpersonal 
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 interactions14–16. Although user interactions on the mobile phone network are not limited by geography, users 
themselves are subject to spatial constraints that restrict the locations they may frequent and therefore influ-
ence their overall interpersonal and mobile phone communication patterns. For example, an individual-level 
 analysis17 demonstrated a relationship between spatial configuration of offices and social connections among 
employees, and overlap of geographical space and information flow network is  discussed18 from a perspective of 
the spread of knowledge and innovations. The effect of geographic restrictions may differ for locations in different 
regions. For example, in  Belgium19,20, cell phone users communicate mostly within language-specific network 
 communities21 of French and Flemish speakers. In addition, contact patterns among individuals that can result 
in disease transmission have also been shown to be location-specific22. Potential overlap of the geographical and 
social networks on the topological level has also been explored. The connection between local network topology 
and tie strength was found to be consistent with the so-called weak-ties  hypothesis14,23. However, geographical 
and network centrality were not found to be  related24.

In this study, we investigate the impact of spatial distance on cell phone communication, which is quanti-
fied as the number of calls between two counties, using a statistical approach. Our choice of model is guided by 
the observation that the intensity of communication among groups of people tends to decay with geographi-
cal distance; furthermore, the rate of decay in intensity appears to differ between short and longer distances. 
Failure to recognize this feature would result in an over-simplified model, biased estimates, and unsatisfactory 
 predictions25. To incorporate this feature, we allow for the existence of a change point in the relationship between 
communication intensity and spatial distance.

As the structure of electronic communication, mobility, travel, and in-person social interactions are all related, 
we make use of existing methods and models in these areas. Some of the most widely studied models in these 
fields are the gravity  model19,26–29, the radiation  model25, and the rank-based friendship  model30. Both the radia-
tion model and the rank-based friendship model make explicit mechanistic assumptions regarding the effect of 
distance and population sizes, and these models focus on prediction. The gravity model is simpler and ignores 
the geographical distribution of the population; it uses only the source and destination population sizes and 
the spatial distance between them. Here we extend the gravity model by relaxing the assumption of a constant 
fixed decay rate in distance. As has been noted by Simini et al.25, the unsatisfactory performance of the gravity 
model compared with the radiation model for prediction has been mainly due to the assumption of an identical 
decay rate for all distances. We therefore incorporate the potential for heterogeneity of distance effects into our 
model; and we also provide an estimate and a confidence interval for the change point–that is the distance at 
which slope changes.

Results
Data. We aggregated the dataset in two ways. First, we aggregated the daily call counts over the 3-month 
period, resulting in a single call count for each distinct pair of users. We distinguish between the caller and the 
receiver; hence, the count for each call between each pair is directed. Second, we aggregated the data from the 
level of individuals to the level of counties; the resulting dataset describes communication intensity for calls 
among the counties. There were records for a total of 2,511,035 users; 359,759 of them resided in the largest 
county and 136, in the smallest. The number of calls from one county to another ranged from 0 to 266,199 with 
21,016,548 calls in total. There were 2,646 distinct zip codes nested within 427 counties. The geographical loca-
tion of each county was calculated by first identifying the latitude and longitude of each zip code centroid and 
then taking the mean of the these coordinates over all zip codes that were nested within a given county. For each 
county we thus obtained the number of resident users; and for each pair of counties, we obtained the spatial 
distance between them and the number of calls made and received by users in those counties over the 3-month 
period. As discussed in the section, Computational complexity, we reduce computational burden by selecting 
a subset of data that arose from 65 counties with the greatest numbers of users; in this subset, the number of 
calls ranged from 7,879 to 359,759. The corresponding call counts between pairs of counties ranged from 2 to 
266,226. Multiple calls between any pair of users were included as one number in the call count. Figure 1 dem-
onstrates the decay in intensity with distance as well as the distribution of number of calls; the log transformed 
call numbers appear to be roughly normal in distribution.

The distance is calculated at a coarser level (county) rather than at the zipcode level to protect user privacy; 
call counts between zipcodes might reveal user identity, especially between those for which the number of users 
and calls is small. We also note that although our analysis is of the locations of calls (not residences of callers), 
using a larger geographical unit will make these more likely to be the same, and perhaps thereby add to the 
interpretability of the analyses. We comment on this issue in the discussion.

Gravity model and our extension. Analyses of the data described above is based on the gravity model. 
Adapting the notation  from26, this model can be written as

where Gij specifies the communication intensity from source location i to destination location j, K is a constant, mi 
is the population of the source location i, nj is the population of the destination location j, and dij is the distance 
between source i and destination j.

A related  article25 provided an extension to this model:

(1)Gij = K
minj

d2ij
,
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where f (·) is a function that specifies the decay of Gij with distance dij , and it is usually specified as dγij . Here, we 
adopt the following form of the model:

Taking the logarithm of this expression yields

inclusion of change points. We further extend the gravity model shown in Eq. (4) as follows:

where ni and nj are the number of users in county i and j; dij is the distance between the two in kilometers; 
Yij = g(Gij) and g(·) is a transformation function, in the gravity model, g(·) = log(·) ; µ is the intercept; θi rep-
resents the location of the change point measured on the logarithmic scale for communication initiated from 
location i; β3,i represents the distance effect before change point θi ; β4,i specifies the difference of distance effect 
before and after the change point; and S is the number of locations under consideration. When β4,i = 0 , the 

(2)Gij =
mα

i n
β
j

f (dij)
,

(3)Gij = K
mα

i n
β
j

d
γ
ij

.

(4)log(Gij) = log(K)+ α log(mi)+ β log(nj)− γ log(dij).

(5)
Yij = µ+ β1 log(ni)+ β2 log(nj)+ β3,i log(dij)+ β4,i(log(dij)− θi)+ + ǫij ,

i, j = 1, . . . , S; j �= i,
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difference is 0, i.e. the rate of decay does not change over the observed range. We denote the size of the popula-
tion at location i as ni and refer to the model with β4,i as the full model and the model that sets β4,i to 0 as the 
reduced model. By definition, (dij − θi)+ = (dij − θi)I(dij > θi) , where I(·) is the indicator function. It takes value 
0 before the change point θi and dij − θi after the change point. We assume that ǫij

iid
∼N(0, σ 2) . This formulation 

provides a straightforward way to compare the two nested models with regard to the effect of distance effect; the 
reduced model has the constraint β4,i = 0 . In this formulation, model selection only involves variable selection; 
we perform the latter using  LASSO31 . We also estimate θi and quantify its uncertainty as described in Methods 
below. We note that the above formulation assumes that the full and nested models share the same intercept and 
population size effects—an assumption that might not hold in practice. To address this concern, we consider two 
distinct settings, case I, which refers to the setting where the assumption holds, and case II, where it does not. 
For the latter, we extend the model by allowing different intercepts and population size effects for models with 
and without change points. In Methods, we describe how inference on this model is achieved.

Analysis of call records data
As illustrated by the scatter plot in Fig. 1, the relationship between natural log of call counts and natural log of 
geographical distances appears to follow a linear relationship both before or after the break point. We also note 
that Fig.  1 is consistent with our assumptions of continuous calling intensity and normality of natural log of the 
number of calls. We used the preliminary binary assignments of change points based on BIC in a simple linear 
regression to assess whether there is variability across counties in intercepts and population size effects. Both 
models with only main effects (indicator variable of group assignments, log population sizes, log distance-before/
after change point) and those with main effects and interaction terms showed evidence (p value < 0.05) of such 
variability. Hence we applied the method described below (in the Simulation study section) for the analysis of the 
cell phone data. The variability in intercepts and population size effects is true both for the general population 
from all 427 counties and for the user subpopulation we described above.

In the analysis of call records (Figs. 2 and 3), we note that the slopes for source locations in the northeast 
appear to be less steep; that slopes near the capital city, where the population is dense, are more likely to have 
change points No such patterns were observed for slopes of other locations, either before or after the change 
points. Model estimates revealed that locations with no change point tended to be in the north while those with 
change points were concentrated in the south around the capital area. For diagnosis on convergence, Fig. 4 shows 
a trend of PSRF2 approaching 1 very quickly and a PSRF1 fluctuating below 1.5, which is acceptable.

Discussion
To analyze the decline in communication intensity with geographical distance, we extended the gravity model 
by allowing for change points in this relationship. We addressed the issue of the existence of change points for 
each source location and quantified associated uncertainty using a Bayesian model. We also provided estimates 
of the slopes before and after each change point. We investigated the geographical pattern of the existence of 
change points and noted differences in these patterns between rural and urban areas.

We apply our method to an anonymized dataset of call detail records, using the number of mobile phone calls 
in as the measure of communication intensity between a pair of counties. The outcomes are log-transformed 
counts; the regression model we specify treats the transformed outcomes as continuous—a choice that is most 
appropriate when the number of calls between two locations is large (Fig. 1). In settings with 0 or very small 
counts, one could consider alternative models (e.g., negative binomial) or the addition of an arbitrary small posi-
tive number to 0, although the latter approach can add  bias32,33. In this setting, a negative binomial model might 
be a better fit, though the interpretation of the parameters is less straightforward. Using Bayesian methods in a 
setting where the data are assumed to be negative binomial distributed requires non-standard approaches even 
without inclusion of change points into models. Some research has provided useful tools for sequentially updat-
ing the parameters using Gibbs sampler by augmenting the posterior distribution with auxiliary  parameters34–36. 
When the number of counts is large, the negative binomial approach may not be computationally feasible; fit-
ting negative binomial outcomes in Bayesian LASSO needs further investigation. One possible direction is to 
extend the methods based on the conditional normal  distribution36 by transforming the variance matrix so that 
normal-distribution based LASSO method can be employed.

Another extension of our method would allow for aggregation of results across different subsamples; cur-
rently the number of locations we can analyze is limited by computational capacity. Developing a method to 
obtain consistent results from different overlapping sets of nodes, perhaps in a meta-analysis framework, would 
alleviate the computational concerns, but is challenging. Some potentially useful approaches are  provided37–40. 
In particular, the stability  selection41 may be used to assess the properties of the meta-analytic results. An exam-
ple of the use of LASSO in analyses that combine across subsamples arose from analyses intended to discover 
adverse drug  reactions42. Another potentially useful approach is the use of path of partial  posteriors43. In this 
approach, the resampling procedure resembles the bootstrap, but with smaller resampling sizes. Because stand-
ard bootstrapping of the LASSO estimator of the regression parameter for variance inference is known to yield 
inconsistent  estimates44,45, modified bootstrapping must be  used46. Nonetheless, Bayesian LASSO procedures 
provide straightforward and valid estimates for standard errors.

The findings from our analysis of mobile phone communication intensity illustrate how such information 
might be used. For example, should such communication networks prove to be accurate proxies for contact 
networks, such analyses might help guide the design of cluster randomized trials for infectious disease. Rand-
omized trials ideally enroll participants in a way that minimizes the extent to which the treatment assignment of 
one subject affects the outcome of another. For interventions in which such interference occurs at the individual 
but not the cluster level (e.g., through contacts among randomized subjects), cluster randomization can be 
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 useful47. Clusters may be comprised of participants in the same geographical location, institution (e.g. school) 
or administrative unit (village). Cell phone data could potentially aid in the identification of appropriate clusters 
by providing information about the probability of interference. When mixing across clusters cannot be elimi-
nated, identification of treatment effects requires modeling of the mixing  process48. The impact of interference 
across randomized units on power of a clinical trial to detect effects of an intervention in preventing spread of 
infectious disease is  investigated49,50. As geographical distance is likely to affect contact networks, knowing the 
relationship between communication and distance may be useful not only for identification of clusters, but also 
for aiding in development of appropriate mixing models.

Methods
To estimate the parameter of interest, θi , and quantify its uncertainty we employ a Metropolis Hastings algorithm 
in Bayesian framework. We consider a Metropolis sampling block for θi and a Bayesian LASSO block dealing 
with β4,i. To allow different intercepts and population size effects for models with and without change points, 
we employ a Reversible Jump Monte Marlo Markov Chain algorithm. To implement it, we chooose (RJMCMC) 
option in the blasso function in R package monomvn. We use the default non-informative priors for unknown 
parameters in both simulation and data analysis. This approach allows for statistical inference using Bayesian 
LASSO. RJMCMC is a general version of the Metropolis-Hastings  algorithm51, which allows transitions between 
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models of different dimensions. In our setting, the RJMCMC sampling procedure allows changes in the model 
based on the variable selection results from the previous iteration; the intercept and population size effects are 
modeled separately for the two models. We provide details below.

Sampling algorithm. Initial values. To speed up convergence of RJMCMC algorithm and prevent it from 
converging to a local mode, we calculate a set of crude initial values for all the parameters as follows: 

1. Search through a grid over the distance range of location i for θi and choose the grid point that maximizes 
the likelihood function of the crude full model θ(0).

2. For case I, the preliminary values for the parameters are obtained by linear regression treating the change 
points as known. Substituting in the value of θ(0) from Step 1 leads to crude parameter estimates µ(0) , 

β(0) ≡ (β
(0)
1 ,β

(0)
2 ,β

(0)
3

T
,β

(0)
4

T
)
T

 and σ 2
(0) . For case II, we fit two models for each source location: Model 1 

has a change point at θ(0) estimated in Step 1 and Model 2 has no change point. We then assign η(0)i = 1 if 
Model 1 has a lower BIC than Model 2, and assign η(0)i = 0 otherwise. We use BIC to account for the fact 
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that Model 1 has more parameters than Model 2. Based on η(0) ≡ (η
(0)
1 , η

(0)
2 , . . . , η

(0)
S )T , we create a new cor-

responding model matrix, removing the column of β4,i if η(0)i = 0 , and obtain the crude parameter estimates 
µ(0),β(0) and σ 2

(0) from linear regression. For cases where η(0)i = 0 , we assign β4,i = 0.

Metropolis block and Bayesian LASSO. 
Case I: Assuming same intercept and population size effects across all source locations With Bayesian LASSO, the 
model is specified as

which can be written as Y = µ1+ Xβ + ǫ using matrix notation. µ is not included in the Bayesian LASSO pen-
alty  term52; 1 is the vector of 1s; X is the model matrix consisting of logarithmic population sizes and distances, 
and β is the vector of βs.

In general,  LASSO31 solves an unconstrained optimization problem subject to a given bound on the L1 norm 
of the parameter vector that is equivalent to

where Ỹ = Y − µ1 is the centered outcome vector; p is the number of parameters after excluding the intercept. 
In the Bayesian setting, solution to Eq. (7) provides the posterior mode estimates when βj has i.i.d. double expo-
nential priors. Conditional double exponential priors are used in the formulation to avoid multiple  modes52. 
They can be expressed hierarchically as

The entire sampling procedure is available using function blasso in R package monomvn with the option for 
RJMCMC specified as False. To incorporate a Metropolis block for change point estimation, we alternate between 
the Metropolis and Bayesian LASSO blocks. Validity of this approach is established by regarding it as two com-
ponents of a Gibbs sampling  algorithm53. In summary, conditional on change points, our inferential problem 
becomes one of a variable selection; conditional on other parameters, change point sampling is a straightforward 
application of a Metropolis algorithm.

Thus after obtaining the initial values µ(0),β(0), θ(0) and σ 2
(0) , we proceed as follows: 

1. At iteration t for each source location i, update change point θ(t+1)
i  using Metropolis algorithm with a normal 

proposal N(θ
(t)
i , σ 2

θ ) . The range of θi is determined empirically from data, i.e., the posterior likelihood of θi 
has an indicator function term in the product that is 0 if the proposed θ(t+1)

i  is out of the observed empirical 
log-distance range, thereby assuring that any out-of-range proposal will be rejected.

2. For each location i, if there are fewer than 5% of data points on either side of θ(t+1)
i  for the subset of data, 

i.e., Yi , we consider it to be on the boundary, specify β(t+1)
4,i = 0 , and remove it from the model in the next 

estimation step. We denote the number of locations belonging to the boundary sets as b(t+1).
3. Create the corresponding S(S − 1)× (2+ 2S − b(t+1)) covariate matrix (intercept column is not included) 

based on θ(t+1) . Together with the data, β(t) (after β(t+1)
4,i = 0 are removed), σ (t)2 and �(t) , input the covari-

ate matrix into the blasso function for h iterations (2 or more). The output intercept is µ(t+1) . From the 
output we also get β(t+1) ( β(t+1)

4,i = 0 are put back), σ (t+1)2 and �(t+1).
4. Repeat steps 1-3 until convergence (see below).

Case II: Allowing different intercepts and population size effects for models with and without change points.
When there is evidence of the presence of change points, we estimate these parameters separately in two 

different models. In this case, estimates of intercepts and population size effects depend on the set of source 
locations whose data contribute to the estimation in any given iteration. We denote the mean model as η(t) for 
iteration t to maintain consistency with the notation we introduced earlier.

As mentioned above, estimation makes use of the Reversible Jump MCMC option in the blasso function. 
In our setting, different models imply different specification of zeros in β(t)

4  , and are characterized by η(t) , where 
η
(t)
i = I(β

(t)
4,i > 0).

RJMCMC is a general version of the Metropolis-Hastings  algorithm51, which allows transitions between 
different states or models of different dimensions. A thorough review of RJMCMC with more recent comments 
can be found in a review  article54.

Use of RJMCMC yields the following sampling scheme: 

(6)
Yij = µ+ β1 log(ni)+ β2 log(nj)+ β3,i log(dij)+ β4,i(log(dij)− θi)+ + ǫij ,

θi ∈ (min
j

log(dij), max
j

log(dij)), i, j = 1, . . . , S, j �= i,

(7)min
β

(Ỹ − Xβ)T (Ỹ − Xβ)+ �

p∑

j=1

|βj|,

(8)

Y |µ,X ,β , σ 2 ∼ N(µ1+ Xβ , σ 2
I),

β|τ 21 , . . . , τ
2
p , σ

2 ∼ N(0, σ 2
Dr), whereDr = diag(τ 21 , . . . , τ

2
p ),

σ 2, τ 21 , . . . , τ
2
p ∼ π(σ 2)dσ 2

p∏

j=1

�
2

2
e
−�

2τj2/2dτj2 , σ
2, τ 21 , . . . , τ

2
p > 0.
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1. The first two steps are the same as in case I: At iteration t, for each source location i, update change point 
θ
(t+1)
i  using Metropolis algorithm with a normal proposal N(θ

(t)
i , σ 2

θ ) . For each location i, if there are fewer 
than 5% of data points on either side of θ(t+1)

i  for Yi , we specify β(t+1)
4,i = 0 and remove it from the model in 

the next estimation step.
2. Conditional on θ(t+1) , create the s(s − 1)× (5+ 2s − b(t+1)) covariate matrix (intercept column is not 

included). Data from each source location contribute to their own group’s estimation of intercept and popula-
tion size effects, which depends on η(t)

i
 . All data and parameter values from the previous iteration t (including 

σ (t)2 and �(t) ) are used in the blasso function with RJMCMC for 3 iterations. 3 is the minimum number 
of iterations to avoid the situation in which zeros in the previous iteration are carried forward.

3. From Step 2 we get the updated β(t+1), σ (t+1)2,µ(t+1) and �(t+1) . Now update the η(t+1) : η(t+1)
i = 1 if 

β
(t+1)
4,i > 0 ; otherwise 0.

4. Repeat steps 1-3 until convergence.

Diagnostics for assessment of convergence. The usual diagnostic framework for Bayesian  LASSO55–57 
includes trace plots for different chains and calculation of the Potential Scale Reduction Factor (PSRF). Diagnos-
tics for RJMCMC can be developed by extending that framework to include within-model and between-model 
variations in the parameters.

We make use of Castello and  Zimmerman58, which defines two PSRFs in the assessment. For a chosen 
parameter, PSRF1 is the ratio between total variation V̂ and variation within chains Wc ; PSRF2 is the ratio between 
variation within models Wm and variation within models and chains WmWc . V̂ ,Wc ,Wm and WmWc are defined 
as follows:

where θ rcm, θ..
.
, θc.

.
, θ.m

. and θcm
. are the rth appearance of θ in model m chain c, mean θ across all models and 

chains, mean θ within chain c across all models in that chain, mean θ within model m across all chains, mean 
θ within chain c and model m, respectively. Rcm is number of θ in chain c model m. C and M are the number of 
chains and distinct models, respectively.

We follow the strategy provided by Castello and  Zimmerman58 to assess convergence and, for simplicity, 
illustrate this approach by considering a scalar. We choose σ 2 , the variance of the error terms, for this illustra-
tion, as its interpretation remains the same across the models. Each chain is divided into batches of equal length. 
A sequence of PSRF1 and PSRF2 is calculated for each batch. A desirable result is that the two quantities move 
toward 1 as the iteration proceeds. In the simulation study below, we illustrate the use of diagnostic graphs for 
evaluating convergence; further details on this subject can be found in Brooks and  Giudici59.

interpretation. Under the assumption that intercept and population size effects are identical across source 
locations, we obtain a sample of β4,i as well as its 95% credible interval rather than an estimate of the probability 
that each source location has a change point. Intervals that do not cover 0 imply the presence of a change point by 
providing evidence against the null hypothesis that the difference of the two slopes is zero. Approaches that allow 
variability in intercepts and population size effects yield a sample of models and their corresponding parameter 
estimates. For prediction, we make use of the models that RJMCMC has sampled in the estimation process; the 
estimated mean for predicted outcomes is a weighted average of the predicted outcomes of all models.

computational complexity. Because of the computational burden of these methods, we consider an 
analysis of a subset of data. Simulation studies (Fig. 6 in Appendix) show that computation time for the Bayes-
ian LASSO function blasso increases sharply as the number of locations increases. We note that the size of 
the covariate matrix increases at O(S3) where S specifies the number of locations. It has been showed that for 
the least angle regression formulation of the problem, the computational complexity is O(m3 +m2n)60, where 
m is the number of features and n is the number of the outcomes. In our setting, the situation is even more chal-
lenging in that the number of outcomes grows quadratically with S, which renders the overall computational 
complexity to be O(S4).

Simulation study. We conducted the following simulations to assess the performance of our models com-
pared with naïve approaches as well as to check the effect of the tuning parameter σ 2

θ  . The values of the param-
eters in the data generation process were selected to be the estimates from the preliminary data analysis using 
σ 2
θ = 0.03 . The observed geographical distances between counties were used. We assessed the performance of 

the gravity model, the naïve fit based on BIC and grid search, and the Bayesian LASSO model on scenarios with 

(9)

V̂(θ) =
1

CT − 1

C∑

c=1

M∑

m=1

Rcm∑

r=1

(θ rcm − θ..
.
)2,

Wc(θ) =
1

C(T − 1)

C∑

c=1

M∑

m=1

Rcm∑

r=1

(θ rcm − θc.
.
)2,

Wm(θ) =
1

CT −M

C∑

c=1

M∑

m=1

Rcm∑

r=1

(θ rcm − θ.m
.
)2,

WmWc(θ) =
1

C(T −M)

C∑

c=1

M∑

m=1

Rcm∑

r=1

(θ rcm − θcm
.
)2,
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low (0.30), medium (0.38) and high (0.45) error variances ( σ 2 ). The medium value was selected to match the 
estimates from the preliminary analyses. For each scenario, we simulated 2 data sets and applied our algorithm 
with 4 chains. We also evaluated the effect of the tuning parameter σ 2

θ  for the Metropolis algorithm by specifying 
a series of different values for it: 0.015, 0.02, 0.025, 0.03, 0.04, 0.05, 0.06, 0.08, 0.1, 0.12, 0.15, 0.2, 0.25, 0.3, 0.4, 0.6. 
The diagnostic graphs in Appendix show that convergence was generally achieved. We assessed the model fit and 
the effect of the tuning parameter based on the prediction error (PE), which is defined as follows:

where L is the model, M is the number of data points, ynew is the observed outcome in the test dataset, ŷnew is 
the fitted value using model estimated on the old dataset.

One hundred new datasets were generated using the same covariates and parameters for each variance cat-
egory. The findings are shown in Table 1.

As expected, estimates based both on BIC and Bayesian LASSO performed better than those of the gravity 
model with respect to prediction error in low, medium, and high error variances. The choice of tuning parameter 
had little effect; use of 0.2 in data analysis appears reasonable as this choice leads to a mean acceptance rate for the 
Metropolis algorithm on change points in the range of 20–25%57, as shown in Table 2. The 95% credible interval 
coverages for change points, as shown in Fig. 5 and Table 3, also reached high values at tuning parameter 0.2. 
The crude model based on BIC and Bayesian LASSO estimates are comparable. This is demonstrated in Fig. 5, 
which shows the crude estimates and Bayesian LASSO estimates to be similar. An advantage of the latter however 
is its ability to provide interval estimates on the change points and its smaller number of required parameters; 
Fig. 5 provides the 95% credible interval. These results imply that predictive power was not reduced because of 
the estimation of location of change points. Bayesian LASSO does require greater computation time: Computa-
tion time for 15,000 iterations takes around 9–10 h, whereas the BIC approach requires only a few minutes. For 
further information about runtime from simulation studies, see Fig. 6. 

(10)PE(L) =
1

M

∑
(ynew − ŷnew)

2,

Table 1.  Prediction error of the gravity model, the naïve fit based on BIC and grid search, and the Bayesian 
LASSO model in scenarios with low (0.30), medium (0.38) and high (0.45) error variances ( σ 2 ) (2 trials each).

Variance of error term σ 2

0.30 0.38 0.45

Gravity model

0.807 0.807 0.887 0.887 0.956 0.956

Crude model based on BIC

0.331 0.327 0.412 0.435 0.485 0.486

Bayesian LASSO with change points

σ 2
θ

0.015 0.321 0.329 0.403 0.411 0.479 0.486

0.020 0.322 0.329 0.405 0.413 0.479 0.487

0.025 0.319 0.329 0.404 0.411 0.479 0.486

0.030 0.321 0.326 0.407 0.411 0.479 0.485

0.040 0.318 0.323 0.409 0.409 0.481 0.486

0.050 0.317 0.323 0.411 0.411 0.480 0.487

0.060 0.318 0.321 0.411 0.411 0.481 0.487

0.080 0.318 0.321 0.411 0.410 0.482 0.487

0.100 0.318 0.320 0.411 0.409 0.482 0.488

0.120 0.320 0.320 0.410 0.412 0.481 0.485

0.150 0.319 0.320 0.411 0.414 0.486 0.487

0.200 0.321 0.319 0.413 0.414 0.486 0.490

0.250 0.321 0.320 0.415 0.416 0.489 0.488

0.300 0.320 0.321 0.413 0.417 0.490 0.489

0.400 0.321 0.321 0.417 0.420 0.496 0.489

0.600 0.325 0.322 0.414 0.419 0.494 0.489



10

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:11775  | https://doi.org/10.1038/s41598-020-68583-1

www.nature.com/scientificreports/

Table 2.  Mean acceptance rate for Metropolis algorithm on change points in scenarios with low (0.30), 
medium (0.38) and high (0.45) error variances ( σ 2 ) (2 trials each).

σ 2
θ

Variance of the error terms σ 2

0.30 0.38 0.45

0.015 0.544 0.543 0.550 0.546 0.561 0.561

0.020 0.518 0.516 0.522 0.521 0.527 0.534

0.025 0.493 0.495 0.501 0.498 0.509 0.509

0.030 0.471 0.471 0.482 0.470 0.495 0.486

0.040 0.442 0.433 0.443 0.447 0.463 0.455

0.050 0.410 0.412 0.420 0.417 0.439 0.433

0.060 0.388 0.388 0.394 0.395 0.410 0.415

0.080 0.341 0.346 0.359 0.354 0.373 0.370

0.100 0.300 0.313 0.322 0.321 0.338 0.333

0.120 0.277 0.283 0.292 0.292 0.308 0.304

0.150 0.243 0.245 0.254 0.260 0.273 0.270

0.200 0.194 0.198 0.208 0.207 0.222 0.227

0.250 0.166 0.167 0.179 0.173 0.185 0.189

0.300 0.143 0.144 0.154 0.156 0.161 0.162

0.400 0.110 0.110 0.122 0.118 0.127 0.129

0.600 0.075 0.073 0.083 0.084 0.090 0.088

Table 3.  95% credible interval coverage for change points in scenarios with low (0.30), medium (0.38) and 
high (0.45) error variances ( σ 2 ) (2 trials each).

σ 2
θ

Variance of the error terms σ 2

0.30 0.38 0.45

0.015 0.585 0.585 0.523 0.492 0.462 0.492

0.020 0.631 0.615 0.554 0.523 0.508 0.569

0.025 0.662 0.631 0.554 0.523 0.585 0.600

0.030 0.677 0.677 0.615 0.554 0.600 0.631

0.040 0.723 0.723 0.662 0.631 0.615 0.615

0.050 0.754 0.692 0.692 0.692 0.677 0.646

0.060 0.754 0.708 0.692 0.692 0.646 0.646

0.080 0.754 0.754 0.677 0.738 0.692 0.677

0.100 0.785 0.785 0.692 0.754 0.723 0.692

0.120 0.769 0.815 0.708 0.738 0.769 0.708

0.150 0.769 0.815 0.723 0.738 0.738 0.692

0.200 0.785 0.877 0.723 0.738 0.769 0.677

0.250 0.785 0.862 0.662 0.738 0.754 0.708

0.300 0.769 0.862 0.708 0.738 0.738 0.692

0.400 0.769 0.862 0.677 0.708 0.708 0.708

0.600 0.785 0.831 0.708 0.738 0.692 0.708
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Data availability
The data that support the findings of this study is available from Telenor and was obtained for this research by 
Dr. Onnela. Restrictions apply to the availability of these data, and so are not publicly available.
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Figure 5.  Estimated 95% credible intervals of change point θi (when true change points exist) under low (top), 
medium (middle) and high (bottom) error variance σ 2 with tuning parameter σ 2

θ = 0.2 ; orange color of the 
95% credible interval indicates that the true value is not covered; if no 95% credible interval is shown, then none 
is available, i.e., estimates are from the model without change points. Locations have been ordered from left to 
right based on the true locations of the change points.
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Appendix: Discussion of model choices
In addition to the gravity model, other models to study the impact of spatial distance on communication intensity, 
such as the radiation  model25, have been proposed. This model predicts commuting flux between locations, and 
the rank-based friendship  model30, which ranks friendships based on the geographical distance between them. 
Both models reduce to Eq. (4) with certain constraints on their parameters or under certain assumptions. The 
radiation  model25 uses the following specification

where 〈Tij〉 is the average commuting or mobility flux from location i to j (for simplicity, we denote average flux 
as Tij to keep the notation consistent), Ti =

∑
j �=i Tij is the total number of commuters from i, and sij is the popu-

lation living in the circle centered at the source with a radius of rij (not including mi ). Adopting this notation,

Taking the logarithm yields,

In radiation  model25, we note that Eq. (13) reduces to Eq. (4) with α + β = 1 and γ = 4 when the population 
is uniformly distributed such that m = n and sij ≈ mir

2
ij . The model is mechanistic and has no parameter to fit.

The rank-based friendship  model30 is formulated as follows. Let u and v be two individuals. Then define 
ranku(v) = |{w : d(u,w) � d(u, v)}| , where d(u, w) is the distance between individual u and individual w. The 
probability of u and v being friends is modeled as

As ranku(v) ≈ d(u, v)2 when the the population is uniformly distributed, Eq. (14) reduces to Eq. (4) with 
m = n = 1 and γ = 2.

Both the gravity and radiation models are based on strict assumptions of the underlying mechanism, which 
are hard to validate. The gravity model, which uses the same parameters for each pair of locations, implicitly 
assumes a homogeneous effect of distance for the intensity function. The radiation model addresses this issue 
by modeling the intrinsic heterogeneity of the geographical distribution of population by incorporating sij in 
the model. However, subject to its strict assumption and ‘parameter-free’ property, it allows little room for other 
factors. The rank-based model deals with the heterogeneity by substituting distance with rank, which seems to 
have a similar role as the sij in the radiation model. Thus the rank function in Eq. (14) can be regarded as an 
implicit function of distance and population distribution. We can make Eq. (14) parametric by incorporating a 
parameter for the power of the rank. If the population is uniformly distributed across the area, this is equivalent 
to the gravity model with parameter γ for the distance rij.

We note here that even though the rank-based approach sheds some lights on the question of interest, to 
move from the individual level to zip code or county level requires a completely different set of assumptions. 
Therefore, a rank-based gravity model cannot be seen as a simple extension of the rank-based friendship model.

Received: 19 August 2019; Accepted: 5 March 2020

(11)�Tij� = Ti
minj

(mi + sij)(mi + nj + sij)
,

(12)Tij = Ti
minj

(mi + sij)(mi + nj + sij)
.

(13)log(Tij) = log(Ti)+ log(mi)+ log(nj)− log(mi + sij)− log(mi + nj + sij).

(14)Pr[u → u] ∝
1

ranku(v)
.
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Figure 6.  Runtime estimated for 50 iterations versus number of locations in the simulation. Note that the 
vertical axis is on logarithmic scale.
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