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entropy decay during grain growth
pawan Vedanti*, Xin Wu & Victor Berdichevsky

Materials with random microstructure are characterized by additional thermodynamic parameters, 
entropy and temperature of microstructure. it has been argued that there is one more law of 
thermodynamics: entropy of microstructure decays in isolated systems. in this paper, we check this 
assertion experimentally for the process of grain growth. We show that entropy of grain structure 
decays indeed as expected. We study also the equation of state for microstructure entropy. in 
general, microstructure entropy should be a function of microstructure energy and the average grain 
size. We observed that the equation of state degenerates, and there is a universal dependence of 
microstructure entropy on microstructure energy, at least at the stage of self similar grain growth.

It has been recognized in various branches of material science that thermodynamic description of materials 
with microstructure requires two additional thermodynamic parameters, entropy of microstructure and tem-
perature of microstructure. Such parameters have been mentioned under different names in theory of granular 
 materials1–3, metal  glasses4–18, crystal  plasticity19–24, composite  materials25, and grain  growth26–28. Moreover, it 
was claimed that there is one more law of thermodynamics: entropy of microstructure must decay in isolated sys-
tems29. One mechanism of this special way of evolution is due to the dissipative nature of mesoscopic dynamics. 
Dissipative equations possess attractors and trajectories of the system in phase space must fall on the  attractor30. 
If entropy of microstructure is associated with the volume of phase space as in classical statistical thermodynam-
ics, then the entropy of microstructure must decay as phase volumes moving to an attractor shrink. A different 
mechanism of microstructure entropy decay is characteristic for driven dissipative systems such as slow plastic 
deformation of crystals and  polycrystals31,32. In this work, we aim to check the entropy decay experimentally. 
We choose the process of grain growth as the testing ground. Grain growth is ideally fitted to such experimental 
study, because it can proceed in an isolated setting. This can be seen from the following thought experiment. If 
a polycrystal is heated enough to allow for grain boundary motion to proceed and then thermally isolated grain 
growth sets up and does not stop as grain boundary motion heats the crystal. The higher temperature increases 
grain boundary mobility and the process does not stop. In the actual experiment we employ the isothermal set-
ting assuming that the results are similar. We check the consistency of this assumption in section 4.

There is an ambiguity in the choice of entropy.(Further we call microstructure entropy briefly entropy using 
for usual entropy the term thermodynamic entropy, as it will appear further in the paper only in Section IV.) 
of grain boundary structure. The notion of entropy is multifaceted, and the choice depends on the context in 
which entropy is used. We aim at a macroscopic description of grain growth when the process is described by a 
few averaged parameters. In classical thermodynamics, entropy arises inevitably as an unavoidable parameter 
in constitutive equations. Is the situation in grain growth similar? In principle, to answer this question one has 
to develop an average description of grain structure dynamics. This is a formidable task at the moment. It is 
enough to mention that, formally speaking, grain boundary is an infinite-dimensional object. Though infinite 
dimensionality is artificial because grain boundary pieces with sizes that are smaller than the interatomic distance 
do not carry independent degrees of freedom, and some short wave truncation must be made in grain boundary 
dynamics, a convincing high-dimensional analysis of grain boundary dynamics does not seem to exist. Besides, 
grain boundary dynamics is not governed by just mean curvature flow as it is also affected by impurities, number 
of grain sides and properties of vertices and grain  edges33–35. This makes the choice of proper finite-dimensional 
truncation a quite non-elementary issue. Some finite-dimensional models have been discussed  in36–44. Here we 
will employ the crudest dynamic model possible: it presents the grain boundary structure as a “gas of grains”, 
where each grain is characterized by one number, either grain volume or grain radius. Grains can grow and 
shrink and do not have “energetic” interactions, i.e. the total energy of the grain structure is the sum of ener-
gies of individual grains with the factor 1/2 as each piece of grain boundary provides the same contribution to 
energies of two neighboring grains. The interaction of grains arises from the kinematic constraint: the sum of 
volumes of all grains is preserved. This model goes back to the work by  Hillert45, and was further developed 
in many  studies46–49. Hillert obtained an equation for probability distribution of grain sizes. This equation was 
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modified by  Berdichevsky27 to allow for analytical solutions . Analytical solutions made it possible to observe 
that the expected features of entropy holds, if one means by entropy the usual Boltzmann entropy. We distinguish 
the total entropy of the grain boundary microstructure Sm and entropy per one grain S∗m,

here index m stands for microstructure, N being the number of grains. Entropy per one grain S∗m is the Boltz-
mann entropy.

where f(v) is the probability distribution of grain volumes, v0 some characteristic grain volume.
All parameters in (1) and (2) evolve in the course of grain growth. In the analytical  study27, parameters S∗m 

and Sm change in opposite directions: entropy per grain S∗m increases, while total entropy Sm decays. Increase in 
S∗m indicates the chaos enhancement while the decay of Sm corresponds to the general concept of entropy decay 
in closed systems. Besides, there is an equation of state: entropy is a function of total energy of grain boundaries 
Em and average grain volume v,

In the work reported here, we study the evolution of S∗m and Sm , and the validity of the equation of state (3). 
Briefly, the results are as follows: total entropy Sm decays as expected, entropy per one degree of freedom S∗m 
fluctuates slightly not showing a certain trend, while the equation of state (3) degenerates into equation of the 
form Sm= Sm(Em).

experimental setup
Measuring the evolution of grain boundary structures is a toilsome task, and we replace it with observations of 
the grain boundary traces on the specimen surface. As-recieved nickel pieces (commercially pure nickel from 
McMaster–Carr) were annealed and then polished to scan the specimen grain boundaries and orientation by 
Electron Back Scatter Diffraction (EBSD). The EBSD image was used to get information of individual grain 
areas and perimeters by hand-tracing the grain boundaries. We measured mean cross-sectional grain area ā and 
mean cross-sectional perimeter p̄ independently and studied their evolution in the course of grain growth. We 
also worked out the reported results for aluminum alloy Al 5083F and magnesium alloy AZ31b Mg obtained by 
 Wu58 and Bhattacharya et al.59, respectively. For all the three materials used during the grain growth experiments, 
grain boundary mean cross-sectional area ā increases 100–350 times while mean cross-sectional grain perimeter 
p̄ increases by a factor of 15–20. The grain size distribution for almost all samples was very close to self-similar 
distribution. Further details on the experiments can be found  in60.

Results
entropy decay. To find entropy from these experiments one has to specify a finite-dimensional version of 
(2). As such we use the relation,

Probabilities pi in (4) are interpreted in the following way: the possible values of grain sizes are split in bins and pi 
is the portion of grains in the  ith bin. In such interpretation, the values of S∗m depend on the bin size. To minimize 
the bin size dependence, we average S∗m over various values of bin sizes (further details are given  in60). Note that 
both S∗m and Sm are dimensionless. It is assumed also that in cross-sectional measurements of cross-sectional grain 
area and cross-sectional grain perimeter correspond to grain volume and grain area of 3D theory, respectively. 
So, in formula (4) pi are probabilities of observing certain values of cross-sectional grain area.

According to (1), the evolution of total entropy Sm is determined by the competetion of the decay rate of the 
number of grains and the rate of increase of S∗m . In the analytical  study27, grains disappear at a faster rate than 
the growth rate of S∗m , resulting in the decay of total entropy Sm . The experimental values of S∗m are presented in 
Fig. 1. It appears that S∗m does not exhibit a certain trend fluctuating slightly over the average value of 1.4. Thus, 
the decay of number of the grains N yields the decay of total entropy Sm . The evolution of entropy per unit volume 
Sm = Sm/|V | in grain growth is shown in Fig. 2.

Most likely, small variations of S∗m are due to the fact that all samples tested have the initial grain size distri-
bution which is very close to self-similar distribution, and the evolution proceeds along the self-similar path.

entropy degeneration. In general, Sm is expected to be a function of energy per unit volume and grain 
size. For definiteness, we take as a characteristic of grain size the average grain volume v. Since energy per unit 
volume can be assumed to be proportional to average grain 3D surface area a, entropy per unit volume Sm can be 
considered a function of a and v, Sm = Sm(a,v). Presumably, there is a link between a and v and cross-sectional 
characteristics of grain geometry, ā and p̄ , which allows one to consider Sm as a function of ā , p̄ . Area and 
perimeter are independent geometric parameters of grain cross-sections, and making measurements of ā , p̄ and 
Sm we expected to get a set of points in (ā , p̄ , Sm)-space, which would yield the equation of state Sm = Sm(p̄, ā) . 
Surprisingly, for all microstructures at all temperatures considered the points collapse on a line shown in Fig. 2 
indicating an independence of Sm on ā . The origin of such degeneration of the equation of state for Sm turns out 
to be the existence of universal relation between ā and p̄ . It is shown in Fig. 3. Emphasize that the points in this 

(1)Sm = NS∗m,

(2)S∗m = −
∫

f (v) ln(f (v)v0)dv,

(3)Sm= Sm(Em, v).

(4)S∗m = −
∑

pi ln pi
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Figure 1.  Evolution of entropy per grain S∗m as a function of logarithm of mean area ā ( µm2 ). The black and 
red dots correspond to commercially pure nickel and aluminum alloy  Al5083F58, respectively. Blue dots show 
the values computed from the data by Bhattacharya et al.59 for magnesium alloy AZ31bMg. Error bars are also 
shown. For larger grain sizes, the error bars are smaller than the displayed points.

Figure 2.  Dependence of logarithm of entropy per unit volume Sm on logarithm of mean cross-sectional 
grain area ā . Sm and ā are measured in µm−3 and µm2 , respectively. The black and red dots correspond to 
commercially pure nickel and aluminum alloy  Al5083F58, respectively. Blue dots show the values computed from 
the data by Bhattacharya et al.59 for magnesium alloy AZ31bMg.

Figure 3.  Relationship between logarithm of mean cross-sectional grain area ā and logarithm of mean cross-
sectional grain perimeter p̄ . The black and red dots correspond to commercially pure nickel and aluminum 
alloy  Al5083F58, respectively. Blue dots show the values computed from the data by Bhattacharya et al.59 for 
magnesium alloy AZ31bMg.
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figure correspond to annealed microstructures obtained in a wide range of annealing times (1 min–7 days) and 
annealing temperatures (300− 1100◦C).

The relation between mean cross-sectional grain perimeter and mean cross-sectional grain area can be writ-
ten as

There was a suspicion that the universality of relation (5) was caused by a special equiaxed geometry of grain 
structures considered. In order to check that we measured a “form factor” which is introduced for ith grain as 
the ratios, ki = pi/

√
ai  , pi and ai being perimeter and area of the ith grain cross-section (in 2D geometry, k2i  is 

referred to as isoperimetric  quotient61). The observed values of form factors ki are shown in Fig. 4 by dots. Thick 
dots correspond to averaged values of form factor k̄.

Since grains do not have wiggly boundaries, parameter k can serve as a measure of grain eccentricity. If the 
grain cross-section is an ellipse with semi-axes b and c, c ≥ b , then

where e = c/b is eccentricity, and E(x) is complete elliptic integral of second kind. From the measured values of 
ki , one can find the corresponding eccentricity from formula (6). Two horizontal lines in Fig. 4 correspond to 
eccentricity equal to 1 (circle, E(0) = π/2, k = 2

√
π = 3.54 ) and the maximum measured value of k = 12 cor-

responding to eccentricity 28. Figure 4 shows that the grain shapes vary quite noticably in the data presented 
in Fig. 3.

constitutive equations. In metallurgy, the mean grain size R is usually determined by measuring the 
number of grains N in a given volume V . Then R is defined as (3V/4πN)

1
3 or, in terms of average grain volume 

v, R = (3v/4π)
1
3 ; v and R are two interchangeable characteristics of grain size. Energy of the grain structure is 

proportional to average grain areas. In order to determine the dependence of energy on grain size, one has to 
find a link between average 3D grain area a and average grain volume v. Figure 3 suggests that there might be a 
relationship similar to (5),

As for cross-sectional geometry, 3D parameters of grain structure a and v are statistically independent, and the 
very fact that formula (7) holds true needs an experimental verification. No experimental results supporting 
the validity of (7) seem to exist, though there are various assumptions on the character of randomness of grain 
 topology62–69. Our  estimation60 of α is α ∼ 0.1.

If relation (7) holds true indeed, then entropy degenerates, and Sm becomes a function of either a or v. Let us 
take for definiteness Sm = Sm(v) and assume that 3D and 2D values of S∗m are close. Then setting S∗m = 1.4 , we get,

or, in terms of a

(5)p̄ = (3.97± 0.04)
√
ā.

(6)k = 4

√

e

π
E

(

√

1−
1

e2

)

(7)v = αa
3
2 .

(8)Sm = 1.4v−1,

Figure 4.  Experimental values of form factor k for various stages of grain growth shown in terms of mean 
area ā normalized by as-received sample’s mean area ā0 . The black and red dots correspond to commercially 
pure nickel and aluminum alloy  Al5083F58 respectively. Blue dots show the values computed from the data by 
Bhattacharya et al.59 for magnesium alloy AZ31bMg. Two horizontal lines show the values of eccentricity for 
circular cross-section (green line, k = 3.54 , eccentricity 1) and grains with maximum observed eccentricity 
(purple line, k = 12 , eccentricity 28) (Some points in Fig. 4 go below the line of unit eccentricity apparently 
contradicting the isoperimetric inequality: for area a and perimeter p of any 2 dimensional planar region, 
4πa ≤ p2 . This is due to the experimental errors which originate from errors in measurement of area and 
perimeter of very small grains. (See supplementary material for more details))2.
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The constitutive relation Sm = const/v can be derived from dimension reasoning. If Sm is a function of a and v, 
then it follows from dimension  theory50 that

where � is some function of the dimensionless variable a3/2/v . If relation (7) holds true, then function � is 
a constant and we obtain Sm = const/v. In general, when the dependence of grain growth on other material 
parameters is studied, like density of precipitates, dislocation density, texture characteristics, etc., the machinery 
of similarity, incomplete self-similarity, and intermediate asymptotics is expected to be quite useful as was dem-
onstrated in other branches of materials  science51–53. Grain boundary energy per unit volume, Um = Em/V  , is

γ being grain boundary energy per unit area. From (8) and (9) we get the equation of state

where the parameter β is γ (1.4α2)−1/3 . Temperature of microstructure is introduced by the usual thermody-
namic relation,

The dependence of microstructure energy on Tm is

where c is a numerical constant, c = (
√
3 · 1.4α)−1 . According to our estimate of α , c ∼ 4.9.

Microstructure temperature can be expressed in terms of grain boundary energy and average grain boundary 
area. From (11) and (12),

This means that up to a numerical factor microstructure temperature is equal to the average grain energy. As 
in other subjects of microstructure thermodynamics, Tm >> T . For grain structures, Tm is several orders of 
magnitude higher than T. For example, for  Al56 with γ = 0.1J/m2, and average grain size R = 10µm, using 
that (αc)2 ≃ 0.25 , we get for the ratio of Tm to melting temperature Tmelt(933 K) the value Tm/Tmelt = 6× 108.

concluding remarks
Classical equilibrium thermodynamics is a “coarse-grained” description of ergodic Hamiltonian systems as was 
first understood by Gibbs and Boltzmann. Far from equilibrium, the systems exhibit two types of behavior. The 
systems can either remember well their “Hamiltonian origin”, or forget it becoming truly dissipative and retain-
ing the memory of the “Hamiltonian origin” only in the structure of energy and dissipation. The examples of 
first kind are gases, fluids, amorphous solids. The second type of behavior is typical for dynamics of mesoscopic 
defects of crystals, like dislocation ensembles or grain boundaries. The basic characteristic of the second type 
cases is the possibility to describe them by evolutionary dissipative equations. Navier-Stokes equations govern-
ing turbulent motions of fluids is an example of dissipative systems which need a coarse graining though on 
macroscopic rather than mesoscopic level. The major peculiarity of thermodynamic (coarse-grained) theory 
of dissipative systems is a huge diversity of possible phase flow geometries. This is to the contrary to ergodic 
Hamiltonian systems which are all alike: phase space is split in a family of energy surfaces, and phase flow is 
ergodic on each energy surface. It is this similarity and the Hamiltonian structure of the microworld dynamics 
that make equilibrium thermodynamics so universal. Thermodynamics of dissipative systems is expected to be 
quite more system-specific.

The first consistent generalization of the notion of entropy for non-equilibrium systems was given by 
 Leontovich54. His idea was to introduce some external actions on the system to force the non-equilibrium states 
to become equilibrium. Then entropy of such states (non-equilibrium entropy) is a function of usual thermo-
dynamic parameters and the parameters of the external action. This approach works for many non-equilibrium 
physical  systems55.

What is entropy of dissipative systems is not clear. At the moment some insight can be gained by studying 
particular cases. The only general concept is that entropy must decay if it is associated with the phase volume and 
the system is isolated. Emphasize that entropy could be of interest from the perspective of a macroscopic theory 
only if entropy enters the coarse-grained (averaged) constitutive equations. From this perspective, it is not clear 
whether the parameter Sm studied in this paper is essential because a meaningful coarse-grained thermodynamic 
theory of grain growth does not exist at the moment. Besides, the most simple set of thermodynamic parameters 
considered, a and v, turns out to be degenerated, and grain growth dynamical equation can be formulated without 
using Sm . Whether entropy considered is essential or not will be clear when more physical effects are taken into 

Sm = 1.4α−1a−3/2.

Sm =
1

v
�

(

a3/2

v

)

.

(9)Um =
γ a

v
=

γ

α
√
a
,

(10)Um = βS1/3m .

(11)Tm =
dUm

dSm
.

(12)Um = c
γ 3/2

T
1/2
m

(13)Tm = (αc)2γ a.
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account: the grain boundary interactions with precipitates and dislocations, influence of texture distribution, 
plastic deformation, etc. The experimental data reported supports the assertion that entropy of microstructure 
decays in the process of grain growth.

It is noteworthy that for one-parametric models like the one specified by (10) entropy decay is a consequence 
of the first and the second laws of thermodynamics. Indeed, according to the first law of thermodynamics, in 
an isolated system total energy E is conserved. In grain growth, E is a sum of energy of atomic motion, Eth , and 
energy of grain boundaries, Em . The first law of thermodynamics reads:

According to second law of thermodynamics, thermodynamic entropy Sth increases,

In (15)T is the absolute temperature which is defined as T = dEth/dSth . Assuming that microstructure tem-
perature Tm is positive,

We obtain from (14) that microstructure entropy decays,

Note that microstructure entropy decay would not follow from the first and second laws of thermodynamics and 
would be an independent statement, if microstructure energy Em was a function of both arguments, v and Sm.

The equation (12) and (13) allow us to check the consistency of the assumption that grain growths in adiabati-
cally isolated setting and in a thermal bath are practically the same. Indeed, from the conservation of energy in 
adiabatically isolated system and equation (12), we have

where cV is heat capacity per unit volume, T̊ , T̊m are the initial values of absolute temperature and microstructure 
temperature. Knowing the initial grain size and initial temperature, we can find from (18) temperature of the 
specimen after a certain grain size increase. For example, for  Al56,57 with γ = 0.1J/m2, cV = 2.4× 106J/m3K , 
initial average grain size R̊ = 10µm,for a typical temperature setting T̊ = 700K , after an order of magnitude of 
grain size increase, we have using (13) T̊m = 6× 1011K ,Tm = 6× 1013K . Then from equation (18) tempera-
ture increase is T − T̊ = 10−3K . This is within the experimental errors and grain boundary mobility remains 
practically the same. Thus, the grain structure evolution in adiabatic and isothermal settings can hardly be 
distinguished. Of course, the origin of that is the huge difference between the values of energy of atomic motion 
and energy of grain boundaries. In our example, at the start of grain growth, cV T̊ = 1.7× 109J/m3 , while the 
initial value of microstructure energy density is Um = 2821J/m3.

The degeneration of constitutive equations which we observed is likely due to the fact that in all the samples 
tested grain growth followed a self-similar path. In this regard, it would be interesting to study grain growth in 
materials with bimodal or trimodal initial grain size distribution alongwith another open question which is to 
get an experimental verification of relation (7).
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