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Autonomic nervous system 
changes detected with peripheral 
sensors in the setting of epileptic 
seizures
Solveig Vieluf1,2, Claus Reinsberger2,3, Rima El Atrache1, Michele Jackson1, Sarah Schubach1, 
claire Ufongene1, Tobias Loddenkemper1 & Christian Meisel 1,4*

A better understanding of the early detection of seizures is highly desirable as identification of an 
impending seizure may afford improved treatments, such as antiepileptic drug chronotherapy, or 
timely warning to patients. While epileptic seizures are known to often manifest also with autonomic 
nervous system (ANS) changes, it is not clear whether ANS markers, if recorded from a wearable 
device, are also informative about an impending seizure with statistically significant sensitivity and 
specificity. Using statistical testing with seizure surrogate data and a unique dataset of continuously 
recorded multi-day wristband data including electrodermal activity (EDA), temperature (TEMP) and 
heart rate (HR) from 66 people with epilepsy (9.9 ± 5.8 years; 27 females; 161 seizures) we investigated 
differences between inter- and preictal periods in terms of mean, variance, and entropy of these 
signals. We found that signal mean and variance do not differentiate between inter- and preictal 
periods in a statistically meaningful way. EDA signal entropy was found to be increased prior to 
seizures in a small subset of patients. Findings may provide novel insights into the pathophysiology 
of epileptic seizures with respect to ANS function, and, while further validation and investigation of 
potential causes of the observed changes are needed, indicate that epilepsy-related state changes 
may be detectable using peripheral wearable devices. Detection of such changes with wearable 
devices may be more feasible for everyday monitoring than utilizing an electroencephalogram.

The current inability to assess when a seizure is most likely to occur constitutes a major burden for people with 
epilepsy (PWE)1. From a clinical perspective, this inability precludes the development of better treatments, such 
as antiepileptic drug chronotherapy adapted to personalized risk profiles, or timely, closed-loop intervention 
strategies to acutely avert impending  seizures2. Hence, a better understanding of the informative biomarkers 
underlying the transition to seizures is needed.

Most research devoted to the study of seizure onset mechanisms and prior warning signals has tradition-
ally focused on electroencephalogram (EEG). Continuous EEG, however, is impractical for monitoring over 
extended periods of time, especially when used in the ambulatory  setting3. Wearable devices might offer a 
promising alternative, as these afford easy-to-use, close monitoring of autonomic nervous system (ANS) func-
tion without being invasive or restraining to  PWE4. Alterations of ANS activity are known to occur frequently 
within multiple domains, such as electrodermal, thermal and cardiac subsystems, in relation to seizures, and 
show specific patterns across these  parameters5–7. However, further research on these subsystems of the ANS 
and whether they may afford statistically meaningful identification of preictal periods in terms of sensitivity 
and specificity is needed.
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Here, we investigate unimodal recordings from the ANS during multi-day, in hospital monitoring of PWE 
using wearable devices. The aim of this explorative study is to assess the utility of such ANS metrics in identifying 
seizures early, specifically delineating the preictal period in terms of sensitivity and specificity.

Materials and methods
Data recording. We recruited patients admitted to the long-term video-EEG monitoring unit at Boston 
Children’s Hospital between February 2015 and October 2018. We did not exclude infants, as we believe that this 
age group is especially in need of seizure detection and prediction from wearable devices and it was possible to 
fit the sensor to these patients. Patients wore a biosensor wristband (E4, Empatica Inc., Milan, Italy) on either 
left or right wrist or ankle for long-term recording during their admission. These sensors capture the ANS data 
including electrodermal activity (EDA), heart rate (HR), and temperature (TEMP). Video and EEG recordings 
were reviewed by board-certified epileptologists, blinded to ANS signals, to determine the seizure type, ictal 
EEG localization, and EEG seizure onset and offset. Written informed consent was obtained from all participants 
or their guardians enrolled in the study. We received approval from the Boston Children’s Hospital Institutional 
Review Board and all research was performed in accordance with relevant guidelines/regulations. All epileptic 
seizures occurring in a patient were considered (Table 1).

Table 1.  Summary of patient characteristics. Blue dots next to patient ID indicate a significantly increased EDA 
signal entropy preictally (analysis for 30-s segments).

Patient Gender Age (years) Age of first seizure (years) Seizure types MRI findings Etiology Wristband location No. of Seizure
1 Male 15 13 Focal onset Not noted Structural Left wrist 1
2 Male 13 0 Focal onset Normal Unknown left ankle 1
3 Female 17 Unknown Focal onset Normal Unknown Left wrist 1
4 Female 2 Unknown Focal onset Volume loss, unspecified Structural Left ankle 2
5 Female 5 4 Unclassified Malformation Structural Left wrist 2
6 Female 15 3 Generalized onset, unclassified Gliosis, unspecified Structural Right wrist 3
7 Female 22 10 Focal onset Infarction Structural Right ankle 1
8 Female 16 15 Focal onset Normal Unknown Left ankle 1
9 Male 17 7 Focal onset Normal Unknown Right wrist 1
10 Male 3 2 Focal onset Dysplasia Structural Right ankle 1
11 Female 14 Unknown Generalized onset Cyst Unknown Left wrist 1
12 Male 11 1 Focal onset Normal Unknown Left wrist 2
13 Male 10 1 Focal onset Malformation Structural Right wrist 4
14 Female 13 11 Focal onset, unclassified Volume loss, unspecified Structural Left wrist 4
15 Male 16 10 Focal onset Normal Unknown Left wrist 4
16 Male 8 7 Generalized onset Normal Unknown Left ankle 3
17 Female 2 Unknown Focal onset, unclassified Tuberous sclerosis/hamartoma Genetic Left ankle 4
18 Male 9 1 FOCAL onset, generalized onset Not noted Unknown Right ankle 3
19 Male 10 8 Focal onset Volume loss, unspecified Unknown Right wrist 3
20 Male 9 5 Focal onset, generalized onset Normal Unknown Left ankle 5
21 Male 5 0 Generalized onset Normal Unknown Left wrist 2
22 Female 15 13 Focal onset, generalized onset Volume loss, unspecified Genetic Left ankle 3
23 Female 3 0 Generalized onset, unclassified Resection Structural Right ankle 2
24 Male 13 0 Focal onset Tuberous sclerosis/hamartoma Genetic Right ankle 2
25 Male 0 0 Focal onset Malformation Structural Right ankle 2
26 Female 27 14 Generalized onset Normal Unknown Right wrist 2
27 Male 17 15 Focal onset Tumor Structural Right ankle 1
28 Male 13 0 Focal onset Resection Unknown Left wrist 3
29 Female 2 1 Generalized onset not Noted Unknown Right ankle 2
30 Male 8 1 Focal onset Volume loss, unspecified Structural Right wrist 2
31 Female 15 0 Focal onset, unclassified Hippocampal sclerosis Structural Right ankle 4
32 Male 7 4 Focal onset Infarction Structural Left wrist 2
33 Female 17 1 Generalized onset Not noted Unknown Right wrist 3
34 Female 3 Unknown Focal onset Volume loss, unspecified Structural Right ankle 1
35 Female 6 3 Generalized onset, unclassified Gliosis, unspecified Structural Left wrist 3
36 FEMALE 11 7 Generalized onset Normal Unknown Right wrist 2
37 Male 12 6 Generalized onset Volume loss, unspecified Structural Right wrist 3
38 Male 7 Unknown Generalized onset Volume loss, unspecified Metabolic Right ankle 1
39 Male 3 1 Focal onset Resection Structural Right wrist 8
40 Female 10 1 Focal onset, unclassified Dysplasia Structural Right wrist 3
41 Female 13 0 Focal onset Infarction Structural Left wrist 2
42 Male 2 0 Generalized onset, unclassified Tuberous sclerosis/hamartoma Genetic Left ankle 4
43 Male 4 2 Focal onset Volume loss, unspecified Structural Left ankle 2
44 Female 5 0 Focal onset Infarction Structural Right ankle 1
45 Male 8 5 Focal onset Tumor Structural Right ankle 3
46 Female 13 9 Focal onset, unclassified Normal Unknown Left ankle 5
47 Male 12 7 Focal onset Normal Unknown Right wrist 2
48 Male 0 0 Generalized onset, unclassified Not noted Unknown Right ankle 2
49 Male 9 Unknown Generalized onset Normal Unknown Right wrist 1
50 Female 13 3 Focal onset Volume loss, unspecified Structural Right wrist 1
51 Female 11 1 Focal onset Hippocampal sclerosis Structural Right ankle 1
52 Male 1 Unknown Focal onset Dysplasia Structural Left ankle 1
53 Male 14 0 Focal onset, unclassified Resection Structural Left wrist 3
54 Female 11 10 Generalized onset Tumor Structural Right wrist 2
55 Female 19 0 Generalized onset Volume loss, unspecified Unknown Right ankle 2
56 Male 7 1 Focal onset Normal Unknown Left ankle 4
57 Male 14 7 Generalized onset Dysplasia Structural Left ankle 2
58 Male 12 1 Focal onset Not noted structural Right wrist 1
59 Male 9 8 Focal onset malformation Unknown Left ankle 5
60 MALE 0 0 Unclassified infarction Structural Right ankle 4
61 MALE 9 1 Focal onset normal Unknown Right ankle 6
62 Male 10 0 Focal onset cyst Unknown Left ankle 2
63 Male 5 Unknown Focal onset Malformation Structural Right ankle 1
64 Female 3 1 Generalized onset, unclassified Normal Genetic Left ankle 2
65 Male 11 Unknown Generalized onset Normal Unknown Left wrist 1
66 Male 21 3 Focal onset, generalized onset Volume loss, unspecified Genetic Right ankle 3
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Data analysis and statistics. The aim of the current study is to evaluate whether there is a systematic dif-
ference in markers recorded with a wearable device during the preictal period compared to the interictal period. 
For this purpose, data was analyzed in segments, for which we explored a range of either 30 s or 5 min duration 
(Fig. 1A). A segment was assumed preictal if it occurred between 61 min and 1 min prior to a seizure, leaving a 
buffer period of 1 min prior to seizure onset (Fig. 1B, red boxes). This preictal period definition was assumed to 
be commensurate with other research investigating the preictal period using EEG and  ECoG8–10 and to account 
for potential small ambiguities in determining the exact seizure onset between the EEG and wristband. The 
duration choice is also based on research demonstrating that seizure generation likely takes place over minutes 
to  hours11. Results were robust under different choices of the preictal period, e.g. 5-min buffer period to seizure 
onset and 30 min preictal period duration (see below). A segment was classified as interictal if it occurred at least 
2 h prior to or after any seizure (Fig. 1B, green boxes). Similar to previous  research8,9, we limited our analysis 
to lead seizures and considered seizures only if they were separated by at least 2 h. We thus excluded intervals 
directly after the onset of a seizure or when many seizures occurred in rapid progression in order to not bias our 
analyses with seizure effects and with postictal period  findings12. To allow for stable recording conditions, we 
excluded data from the first and last hour.

EDA and TEMP are both recorded at 4 Hz, HR at 1 Hz. For each segment of EDA, HR, and TEMP data, the 
mean, variance, and entropy were calculated. Entropy is a measure that has been used to describe the degree 
of complexity within a time  series13. We chose signal entropy as a potential signal marker of interest, since 
entropy has been shown to increase prior to certain state changes in neural systems  before14. Related to epilepsy 
entropy was previously used for example in  EEG15 and  ECG16 data. Entropy was calculated for each segment as 
H = −p log p, with log denoting the logarithm to base 2 and p being the probability density obtained by binning 
the data into n bins. We found that results were robust for different bin numbers (n = 16, 32 bins). We thus report 
results for n = 32 bins.

Next, distributions of metrics (mean, variance, entropy) from the assumed preictal period were compared with 
the remaining data using the receiver-operating-characteristic (ROC)17, which allows assessing the separability 
in terms of sensitivity and specificity. The area under the ROC curve, Area (ROC), was calculated relative to the 
case of identical distributions (i.e. relative to 0.5). Thus, the value of the Area (ROC) is positive/negative when 
an increased/decreased indicator is indicative of a preictal  period10.

Subsequently, seizure time surrogates were used to assess the statistical validity of any  finding11. For each 
subject, a total of 100 different surrogate sets of randomized seizure onset times were created by random permu-
tation of preictal and interictal periods. Considering a significance level of 5%, an increased/decreased indicator 
during the preictal period can then be considered significant, if Area (ROC) is larger/smaller than zero for the 
original seizure times and if Area (ROC) is larger/smaller than 95/5% of the 100 seizure time  surrogates10. Finally, 
to determine whether, across patients, an indicator was increased or decreased during preictal periods, we also 
performed a two-sided Wilcoxon signed-rank test on the Area (ROC) values that had passed the surrogate test. 
Data analysis was performed using Python (version 2.7).

ethical approval. We confirm that we have read the Journals position on issues involved in ethical publica-
tion and affirm that this report is consistent with those guidelines.

Results
We analyzed multi-modal signal data related to ANS function recorded from wristbands of 66 patients 
(9.9 ± 5.8 years; mean ± std; see Table 1 for complete patient characteristics) during long-term video-EEG moni-
toring. Figure 1A illustrates the data, which includes EDA, TEMP, and HR, from one patient. We analyzed data 
in 30-s long, non-overlapping windows; we also confirmed that results were robust under choice of a different 
window length (5 min). Figure 1B shows the time course from one patient where red and green boxes indicate 
assumed pre- and interictal periods, respectively. We report results for an assumed preictal period duration of 
60 min; similar results were obtained when a preictal period of 30 min was assumed or when a 5- instead of a 
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Figure 1.  Multimodal wristband sensor data obtained during long-term epilepsy monitoring. (A) Example 
of a 30-s (left) and 5-min (right) data segments from one patient containing electrodermal activity (EDA), 
temperature (TEMP) and heart rate (HR). (B) Time course of mean EDA data from one patient. Magenta 
vertical lines indicate seizures (Sz), green boxes indicate periods classified as interictal, red boxes indicate 
periods classified as preictal.
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1-min gap between the end of the preictal period and seizure onset was assumed. We chose both segment lengths, 
different preictal time periods and gaps as the relevant time scale has not been defined and to validate results.

As a first step, we calculated mean and variance for each sensor data stream per segment. Mean values varied 
widely over the recording period (Fig. 1B) and no pattern specific to the preictal period was visually detectable. 
Employing the receiver-operator-characteristic (ROC) yielded both increased and decreased markers that passed 
the surrogate seizure time test. Wilcoxon signed-rank test on the Area (ROC) values revealed no significant trend 
that would suggest increased or decreased mean values during preictal periods for any of the variables across 
patients (Fig. 2, analysis of mean values per data stream for 30-s segments). Similarly, no significant difference 
indicative of a coherent change across patients was observed for signal variance independent of segment length. 
Thus, while a subset of patients passed the surrogate test, this therefore does not preclude that these metrics 
change in a patient-specific way during the preictal period. Across patients there is no conclusive trend indicative 
of an increase or decrease in our data in terms of signal mean and variance.

We then investigated signal entropy, a unimodal measure that has been used to quantify the complexity of 
a  signal13. Further, signal entropy has also been observed to increase prior to certain state changes in neural 
 systems14. In our data, entropy of HR and TEMP showed no significant trend across patients. For entropy of 
the EDA signal we observed significantly higher values in pre- than in interictal periods for the small subset 
of patients that passed the surrogate test. The increase was observed independently of whether entropy was 
calculated from 30-s (Fig. 3A) or 5-min segments (Fig. 3B). Additional analyses furthermore revealed that EDA 
entropy results were robust under different numbers of bins (16 and 32) used to calculate entropy. In summary, 
we observed no conclusive difference for mean and variance of the data streams. A trend to increased EDA sig-
nal entropy in the preictal period was observed in a small subset of patients. See Table 2 for a results summary.

Discussion
The search for markers indicative of an impending seizure has a long history in  epilepsy11. Our analysis is 
motivated by the benefits related to timely warning of seizures, including the ability to treat earlier or to modify 
activities  accordingly1,2. Despite much effort, the current inability to predict seizures constitutes a major burden 
for PWE, their families, and healthcare  providers1. Therefore, methods to assess seizure risk, to identify seizures, 
and to provide a warning prior to seizures, are highly desirable for patients and clinicians, in particular with 
non-invasive, non-stigmatizing peripheral sensors. Detection of meaningful changes with wearable wristband 
sensors prior to seizure onset might help avoid limitations associated with the more complex setup of EEG-based 
 approaches14.

While most work in this domain has traditionally focused on EEG, ECoG and ECG, larger datasets from 
wearable devices might be crucial for broader application of such a method. As a relatively novel and under-
explored data modality, the primary aim of this study was not to develop a fully-functioning seizure forecasting 
system, but to statistically assess the possibility of meaningful data features to identify seizures early, ideally 
prior to EEG onset. Identification of such markers may guide further investigation to establish an early-warning 
system and may potentially provide novel insights into the physiology of seizure generation in a different man-
ner than traditional EEG- and ECoG-based methods. To approach this goal, we decided to use the surrogate 
marker approach to exploratively test which measures for each signal show relevant differences between preictal 
and interictal segments. We used mean and variance to capture main characteristics of the signals in the time 
domain. Furthermore, we calculated entropy, a measure from the information domain to infer the state of the 
respective ANS subsystem; entropy has previously been suggested to differentiate between ictal and non-ictal 
segments of intracranial EEG  data15.

Our main finding is that simple mean or variance signal values may be insufficient to reliably distinguish 
pre- and interictal periods with sufficient sensitivity and specificity. Our work highlights the importance to care-
fully assess any data feature over long periods of time in order to truly determine its value in terms of sensitivity 
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Figure 2.  No indication of a systematic change of mean EDA, TEMP or HR during preictal periods. 
Distribution of values of Area (ROC) for patients that passed the surrogate test  (npassed) for mean EDA (A), mean 
TEMP (B) and mean HR (C). Red vertical lines indicate the mean of distributions, which is not significantly 
different from zero in any of the cases. Results shown are for analyses on 30-s segment lengths.
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and specificity. Signal entropy has previously been studied with respect to other stressors, i.e. pain or social 
stress that included EDA entropy in the group of predictive features that differentiate between  states18,19. Our 
results cautiously suggest that EDA entropy may potentially be promising in this regard also in epilepsy, as it 
provides statistically meaningful results for a small subset of patients in terms of a temporal relationship between 
these markers and timing of seizure onset. However, further validation and investigation of the potential causes 
underlying these changes, e.g. if the observed changes truly reflect a physiological phenomenon or are related 
to some systematic data confounder or other stressor, are needed and merit further investigation. Nevertheless, 
if confirmed in larger patient cohorts, such markers may potentially help to devise personalized seizure risk 
assessment algorithms.
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Figure 3.  Indication of a systematic increase in EDA signal entropy in a small subset of patients during preictal 
periods. Distribution of values of Area (ROC) for patients that passed the surrogate test  (npassed) for EDA signal 
entropy analyzed on 30-s (A) or 5-min segment data (B).

Table 2.  Summary of surrogate test results for all measures (analysis for 30-s segments).

Modality Measure Count  (npassed) p value

EDA

Mean 23 0.584

Variance 15 0.088

Entropy 17 0.025

HR

Mean 22 0.548

Variance 24 0.346

Entropy 24 0.493

TEMP

Mean 25 0.382

Variance 26 0.501

Entropy 23 0.484
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Changes in central nervous system physiology may precede epileptic seizures prior to their seemingly abrupt 
 onset20. Slow changes may also be detected through peripheral sensors monitoring ANS function. Entropy may 
potentially capture some of these changes. Our analyses utilized a unique dataset comprised of long-term ANS 
monitoring data from a large number of patients admitted for video-EEG monitoring at the same hospital, in 
which the same procedures were followed. Thus, this study complements a multicenter study that evaluated ANS 
data on seizure  detection21. Pediatric patients are combined with adult patients and several devices are used, but 
the focus is on convulsive seizures. Interestingly, the results of both studies show the importance of EDA. We 
conclude that in the context of seizure prediction and detection, a closer analysis of EDA signals can spur novel 
research ideas, even with less frequently used analytical  approaches22.

The effects of seizures on different subsystems of the ANS have been shown for various seizure  types5,23,24. 
The combination of subsystems of the ANS and evaluation of markers to describe seizure-related changes within 
and across subsystems permits deeper insights into complex ANS activity  patterns25. Our results may support 
the hypothesis that seizures are related to ANS changes and that the pre-seizure state, as a central stimulus, 
alters the central control of ANS activity. This may potentially underlie the changes in the EDA signal observed 
in some patients. It is also likely that seizures arising from some brain regions (e.g. the temporal lobe) engage 
the ANS more than seizures arising from other brain  regions26. In our dataset, a lesion such as one in mesial 
temporal sclerosis, was rare as it is not common in pediatric patient populations (Table 1; only two documented 
hippocampal sclerosis lesions). Thus, while in principle it is possible that changes in the ANS are more frequent 
with seizures originating or spreading in certain areas of the brain, (e.g. seizures of temporal lobe origin), our 
data did not allow a comprehensive investigation of this hypothesis due to the low number of patients and the 
nature of the pediatric cohort.

Another important aspect when analyzing ANS signals is that different subsystems may act on different time 
scales. Also, each subsystem has various regulatory processes that challenge the definition of relevant time periods 
to consider. Here, we chose to analyze 60 min of preictal data and verified that the results remain similar when 
analyzing 30 min only. Also, we varied the segment length from which the mean, variance, and entropy were 
calculated to validate our results. By defining these parameters, as well as parameters set during data processing, 
e.g. bin number, it became challenging that these standards are not set in the field. Guidelines for data collection, 
processing and analysis are still missing for data from wearable devices.

Results need to be interpreted in the setting of data acquisition. First, the results are based on a sample of 
mostly treatment-refractory PWE, which may imply that the changes in ANS functioning relate to the refracto-
riness of medication. Therefore, generalizability to well-controlled epilepsy patients may require further work, 
such as validation on additional data sets. Additionally, our dataset was recorded in a hospital setting, and seizure 
forecasting in everyday life will face alternate challenges. At the moment, this setup allows for a controlled situa-
tion. Furthermore, the hospital setting causes additional stressors, e.g. sleep deprivation, changes in medication, 
and increased seizure likelihood. These factors cannot be completely controlled within the current dataset and 
will need to be taken into account when considering real-life applications.

We only performed minimal preprocessing of the data to remain close to real-life recording conditions. 
Moreover, anti-seizure drugs may have been weaned during monitoring, and therefore we cannot rule out 
confounding effects of anti-seizure drugs  adjustments27. To describe ANS activity we selected three continuous 
measures, EDA, HR and TEMP. This selection excluded other potentially relevant measures, such as respiratory 
rate. The reason for the selection was based on the Empatica E4 sensor used for data recording, which collects 
the studied modalities. We favored one device allowing for data synchronization over additional measures. The 
sensor allows for long-term data recordings but with comparably low sampling rates. Another challenge is manag-
ing artifacts, such as sensor location or movement artifacts. We considered them to incur similarly in inter- and 
pre-ictal data and therefore did not exclude artifact-affected segments. Furthermore, one has to carefully consider 
other causes for the observed changes in EDA signal entropy. For example, the possibility that changes in signal 
quality due to a loosely fitting wristband contributed to the observed effects, cannot be completely ruled out. 
Future confirmation of the observed findings in larger patient cohorts are thus essential. Of note, we did not 
compare seizure type specificity with ANS changes. Instead, we included all seizure types and combined differ-
ent seizure types from one patient into our analysis. We were specifically interested in broad markers indicative 
of an impending transition to seizures and favored the large dataset to detect an entry point to further develop 
biomarkers with the potential to contribute to seizure forecasting. Lastly, as also inherent in similar, we cannot 
rule out selection and information bias. But through outlining enrollment, patient selection processes, and data 
acquisition, we tried to generate reproducible and transparent results while acknowledging these shortcomings.

In summary, we used a unique dataset to assess potential ANS markers that would be informative of an 
approaching epileptic seizure in terms of significant sensitivity and specificity. When applying statistical testing 
using surrogate seizure times, mean and variance values of EDA, TEMP and HR did not exhibit a consistent trend 
across patients. While findings demand further validation and research on the underlying causes, changes in 
EDA signal entropy may be observed in a small subset of patients and potentially afford searching for more per-
sonalized seizure risk markers. Clinically, robust state changes detectable from wearable wristband sensors may 
provide new opportunities for seizure risk assessment and forecasting based on non-invasive, easy-to-use devices.
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