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potential quality improvement 
of stochastic optical localization 
nanoscopy images obtained 
by frame by frame localization 
algorithms
Yi Sun

A data movie of stochastic optical localization nanoscopy contains spatial and temporal correlations, 
both providing information of emitter locations. the majority of localization algorithms in the 
literature estimate emitter locations by frame-by-frame localization (ffL), which exploit only the 
spatial correlation and leave the temporal correlation into the ffL nanoscopy images. the temporal 
correlation contained in the ffL images, if exploited, can improve the localization accuracy and 
the image quality. in this paper, we analyze the properties of the ffL images in terms of root mean 
square minimum distance (RMSMD) and root mean square error (RMSe). it is shown that RMSMD and 
RMSe can be potentially reduced by a maximum fold equal to the square root of the average number 
of activations per emitter. Analyzed and revealed are also several statistical properties of RMSMD 
and RMSe and their relationship with respect to a large number of data frames, bias and variance 
of localization errors, small localization errors, sample drift, and the worst ffL image. numerical 
examples are taken and the results confirm the prediction of analysis. The ideas about how to develop 
an algorithm to exploit the temporal correlation of FFL images are also briefly discussed. The results 
suggest development of two kinds of localization algorithms: the algorithms that can exploit the 
temporal correlation of ffL images and the unbiased localization algorithms.

In stochastic optical localization nanoscopy—PALM1,  STORM2,  FPALM3 and (d)STORM4, a localization nanos-
copy image is produced by three steps. First, a set of emitters are attached to ultrastructure of a specimen. Second, 
in each frame time a random subset of emitters are activated by a laser and emit photons that pass through an 
optical lens and produce a data frame acquired by a camera. Repeating this process, a data movie that consists 
of a large number of data frames is acquired. Third, a localization algorithm estimates the emitter locations from 
the data movie and produces a localization nanoscopy image of the specimen ultrastructure. The localization 
algorithm plays an important role in obtaining a high quality of localization nanoscopy images.

In the past decade, a number of localization algorithms have been developed in the literature on the basis 
of a variety of criteria and objectives, including but not limited to localization of single emitters in single frames: 
(d)STORM4,  Octan5,  FluoroBancroft6, Gaussian  fitting7,  PeakSelector8,  SOFI9,  DAOSTORM10, maximum 
 likelihood11, and  palm3d12, localization of multiple emitters in single frames: 3D-DAOSTORM13, compressed 
 sensing14, fast maximum  likelihood15,  RadialSymmetry16,  PeakFit17,  PALMER18,  RapidSTORM19, least-square 
fitting with the 3D Gibson-Lanni point spread function (PSF)20, PC-PALM21, fast compressed  sensing22, Easy-
DHPSF23, 3D-WTM24,  RainSTORM25,  WaveTracer26, μManager27,  ThunderSTORM28,  FALCON29,  MIATool30, 
AO-STORM31, state  space32,  TVSTORM33,  ADCG34,  Cspline35,  ALM36,  SMAP37,  UNLOC38, sparse Bayes-
ian  learning39,  LSTR40,  FCEG41,  WinSTORM42, and QC-STORM43, localization of multiple emitters in multi-
ple frames: 3B  analysis44,  deconSTORM45, spatiotemporal decomposition and  association46, and nonnegative 
matrix  factorization47. In addition, the recent approaches include cloud  computing48, clustering  analysis49,50, big 
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data  analysis51, correlation  analysis52,  HAWK53 to alleviate artifacts detectable by the Fourier ring correlation 
(FRC)54, 55, neural  networks56,57, machine  learning58, and deep  learning59–61.

To boost research and development of localization algorithms and identify high-performance localization 
algorithms, an online public challenge has been open to the  public62–64. The results of challenge on the 2D and 
3D imaging have been reported in Ref.63 and recently in Ref.64. In the challenge, a data movie is synthesized with 
a set of emitters whose locations are known. A localization algorithm estimates the emitter locations by using 
the data movie and produces a localization nanoscopy image consisting of the estimated emitter locations. The 
quality of the localization nanoscopy image and the performance of the algorithm are evaluated by comparison 
of the estimated emitter locations and the true emitter locations in terms of the quality metrics of accuracy, pre-
cision, recall, and Jaccard  index26,47,62,63. A universal and objective metric, root mean square minimum distance 
(RMSMD), is proposed  recently66. RMSMD measures the average, local, and mutual fitness between a set of 
estimated emitter locations and the set of true locations, and it presents several unique properties and advantages 
over the other metrics. RMSMD can be utilized to evaluate the quality of nanoscopy localization images and the 
performance of localization algorithms when a set of true emitter locations is known a  prior66.

Among the localization algorithms in the literature, only a few exploit temporal correlation by jointly utilizing 
multiple data frames or the entire data movie in estimation of emitter  locations44–47. The majority of localization 
 algorithms1–43 estimate emitter locations from each single data frame independently or by the frame-by-frame 
localization (FFL). Thus, most localization nanoscopy images are FFL images. Yet, little is known about their 
properties. It is imperative and important in both theory and application to understand the properties of FFL 
nanoscopy images in several aspects. First, since the optical lens is effectively a PSF, a data frame is spatially 
(pixel-wise) correlated. Moreover, because all data frames are generated by the same set of emitters, the data 
movie is also temporarily (frame-wise) correlated. The Fisher information matrix of multiple data frames is 
equal to the sum of their individual Fisher information  matrices69. Both the spatial and temporal correlations 
contain information about the emitter locations. If the spatial and temporal correlations are jointly and optimally 
exploited in localization of emitters, the localization accuracy can approach the bound that the data movie can 
provide. However, such an advanced localization algorithm is usually computationally complicated; and this 
is probably the reason why the majority of localization algorithms estimate emitter locations frame by frame 
independently. The FFL algorithms only exploit the spatial correlation and leave the temporal correlation to 
be intact. The temporal correlation is still contained in the FFL image, which if exploited, shall improve the 
localization accuracy of estimated emitter locations and the quality of nanoscopy image as well. The algorithms 
 UNLOC38 and QC-STORM43 detect and reconnect the estimated locations that might be generated from the same 
emitter in consecutive frames in order to improve localization accuracy. It is interesting to know the potentially 
maximum improvement of quality that can be obtained by exploitation of the temporal correlation in an FFL 
image. Second, as the number of data frames increases, the number of activations per emitter in the data movie 
increases and then the number of estimated locations per emitter in an FFL image increases. It is interesting 
to know how the average number of estimated locations per emitter affects the quality of an FFL image. It is 
practically interesting to know if it is necessary to acquire as many data frames as possible in order to improve 
the quality of an FFL image and when an acquisition of data frames shall terminate. A structure-resolving index 
(SRI) has been proposed to determine the termination time of  acquisition70. Third, it is desired to know how the 
variance and bias of localization errors and sample drift affect the quality of an FFL image. The effect of biases of 
localization errors has been recently paid attention in  literature65. Understanding the effect of variance and bias 
of localization errors and sample drift on the image quality enables algorithm developers to allocate resources 
more adequately to achieve a high quality of FFL images. Fourth, serval deterministic properties of RMSMD are 
analyzed and presented in Ref.66. However, its statistical properties are unknown yet while a data movie and an 
FFL image are random realizations of certain stochastic processes. An analysis of RMSMD for FFL nanoscopy 
images shall reveal statistical insights and understandings of  RMSMD71. Fifth, root mean square error (RMSE) 
can be utilized to theoretically analyze and quantify the error between the estimated localizations and the ground-
truth locations of emitters. The Cramer-Rao lower bound (CRLB)67, 68 determines the minimum RMSE for all 
unbiased estimators. While RMSMD can be employed to evaluate the quality of a localization nanoscopy image 
in comparison with a set of ground-truth locations, RMSE cannot be employed in general since it needs to know 
the identification of an estimated location associated with a ground-truth location, which is unknown in general. 
Hence, it is significant to reveal the relationship between RMSMD and RMSE. Moreover, it is also interesting to 
know the properties of FFL nanoscopy images in terms of RMSE.

In this paper the statistical properties of RMSMD and RMSE for the FFL nanoscopy images are analyzed 
and compared. First, it is found that while an FFL image is random, its RMSMD converges to a deterministic 
constant as the average number of activations per emitter � tends to infinity. This implies that for a sufficiently 
large � , increasing the number of acquired data frames improves little the quality of an FFL image in terms of 
reduction of RMSMD variation. A numerical example shows that when � = 10 , RMSMD is already stable and 
close to the limit RMSMD and acquiring more data frames is unnecessary. Second, the analytical result shows 
that exploitation of temporal correlation in an FFL image can reduce RMSMD and RMSE by a maximum fold of 
�
0.5 . Hence, an algorithm that is able to exploit the temporal correlation in an FFL image can significantly improve 

the image quality, in particular for a large � . A numerical example shows that exploitation of temporal correlation 
not only reduces RMSMD and RMSE of an FFL image but also considerably improves its visual quality. Third, 
the variance of localization biases across emitters affects RMSMD and RMSE much more severely than the vari-
ance of localization errors. On the basis of the first two results, we can conclude that if only an FFL algorithm 
is available, acquiring more data frames is unnecessary when the average number of activations per emitter 
already reaches � = 10 . On the other hand, if an FFL algorithm is followed by an algorithm that can exploit the 
temporal correlation, acquiring more data frames can significantly improve the image quality in both RMSMD 
and visual quality. At the end, the ideas about how to develop an algorithm to exploit the temporal correlation of 
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FFL images are also briefly discussed. These results suggest that in order to achieve a high quality of localization 
nanoscopy images it is important to develop two kinds of algorithms: the algorithms that can exploit temporal 
correlation contained in FFL images and the unbiased localization algorithms.

Method
ffL image, RMSMD and RMSe. FFL image. Let S = {s1, ..., sM} be a set of M fixed emitter locations in 
the n-dimensional real space Rn . In practice, the dimension is n = 2 for the 2D imaging and n = 3 for the 3D 
imaging. In a data movie of L frames each emitter is independently activated, following a Markov chain as con-
sidered in the  literature44,45, 66. The Markov chain is irreducible, aperiodic, and positive recurrent and therefore 
has a stationary probability distribution of  states66 such that an emitter in a frame is activated with a stationary 
probability p . In practice, an emitter will be ultimately bleached. Without loss of generality and effect on results, 
we consider that the emitters are not bleached yet in the data movie. The i th emitter is activated Ni < L times 
in the data movie. An FFL algorithm localizes by estimation the activated emitters in each single frame inde-
pendently. Let Xi = {xi1, ..., xiNi } be the set of all the locations estimated in different frames for the ith emitter si . 
X =

⋃M
i=1Xi consists of N =

∑M
i=1Ni locations for all M emitters estimated from the data movie.

As an estimate of S , X is an FFL nanoscopy image for S . In this paper, we do not investigate how to obtain 
Xi’s; instead, given Xi’s, we analyze the quality of X and the potential quality improvement by exploitation of 
temporal correlation that is embedded in X . The quality of X can be measured by the RMSMD and the RMSE 
between X and S . We shall analyze the statistical properties of the RMSMD and the RMSE when the number of 
data frames L is large.

Statistics. The i th emitter si is activated in Ni frames. The estimated locations of si from the Ni frames, xij ∈ Xi 
for j = 1, . . . ,Ni , can be written as xij = si + bi + wij . bi is the localization bias that is fixed in all estimates and 
bik for k = 1, . . . n , the k th component of bi , is the bias of xijk , the k th component of xij . wij is the localization error 
with zero mean E(wij) = 0 and varies randomly in different frames. The localization errors are resulted from the 
photon emissions of emitters, background autofluorescence, Gaussian noise, and an FFL algorithm, which all are 
mutually  independent67–69. In stochastic optical localization nanoscopy, the photon emissions from emitters and 
background autofluorescence both are Poisson processes. It follows from the property of classifying a Poisson 
number of  events72 that the numbers of detected photons in pixels of different frames are independent. The ther-
mal noise in electronic circuit is additive white Gaussian noise (AWGN)68,73 and therefore the Gaussian noises in 
pixels of different frames are independent. Thus, given the activations of emitters, the data frames are mutually 
 independent69. An FFL algorithm estimates the locations of activated emitters frame by frame independently. 
Hence, the localization errors of the same emitter in different frames are independent.

The localization errors of different emitters in the same frame are dependent if their PSFs are overlapped. 
Consequently, the covariance matrix of wij varies with j depending on the combination of activated emitters 
associated with j. For a total of M emitters, the number of possible combinations of activated emitters in a frame 
is 2M . If considering only the emitters whose PSFs can be possibly overlapped locally, M is small and the total 
number of combinations might be small in an experiment. In the condition that the i th emitter is activated, 
the total number of combinations of activated emitters in a frame, denoted by cil , is equal to J = 2M−1 . Since 
the Markov chain of activations of an emitter is stationary and has a stationary probability distribution of state, 
the l  th combination cil for l = 1, · · · , J occurs with a stationary probability qil . Denote by σ 2

ilk = E(w2
ijk|cil) the 

variance of the k th component of wij in the condition that the l  th combination cil occurs. It is clear that σ 2
ilk is 

stationary, that is, σ 2
ilk depends on the occurrence of the l  th combination cil and is independent of the frame index 

distinguished by j . Therefore, the localization error of the ith emitter wij ∈ Xi for j = 1, . . . ,Ni is stationary, and 
thus the variance of its k th component is equal to σ 2

ik = E(w2
ijk) =

∑J
l=1qilE(w

2
ijk|cil) =

∑J
l=1qilσ

2
ilk . Then the 

estimated locations xij of the ith emitter have a stationary probability density function fi(x).
The total number of activations of the i  th emitter, |Xi| = Ni , has a mean � = pL . N  , the total number of 

estimated locations for all emitters in X , has a mean M� = MpL . In practice, the total number of frames L is 
statistically large. To theoretically analyze the property of the RMSMD for a large L , so called a large data behav-
ior, we consider that L tends to infinity. Therefore, the mean of all Ni ’s as well as N tend to infinity, i.e., � → ∞.

RMSMD. Given S and X , their mean square minimum distance (MSMD) is defined  by66

where |·| is the number of elements in a set and � · � is the l2 norm or the Euclidean distance between two points. 
Then the RMSMD is D(X, S) . As a universal and objective metric, D(X, S) evaluates how well the two sets X and 
S averagely, locally, and mutually fit to each other.

In localization nanoscopy X is random and so is D(X, S) . In other words, an FFL image obtained in practice 
is one realization of X . D(X, S) can be applied to a particular realization of X.

The Voronoi cell of si ∈ S is defined by V(si) = {x ∈ Rn, �x − si� ≤ �x − sj�, j �= i} . The Voronoi cell V(xi) 
for xi ∈ X is defined similarly. In terms of the Voronoi cells, the RMSMD can be expressed as

(1)D2(X, S) = 1

|X| + |S|

(

∑

s∈S
min
x∈X

�x − s�2 +
∑

x∈X
min
s∈S

�s − x�2
)

(2)D2(X, S) = 1

|X| + |S|





�

x∈X

�

s∈S
�

V(x)

�x − s�2 +
�

s∈S

�

x∈X
�

V(s)

�s − x�2


.
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RMSE. The mean square error (MSE) between X and S is defined as

where the expectation is taken with respect to fi(x)’s. Then their RMSE is given by h(X, S) . It is shown in “Appen-
dix” that the MSE can be expressed in terms of the variances and biases of all estimated emitter locations

In general, RMSMD and RMSE are quite different. First, RMSMD is random while RMSE is deterministic. 
Second, given X and S , D(X, S) can be employed to evaluate the quality of a localization nanoscopy image X . 
RMSMD is useful in practice as well as theoretical analysis. Third, in contrast, evaluation of RMSE need to know 
the partition Xi ’s of the image X and the probability density function of estimated locations fi(x) . Therefore, 
RMSE is useful only in theoretical analysis. It is noted that the  CRLB67,68 is the minimum standard deviation 
σijk that any unbiased (i.e., bik = 0 for all k ) estimator xijk can possibly achieve. Though they are quite different, 
as analyzed in the next section, in the special cases when X is sufficiently dense and all the estimated locations 
are located inside the Voronoi cells of their own emitters, the random RMSMD can well approximate the deter-
ministic RMSE.

properties. Invariance to a large number of estimates. Since an FFL image is random, its RMSMD is ran-
dom. However, as the average number of activations per emitter increases, the randomness of RMSMD is even-
tually effectively ignorable as indicated by the following property, which is proved in “Appendix”.

Property 1 (Invariance): As � → ∞ , the RMSMD between X and S converges almost surely as

where the expectation in Eq. (5) is taken with respect to fi(x)’s.� □
In practice, for a large and finite � , Eqs. (5) and (6) provide an approximation of RMSMD for an FFL image. 

In particular, Eq. (6) implies that

In a particular experiment, an FFL image is a realization of random X and might have a much poorer quality 
than the average in terms of RMSMD. As indicated by Property 1, however, as � → ∞ , the random D2(X, S) 
converges to a deterministic constant at the right-hand side of Eq. (5). For a sufficiently large � , the quality of X 
in terms of D(X, S) in any experiment shall be almost the same. This implies that if � is sufficiently large, further 
increasing � does not decrease the variation of RMSMD and acquiring more data frames is unnecessary. The 
numerical example in the next section shows that when the average number of activations per emitter reaches 
� = 10 , the RMSMD is already steady with small variations.

The RMSMD formulas in Property 1 are applicable to all cases of localization errors for FFL images. In the 
following two subsections, the RMSMD is further analyzed in the cases of small and large localization errors.

RMSMD in small localization errors. In general, the random RMSMD and the deterministic RMSE are irrela-
tive. However, in the special case when � is sufficiently large and localization errors are small, the RMSMD effec-
tively coincides with the RMSE. We consider that all locations xij ’s estimated by an FFL algorithm are located in 
the Voronoi cell of their own emitter location si with probability one, that is, Pr

(

Xi
⋂

V(sj) = Xi

)

= δij for all i , 
j where δij is the Kronecker delta. This implies that the localization errors measured by RMSE are relatively small 
compared with the Voronoi cells. The following property is proved in “Appendix”.

Property 2 (Coincidence with RMSE): If xij ’s all are located in the Voronoi cells of their own emitter locations 
with probability one, then in the almost sure sense

which is equal to the right-hand side of Eq. (4). □
In an experiment, if most estimated locations xij ’s are in the Voronoi cells of their own si ’s and � is sufficiently 

large, then D2(X, S) ∼= h2(X, S) = M−1
∑M

i=1

∑n
k=1(σ

2
ik + b2ik).

RMSMD upper bound in large localization errors. Consider that an FFL image is defined over a finite region 
� ⊂ R

n and the variances of all estimated locations Xij ’s and the average number of activations per emitter both 

(3)h2(X, S) = 1

M

M
∑

i=1

1

Ni

Ni
∑

j=1

E
(

�xij − si�2
)

(4)h2(X, S) = 1

M

M
∑

i=1

n
∑

k=1

(

σ 2
ik + b2ik

)

.

(5)lim
�→∞

D2(X, S) = E

(

min
s∈S

�s − x�2
)

(6)= 1

M

M
∑

i=1

M
∑

j=1

∫

V(si)

�si − x�2fj(x)dx

(7)D2(X, S) ∼=
1

N

M
∑

i=1

∑

x∈X
⋂

V(si)

�si − x�2

(8)lim
�→∞

D2(X, S) = h2(X, S),
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tend to infinity, i.e., σ 2
ik → ∞ and � → ∞ . Then infinitely many estimated locations are uniformly distributed 

in � . The uniform distribution of estimated locations is equivalent to a random guess of the emitter locations 
and no information about the emitter locations is contained in such a localization nanoscopy image. Because of 
this, the RMSMD of this limit image can be considered the upper bound of RMSMD, which correspond to the 
worst quality of a localization nanoscopy image. The following property is straightforward to obtain from (6).

Property 3 (Upper bound on large localization error): As σ 2
ik → ∞ for all i , k and � → ∞ , in the almost sure 

sense

where |·| denotes the volume of a continuous set.� □

Exploitation of temporal correlation. We consider exploitation of temporal correlation retained in an FFL image 
and investigate the RMSMD improvement that is achievable by exploitation of temporal correlation.

The locations xij ∈ Xi are estimates for the same emitter location si from different frames. When the distribu-
tion of the localization errors is unknown, the statistical property of the errors cannot be exploited. However, 
when the localization errors of the same emitter across frames are independent, an efficient and simple method 
to improve the accuracy of estimated emitter location is the averaging of the estimates xij ∈ X

i
 for si to cancel 

out part of the errors, that is

For the mutually independent localization errors of xij’s, x̂i is the linear minimum-mean-square-error 
(LMMSE) estimator of the emitter location and bias. If the localization errors are further Gaussian distributed, 
x̂i is the maximum likelihood  estimator74. In these senses, when the distribution of localization errors is unknown, 
x̂i is an optimal estimator to exploit the temporal correlation from an FFL image.

Now, let X̂i = {x̂i} and X̂ =
⋃M

i=1X̂i ; and then X̂ , as an estimate of S that has the same number M of emitter 
locations as that of S , is a new localization nanoscopy image. The following formula is shown in “Appendix”,

The averaging of estimated locations estimated for the same emitter reduces the MSE on the part of variance 
by a fold of � but does not do on the part of biases. In the limit, the effect of error variances vanishes and the MSE

is determined only by the biases.
The following property is proved in “Appendix”.
Property 4 (Averaging): If xij ’s all are located in the Voronoi cells of their own emitter locations with prob-

ability one, then in the almost sure sense

which is equal to the right-hand side of Eq. (12).� □
Property 1–Property 4 imply that in the large data limit, exploitation of temporal correlation by the averaging 

of estimated locations per emitter can improve RMSMD by a fold of

In an experiment, if most estimated locations xij ’s are in the Voronoi cells of their own si ’s and � is sufficiently 
large, D2(X̂, S) is approximately by Eqs. (11) and (13)

Hence, the RMSMD is improved by an approximate fold of

which converges to the right-hand side of Eq. (14), the maximum fold of improvement for biased estimates.

(9)lim
{

σ 2
ik→∞

}

lim
�→∞

D2(X, S) = 1

M

M
∑

i=1

1

|V(si) ∩�|

∫

V(si)∩�

�si − x�2dx

(10)x̂i =
1

Ni

Ni
∑

j=1

xij .

(11)lim
�→∞

�

(

h2(X̂, S)− 1

M

M
∑

i=1

n
∑

k=1

b2ik

)

= 1

M

M
∑

i=1

n
∑

k=1

σ 2
ik .

(12)lim
�→∞

h2(X̂, S) = 1

M

M
∑

i=1

n
∑

k=1

b2ik

(13)lim
�→∞

D2(X̂, S) = lim
�→∞

h2(X̂, S),

(14)lim
�→∞

D2(X, S)

D2(X̂, S)
=

M
∑

i=1

n
∑

k=1

(

σ 2
ik + b2ik

)

/

M
∑

i=1

n
∑

k=1

b2ik .

(15)D2(X̂, S) ∼=
1

M

M
∑

i=1

n
∑

k=1

(

σ 2
ik

�
+ b2ik

)

.

(16)
D2(X, S)

D2(X̂, S)
∼=

M
∑

i=1

n
∑

k=1

(

σ 2
ik + b2ik

)

/

M
∑

i=1

n
∑

k=1

(

σ 2
ik

�
+ b2ik

)
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Maximum fold of improvement in RMSMD. The improvement of RMSMD in Eq. (16) is limited by the bias. 
If xij ’s are all unbiased with bi = 0 , the improvement tends to infinity as � increases. We investigate the rate of 
RMSMD improvement.

With the unbiased estimates xij’s, Eqs. (4) and (11) become, respectively

The following property is obtained by means of Property 2 and Property 4.
Property 5 (Maximum fold of improvement): If xij ’s all are unbiased and with probability one are located in 

the Voronoi cells of their own emitter locations, respectively,

which is equal to the right-hand side of Eq. (17).� □
Property 5 implies that as � → ∞ , D(X̂, S) → 0 at the rate of �−0.5 . In practice, RMSMD shall be in the 

order of

The averaging of estimated locations per emitter can improve RMSMD by a fold of

In practice, xij’s are usually not located in their own Voronoi cells and all estimated locations are mingled 
together. Moreover, xij’s are usually biased. Furthermore, an algorithm that determines the partition Xi ’s from 
X yields certain error in the estimated partition. All of these reduce the fold of improvement to an amount less 
than �0.5 in Eq. (21). Hence, �0.5 is the maximum fold of improvement in RMSMD by exploitation of temporal 
correlation. For several types of available  emitters75, the average number of activations before bleaching is in the 
range of � ∼= 30 ∼ 80 and therefore exploitation of temporal correlation can improve RMSMD by a maximum 
fold of �0.5 ∼= 5.5 ∼ 9.

In an experiment, if we know the estimated locations that are produced by the same emitter, simply averaging 
the estimated locations per emitter can improve RMSMD by a fold as large as �0.5 . However, practically only the 
entire set X is known and its partition sets Xi ’s are unknown and need to be estimated. To develop an algorithm 
that can effectively identify the partition sets Xi ’s from the set of all estimated locations X is the key to improve 
the quality of an FFL image through exploitation of temporal correlation.

Results and discussion
A numerical example. In this section we present a numerical example to demonstrate the properties of 
RMSMD for the FFL images. For simplicity, we consider that infinitely many emitters are located at the grids on 
the entire 2D plane R2 , sij = (ia, ja) with a > 0 for all integers i , j . The Voronoi cell of sij is

Figure 1a shows the emitter placement for a = 200 nm. The estimated locations xijk ∈ Xij = {xij1, . . . , xijNij } 
for emitter sij are Gaussian distributed with mean E(xijk) = sij + bij and covariance matrix C = diag(σ 2, σ 2).

Invariance to a large number of estimates. Consider that xijk ’s are unbiased with bij = 0 and σ ≪ a . Then all 
the estimated locations xijk ’s for emitter sij are almost located inside its own Voronoi cell Xij ⊆ V(sij) . By Eq. (4)

As σ increases, the RMSE between X and S increases without bound. However, the random RMSMD behaves 
quite differently. By means of Property 2

Figure 1b, d shows nanoscopy images X for σ = 25 nm with � = 10 and � = 25 , respectively. All estimated 
locations are inside the Voronoi cells of their own emitter locations and Property 2, Property 4, and Property 5 
are applicable. Figure 1f shows the RMSMDs and RMSEs of X and X̂ versus � for σ = 25 nm. When � is small, 
D(X, S) randomly varies significantly and presents a high uncertainty in quality, implying that the chance in an 
experiment to get a low-quality FFL image with a large RMSMD is high. As � increases, the variation decreases. 
When � = 10 , the variation is small and D(X, S) is close to the expected limit value 20.5σ . As predicted by Prop-
erty 1, continuing to increase � by increasing the total number of frames L and/or the activation probability p , 

(17)h2(X, S) = 1

M

M
∑

i=1

n
∑

k=1

σ 2
ik ,

(18)lim
�→∞

�h2(X̂, S) = h2(X, S).

(19)lim
�→∞

�D2(X̂, S) = lim
�→∞

D2(X, S),

(20)D2(X̂, S) ∼=
1

�M

M
∑

i=1

n
∑

k=1

σ 2
ik .

(21)
D(X, S)

D(X̂, S)
∼=

√
�.

V(sij) = [ia− 0.5a, ia+ 0.5a]× [ja− 0.5a, ja+ 0.5a]

(22)h(X, S) =
√
2σ .

(23)lim
�→∞

D(X, S) =
√
2σ .
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only slightly reduces the variation. D(X, S) eventually converges to its limit 20.5σ as predicted by Property 2. In 
other words, when � is large, the quality of all FFL images X ’s in practice is almost the same in terms of RMSMD. 
As shown in Fig. 1f, the RMSMDs of Fig. 1b, d with � = 10 and 25 , respectively, differ slightly. In practice, when 
the average number of activations per emitter reaches � = 10 , it is unnecessary to acquire more data frames in 
order to reduce RMSMD variation or uncertainty of an FFL image.

Figure 1.  Effect of � and the maximum folds of RMSMD and RMSE improvements by exploitation of temporal 
correlation with zero bias and σ = 25 nm. (a) S with a = 200 nm. (b) X with � = 10 . (c) X̂ obtained by 
averaging from (b). (d) X with � = 25 . (e) X̂ obtained by averaging from (d). The Voronoi cells of si ’s in (b)–(e) 
are denoted by the dotted lines. (f) RMSMDs and RMSEs of X and X̂ versus � . The RMSMDs of (1.b)-(1.e) are 
denoted by the squares.
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Averaging to reduce RMSMD. Taking the average of the estimated locations per emitter, x̂ij = N−1
ij

∑Nij

k=1xijk , 
produces a set X̂ of estimated locations each for one emitter. For the Gaussian distribution, x̂ij is the maximum 
likelihood estimator. By the symmetry of emitter placement, it follows from Eq. (11) that for the unbiased esti-
mates

and then

for a large � and σ ≪ a . Exploitation of temporal correlation reduces RMSMD by the maximum fold of �0.5 . The 
image X̂ in Fig. 1c is obtained by averaging the locations estimated for the same emitter in the image X in Fig. 1b. 
After averaging, the RMSMD is reduced approximately by the maximum fold of �0.5 = 100.5 ∼= 3.2 as shown in 
Fig. 1f. Moreover, with one estimated location for one emitter, the image X̂ in Fig. 1c has a much better visual 
quality than that in Fig. 1b. Similarly, as shown in Figs. 1f and 2c, the RMSMD of Fig. 1e is about the maximum 
�
0.5 = 5 times lower than that of Fig. 1d, and the former presents a much better visual quality than the latter. 

Figure 1f shows that as � increases, the RMSMD and RMSE of X̂ monotonically decrease at the rate about �−0.5 
as Property 2 and Property 5 predict.

RMSMD upper bound in a large localization error. We investigate how RMSMD is affected by a large localiza-
tion error with zero bias bij = 0 . As σ increases, the estimated emitter locations xijk spread and RMSE in Eq. (22) 
monotonically increases without bound. This implies that the localization of emitters becomes worse and worse. 
However, as an estimated location xijk enters another emitter’s Voronoi cell V(slm) , RMSMD considers only the 
distance between xijk and the nearest emitter location slm instead of its own emitter location sij . Consequently, 
RMSMD is eventually upper bounded and converges to a finite limit as σ → ∞ . In the limit, all estimated loca-
tions are uniformly distributed over the entire 2D plane. Due to the symmetric placement of sij and the uniform 
distribution of xijk , the RMSMD between X and S over the 2D plane is equal to the RMSMD over one Voronoi 

(24)h(X̂, S) = σ
√

2/�

(25)D(X̂, S) ∼= σ
√

2/�

Figure 2.  Effect on RMSMD and RMSE by large localization errors with zero bias and � = 25 . (a) X with 
σ = 75 nm. (b) X̂ obtained by averaging from (a). (c) The RMSMDs and RMSEs of X and X̂ versus σ . The 
RMSMDs of (1.d), (1.e), (2.a), (2.b) are denoted by squares.
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cell, say the Voronoi cell of s00 = (0, 0) . According to Property 3, the limit MSMD is equal to the expectation of 
‖x‖2 with x uniformly distributed over V(s00) , that is

This implies that as RMSE increases, RMSMD is eventually upper bounded and converges to the constant 
a/60.5.

All FFL images X ’s for a sufficiently large σ are statistically identical and their visual qualities are also the 
same. The uniform distribution of estimated locations in the limit of σ → ∞ is equivalent to a random guess of 
the emitter locations and no information about the emitter locations is embedded in the uniform distribution. 
Because of this, the limit RMSMD of a/60.5 is considered the upper bound of RMSMD, which correspond to the 
worst quality of a localization nanoscopy image.

Now we determine the limit D(S, X̂) as σ → ∞ . For the nanoscopy image X̂ , there is one estimate x̂ij for each 
emitter sij and x̂ij is uniformly distributed in the limit. Hence, the probability that k estimates x̂ij ’s are located in 
V(s00) is a Poisson distribution with a unit mean, that is, e−1/k! . Denote by Dk(X̂∞, s00) the limit RMSMD over 
the Voronoi cell V(s00) that contains k estimated locations. By Eq. (6), the limit D(X̂, S) is given by

To evaluate Eq. (27) is tedious but a lower bound can be obtained. For k = 0 , V(s00) contains no estimated 
location and the nearest x̂ij must be outside V(s00) , and then D2

0(X̂∞, s00) > a2/3 , which is the average squared 
distance from the origin to the boundary of V(s00) . For k = 1 , V(s00) contains one estimated location and 
D2
1(X̂∞, s00) = a2/6 given by Eq. (26). For any k ≥ 2 , we have D2

k(X̂∞, s00) > D2
1(X̂∞, s00) . Therefore,

which is greater than the limit D2(X, S) in Eq. (26). This means that as the variance of localization error σ 2 
increases, D(X̂, S) eventually surpasses D(X, S) and the averaging no longer reduces RMSMD. However, as 
shown numerically below, this does not occur in a practical experiment where a localization error is usually 
much smaller than the localization error at which D(X̂, S) intersects with D(X, S).

As shown in Fig. 2c with � = 25 , in the region of small σ , D(X, S) and D(X̂, S) are approximately equal to 
h(X, S) and h(X̂, S) , respectively, and D(X̂, S) is improved by the maximum fold of �0.5 = 5 over D(X, S) . As σ 
increases, D(X, S) is eventually upper bounded and converges to the upper bound of a/60.5 . Meanwhile, D(X̂, S) 
increases and the improvement by the averaging dwindles. Though not shown in the figure, D(X̂, S) eventually 
surpasses D(X, S) and converges to its upper bound that is slightly larger than the approximated upper bound 
of (1+ e−1)

0.5
a/60.5 . This means that Eq. (28) is a good approximation of the upper bound in Eq. (27), which is 

confirmed in Figs. 3c,d and 4d as well. Predicted by their much smaller RMSMDs, the visual qualities of images X̂ 
in Figs. 1c, e and 2b are much better than those of X in Figs. 1b, d and 2a, respectively, implying that the temporal 
correlation can significantly improve the image quality. In return, this implies that RMSMD is a rational quality 
metric for localization nanoscopy images. Finally, as σ increases, h(X, S) and h(X̂, S) increase linearly without 
bound, meaning that RMSE is not a proper quality metric for large localization errors.

Effect of bias. Now we investigate the effect of localization biases on RMSMD. Specifically, the estimated loca-
tions xijk are Gaussian distributed with mean E(xijk) = sij + bij , bij  = 0 , and covariance matrix C = diag(σ 2, σ 2) . 
Unlike the sample drift, the biases of estimated locations xijk ’s for different emitter sij ’s are usually different. 
To simplify the analysis, we consider that the biases bij for different i, j are realizations of a Gaussian random 
vector with mean zero and covariance matrix diag(δ2, δ2) . This implies that as M → ∞ , M−1

∑M
i=1 b

2
ik → δ2 

almost surely. By Eqs. (4) and (11), h2(X, S) = 2(σ 2 + δ2) , and h2(X̂, S) = 2(σ 2/�+ δ2) , respectively. The MSEs 
increase without bound as the variance of bias δ2 increases.

When both the variance of localization error σ 2 and the variance of biases δ2 across emitters are small such 
that the estimated locations all are almost surely located in the Voronoi cells of their own emitters, Property 2 
and Property 4 are applicable and

As expected, the averaging cannot reduce the effect of biases.
As σ → ∞ , D2(X, S) still converges to the right-hand side of Eq. (26) regardless of bias δ . On the other hand, 

given σ , as δ → ∞ , all estimated locations are eventually uniformly distributed, that is, δ plays a similar role in 
D(X, S) and D(X̂, S) as σ does. Hence, similar to Eqs. (26) and (28), we obtain

(26)lim
σ→∞

lim
�→∞

D2(X, S) = a2/6.

(27)lim
σ→∞

lim
�→∞

D2(X̂, S) =
∞
∑

k=0

e−1

k! D
2
k(X̂∞, s00).

(28)lim
σ→∞

lim
�→∞

D2(X̂, S) >
(

1+ e−1
)

a2/6,

(29)D2(X, S) = 2(σ 2 + δ2),

(30)D2(X̂, S) = 2(σ 2/�+ δ2).

(31)lim
δ→∞

lim
�→∞

D2(X, S) = a2/6,

(32)lim
δ→∞

lim
�→∞

D2(X̂, S) > (1+ e−1)a2/6.
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Figure 3 shows the effect of bias and variance of localization errors on RMSMD and RMSE with � = 25 . 
Figure 3a,b respectively show an image of X and its corresponding X̂ with σ = 25 nm and δ = 25 nm. The 
biases for different emitters are different. As shown in Fig. 3c, in the region of small δ , the RMSMDs of X and 
X̂ are approximately equal to h(X, S) and h(X̂, S) , respectively. As δ increases, both eventually diverge and vary 
significantly around their upper bounds in Eqs. (31) and (32), respectively. As σ increases, the RMSMDs of X 
and X̂ with δ = 25 nm behave similarly to those in Fig. 2c with zeros bias; but the former is lifted and pressed 
towards the upper bounds due to the bias. It is worthy to point out that comparing Fig. 3c, d, the RMSMDs of 
both X and X̂ converge faster to their bounds as δ increases than as σ increases. Moreover, the biases cannot be 
reduced by the averaging. Therefore, the variance of biases across emitters affects more severely on the RMSMD 
than the variance of localization errors.

Effect of sample drift. We investigate the effect of sample drift on RMSMD. While the localization errors cause 
different biases across emitters, a sample drift produces the same bias on all emitters. Because of this, the drift 
in a localization nanoscopy image is easy to identify and remove. Nevertheless, the effect of a drift on RMSMD 
is significant as analyzed below.

Consider a sample drift (d1, d2) and that estimated locations xijk ’s are Gaussian distributed with mean 
E(xijk) = sij + (d1, d2) and covariance matrix C = diag(σ 2, σ 2) . By Eqs. (4) and (11), the MSEs of X and X̂ are 
equal to h2(X, S) = 2σ 2 + d21 + d22 and h2(X̂, S) = 2σ 2/�+ d21 + d22 , respectively. The MSEs increase without 
bound as the drift increases.

In comparison, as the drift increases, the X with the drift of (d1, d2) is statistically identical to the X with the 
drift of (d1, d2)+ (ma, la) for integers m and l. This implies that D(X, S) varies periodically with a period of a as 
the drift changes, and so does D(X̂, S) . Considering the period, when the estimated locations for one emitter 
are all located inside the Voronoi cell of an emitter, the RMSMDs of X and X̂ are still determined by Property 
2 and Property 4, that is,

(33)D2(X, S) = 2σ 2 + d21 + d22 ,

Figure 3.  Effect of bias and variance of localization errors on RMSMD and RMSE with � = 25 . (a) X with 
σ = 25 nm and δ = 25 nm. (b) X̂ obtained by averaging from (a). (c) RMSMDs and RMSEs of X and X̂ versus δ 
with σ = 25 nm. The RMSMDs of (1.d), (1.e), (3.a), and (3.b) are denoted by squares. (d) RMSMDs and RMSEs 
of X and X̂ versus σ with δ = 25 nm. The RMSMDs of (3.a) and (3.b) are denoted by squares.
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The averaging does not change the sample drift. As σ → ∞ , the RMSMDs of X and X̂ still converge respec-
tively to their upper bounds of Eqs. (26) and (27) regardless of drift.

In Fig. 4a–d the drift (d1, d2) = (d, d) is considered with � = 25 . Figure 4a is an image of X with σ = 25 nm 
and d = −40 nm in which the effect of drift can be seen. Figure 4b is the image X̂ obtained by averaging from (a). 
The visual quality is significantly improved and the effect of sample drift can be seen unchanged. The RMSMDs 
of (a) and (b) are indicated in (c) and (d).

Figure 4c demonstrates how RMSMD and RMSE change with respect to d with σ = 25 . As |d| increases, RMS-
MDs of X and X̂ are eventually bounded and vary periodically with the period of a while RMSEs increase without 
bound. When the drift is small such as d = −40 nm in (a) and (b), D(X, S) ∼= h(X, S) and D(X̂, S) ∼= h(X̂, S) . 
However, when the drift is large, they diverge significantly. It is noticeable that the worst drift is d = (k + 0.5)a 
such that the estimated locations are located at the vertices of four adjacent Voronoi cells. In this case, RMSMDs 
of X and X̂ are larger than the corresponding bounds in Eqs. (31) and (32). However, under any sample drift the 
nanoscopy image has the same pattern as that after the drift is removed. Furthermore, a sample drift is easy to 
identify and remove. Hence, the upper bounds in Eqs. (26) and (27) are still considered the highest RMSMD that 
correspond to the worst quality of nanoscopy images where no information of emitter locations is contained.

Figure 4d demonstrates how RMSMD and RMSE change with respect to σ with the drift of d = −40 nm. The 
RMSMDs of X and X̂ behave similarly to Fig. 3d with bias. Due to the symmetric placement of emitters and the 
small drift, the effect of drift is similar to that of a bias.

Methods to exploit temporal correlation. In this paper, we focus on analysis of the potential maximum 
quality improvement of FFL images by exploiting its embedded temporal correlation. In this section, we briefly 
discuss how to develop such an algorithm to exploit the temporal resolution. First, due to its photodynamics 
each emitter is usually assumed to be activated independently from one frame to another in accordance with a 
Markov  chain44, 45, 66. The estimated locations of the same emitter in an FFL image are presented following the 

(34)D2(X̂, S) = 2σ 2/�+ d21 + d22 .

Figure 4.  Effect of sample drift on RMSMD and RMSE with � = 25 . (a) X with σ = 25 nm and d = −40 nm. 
(b) X̂ obtained by averaging from (a). (c) RMSMDs and RMSEs of X and X̂ versus d with σ = 25 nm. The 
RMSMDs of (1.d), (1.e), (4.a), and (4.b) are denoted by squares. (d) RMSMDs and RMSEs of X and X̂ versus σ 
with d = −40 nm. The RMSMDs of (a), and (b) are denoted by squares.
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Markov chain and therefore are temporally correlated. The properties of the Markov chain can be exploited to 
identify the estimated locations that are generated by the same emitter. Second, the estimated locations of an 
emitter are usually distributed as a cluster around its true location. Exploiting the property of clusters can detect 
the identity of estimated locations and improve the image quality. Many existing clustering algorithms in the 
 literature76 are ready to apply, say the k-means method, the methods based on the Gaussian mixture model, etc. 
While an algorithm can exploit either the property of a Markov chain or the property of clusters, an optimum 
algorithm shall jointly exploit the properties of both the Markov chain and the clusters, which is necessarily 
more computationally complex.

conclusions
We have analyzed the statistical properties of root mean square minimum distance (RMSMD) and root mean 
square error (RMSE) for the frame-by-frame localized (FFL) nanoscopy images. When the average number of 
estimated locations per emitter � is greater than ten, the variation of RMSMD is slightly reduced by continuously 
increasing � ; and then increasing the number of data frames in an acquisition is unnecessary. On the other hand, 
exploiting the temporal resolution can reduce RMSMD and RMSE by a maximum fold of �0.5 and therefore the 
fold of improvement increases as the number of acquired data frames increases. When the localization error 
is small, the RMSMD and the RMSE coincide. As the localization error increases without bound, the RMSE 
increases without bound; in contrast, the RMSMD is eventually upper bounded by that of the worst nanoscopy 
image where all estimated locations are uniformly distributed and no information about emitter locations is 
contained. This implies that even for large localization errors, the RMSMD is a proper metric of image quality 
but the RMSE is not without saying that the RMSE is not applicable in practice. The random biases of localization 
errors across emitters affect the RMSMD in the similar way to the variance of localization errors but the former 
affects more severely than the latter. As the sample drift increases, the RMSMD goes up and down alternately. 
The analytical results for the emitters located on the 2D grids can be used as a reference to benchmark the qual-
ity of FFL nanoscopy images. An algorithm to exploit the temporal resolution can take use of the properties of 
the Markov chain and clusters. The results suggest to develop two kinds of algorithms: the algorithms that can 
exploit the temporal correlation of FFL nanoscopy images and the unbiased localization algorithms.

Appendix
Proof of Eq. (4) Since all xij ∈ Xi follow the same probability density function fi(x) , the MSE of Eq. (3) can be 
written as

Since E[(xi1k − sik)
2] = E[(wi1k + bik)

2] = σ 2
ik + b2ik , the MSE of X is given by Eq. (4).� □

Proof of Property 1 As � → ∞ , both Ni → ∞ and N → ∞ in  probability77. In Eq. (1) each term minx∈X�x − s�2 
in the first sum must be included in the second sum. Moreover, there are about � times more terms in the second 
sum than in the first sum. The first sum is infinitesimal in the limit. It follows from Eq. (1) and the law of large 
numbers that

which yields Eq. (5). Equation (37) holds almost surely since there are Ni locations xij ∈ Xi and the expectation 
in Eq. (37) is taken with the condition of x ∈ Xi.

h2(X, S) = 1

M

M
∑

i=1
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(35)= 1

M

M
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n
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2].
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1
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Since xij ’s have a stationary probability density function fi(x) , Eq. (5) can be further written as

By means of the Voronoi cells of si’s, Eq. (38) can be expressed as

which is equal to Eq. (6).� □

Proof of Property 2 With the given condition, we have

for all i , j , and then

It follows from Eq. (6) that

Hence, Eq. (8) holds due to Eq. (4).� □

Proof of Eq. (11) It is clear that the mean of x̂i is E(x̂i) = si + bi and the variance of its k th component with a 
fixed Ni is equal to σ̂ 2

ik = σ 2
ik/Ni . It follows from Eq. (35) that

which yields Eq. (11) since �/Ni → 1 almost surely as � → ∞.� □

Proof of Property 4 By the law of large numbers, as � → ∞ , x̂i → si almost surely and then the probability 
that x̂i is in the Voronoi cells of other sj for j  = i tends to zero, that is, Pr(x̂i ∈ V(sj)) → δij for all i , j ; and cor-
respondingly, Pr(si ∈ V(x̂j)) → δij . X̂ and S are a pair of kernel sets. It follows from Eq. (3) in Ref.66 that in the 
almost sure sense

E

(

min
s∈S

�s − x�2
)

= 1

M

M
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1
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(39)E

(

min
s∈S

�s − x�2
)

= 1

M

M
∑

i=1

M
∑

j=1

∫

V(sj)

�sj − x�2fi(x)dx

∫

V(si)

fj(x)dx = δij

∫

V(si)

�si − x�2f i(x)dx =
∫

Rn

�si − x�2f i(x)dx,

∫

V(si)

�si − x�2f j(x)dx = 0.

(40)lim
�→∞

D2(X, S) = 1

M

M
∑

i=1

∫

Rn

�si − x�2f i(x)dx

= 1

M

M
∑

i=1

E(�si − xi1�2)

(41)= 1

M

M
∑

i=1

n
∑

k=1

(σ 2
ik + b2ik).

h2(X̂, S) = 1

M

M
∑

i=1

n
∑

k=1

E[(x̂ik − sik)
2]

(42)= 1

M

M
∑

i=1

n
∑

k=1

[

E

(

σ 2
ik

Ni

)

+ b2ik

]



14

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:11844  | https://doi.org/10.1038/s41598-020-68564-4

www.nature.com/scientificreports/

Since σ̂ 2
ik = σ 2

ik/Ni , x̂i → si + bi . Hence, almost surely

which yields Eq. (13) in terms of Eq. (12).� □
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